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Abstract

The main task of part-of-speech (PoS) tagging is to as-
sign the appropriate morphosyntactic category to each
word in a sentence. A combination of different PoS tag-
gers usually results in higher tagging accuracy than ob-
tained by the use of only a single tagger. We present a
new language and tagset independent system, Combi-
Tagger, which combines automatically the output of
several taggers. The system, which is open source, pro-
vides algorithms for simple and weighted voting, but it
is extensible so that other combination algorithms can
be added easily. We demonstrate the functionality of
CombiTagger by using it to develop and evaluate com-
bined taggers for Icelandic. The most accurate indi-
vidual tagger obtains an accuracy of 91.83%. Combi-
Tagger achieves 93.09%-93.41% accuracy by combin-
ing the output of five or six taggers using simple and
weighted voting.

Introduction

PoS tagging is the task of labelling words with the appro-
priate word class and morphological features. The string
used as a label is called a tag, the set of labelling strings
is called a tagset, and a program which performs tagging is
called a tagger. Since a word can have several PoS tags, the
main function of a tagger is to remove ambiguity. Tagging
text is a useful preprocessing step in many natural language
processing applications, i.e. in grammar checking, parsing,
information extraction, and machine translation.

Tagging accuracy is usually measured as the number of
correctly tagged tokens (words) divided by the total number
of tokens. The accuracy of a particular text in a given lan-
guage can usually be increased by combining taggers which
are based on different tagging methods (see section “Com-
bined Taggers”). In most cases, each combined tagger has
been written from scratch, i.e. each developer has written the
necessary program code to build the combined tagger. This
is unfortunate because, generally, it entails the reproduction
of code already written.

To tackle this problem, we introduce CombiTagger', a
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language and tagset independent system for developing and
evaluating combined taggers. The system provides algo-
rithms for simple and weighted voting, but it is extensible
so that other combination algorithms can be added easily.

We demonstrate the functionality of CombiTagger by us-
ing it to develop and evaluate combined taggers for tagging
Icelandic. We use the Icelandic Frequency Dictionary (IFD)
corpus (Pind, Magnusson, and Briem 1991) as a gold stan-
dard. The most accurate individual tagger yields an accuracy
of 91.83%. By combining the output of five or six taggers
using simple and weighted voting, CombiTagger achieves
93.09%-93.41% accuracy.

The rest of this paper is organized as follows. First, we
describe our motivation for developing CombiTagger. Sec-
ond, we briefly describe the individual taggers used when
demonstrating the system. Third, we elaborate on combined
taggers and combination algorithms. Fourth, we describe
the design of CombiTagger, and, fifth, we demonstrate the
functionality of the system using several test cases. Lastly,
we conclude with a summary.

Motivation

Our motivation for the development of CombiTagger is
twofold. First, to provide an open source utility for all re-
searchers intending to develop a combined tagger for a given
language. As discussed in the introduction, researchers de-
veloping combined taggers have usually reproduced func-
tionality already developed by others. Even basic combina-
tion algorithms like simple voting have been reimplemented
many times by different research groups. We maintain that
it is especially important to develop combined taggers for
other languages than English, for example, morphologically
complex languages. The reason is that tagging accuracy ob-
tained by individual taggers for morphologically complex
languages is significantly lower than the accuracy obtained
for English.

It has been shown that the best performing individ-
ual taggers have achieved around and above 97% accu-
racy on English text (Brill 1995; Daelemans et al. 1996;
Ratnaparkhi 1996; Brants 2000; Toutanova et al. 2003;
Shen, Satta, and Joshi 2007). In contrast, the state-of-the-art
tagging accuracy obtained for many morphologically com-
plex languages (using a large tagset) is well below the 97%
level, e.g. about 89% for Slovene (DZeroski, Erjavec, and



Zavrel 2000), about 92% for Icelandic (Dredze and Wal-
lenberg 2008), and about 94% for Czech (Haji¢ and Kuboii
2003).

The second motivation for the development of Combi-
Tagger is that we need a tool which can locate error candi-
dates in a PoS tagged corpus (as discussed in section “Com-
bined Taggers”).

Individual Taggers Used

Various taggers have been developed based on different
methods or models. We use the output from the following
individual taggers to test the functionality of CombiTagger:
fmTBL (Ngai and Florian 2001), MXP (Ratnaparkhi 1996),
MBT (Daelemans et al. 1996), TnT (Brants 2000), TreeTag-
ger (Schmid 1994), and IceTagger (Loftsson 2008). The first
five taggers are data-driven (i.e. they learn from pretagged
corpora), but the last one is a linguistic rule-based tagger.

The fnTBL tagger is a fast implementation (in C and Perl)
of transformation-based error-driven learning (TBL) (Brill
1995). In TBL the training phase consists of, first, assigning
each word its most likely tag without regard to context, and,
second, learning a set of ordered rules which transform a tag
X to atag Y, with regard to context. New text is then tagged
by applying the rules in the correct order.

The MXP tagger (implemented in Java) uses a binary fea-
ture representation to model tagging decisions, where each
feature encodes any information that can be used to predict
the tag for a particular word. The goal of the model is to
maximize the entropy of a distribution, subject to certain
feature constraints.

A memory-based model is used in the MBT tagger (im-
plemented in C++). During training, a feature representa-
tion of an instance (word and its context) along with its cor-
rect tag (target class) is simply stored in memory. New in-
stances are then tagged by similarity-based reasoning from
these stored examples.

The TnT tagger (a very fast C implementation) uses a
second order (trigram) probabilistic Hidden Markov Model
(HMM). The probabilities of the model are estimated from a
training corpus using maximum likelihood estimation. New
assignments of PoS to words is found by optimizing the
product of lexical probabilities (p(w;|t;)) and contextual
probabilities (p(t;|t;_1,t;_2)) (where w; and t; are the *"
word and tag, respectively).

TreeTagger is a probabilistic tagger (implemented in C)
similar to a tagger based on an HMM. The main difference
is that TreeTagger estimates contextual probabilities with a
binary decision tree whereas an HMM tagger (like TnT) uses
maximum likelihood estimation.

IceTagger (implemented in Java) is a linguistic rule-based
tagger (the rules are hand-written) developed for tagging
Icelandic text. It uses local (a window of 5 words) elimi-
nation rules for the initial disambiguation of tags. There-
after, various heuristics are used to force feature agreement
between words, effectively eliminating more tags. At the
end, for a word not fully disambiguated, the default rule is
to select the most frequent tag for the word.

Combined Taggers

A combined tagger is built using the output of two or more
individual taggers. It has been shown, for various lan-
guages, that a combined tagger usually obtains higher ac-
curacy than the application of just a single tagger (van
Halteren, Zavrel, and Daelemans 2001; Sjobergh 2003;
Kuba, Felfoldi, and Kocsor 2005; Loftsson 2006). The rea-
son is that different taggers tend to produce different (com-
plementary) errors and the differences can be exploited to
yield better results. When building combined taggers it is
thus important to use taggers based on different methods.

Combined taggers are useful in many ways, for example
when building tagged corpora or detecting errors in them. In
the former task, a corpus is usually tagged with an automatic
method and hand-corrected by humans afterwards. In order
to minimize the hand-correction, it is thus important to tag
the text with a high accuracy tagger, like a combined tagger.

In the latter task, a combined tagger can be used to point to
possible error candidates in a tagged corpus. If a tag selected
by the combined tagger does not agree with the correspond-
ing corpus tag (the gold standard tag) then it may indicate an
error in the corpus.

Various combination algorithms have been developed (see
van Halteren, Zavrel, and Daelemans (2001) for a good
overview). Here, we briefly review the two methods already
implemented in CombiTagger: simple voting and weighted
voting. In simple voting, equal weight is given to all tag-
gers when voting for a tag. The votes from all taggers are
summed up and the tag with the highest number of votes is
selected as the output of the combined tagger. In the case of
a tie, the tag proposed by the most accurate tagger(s) can be
selected.

In weighted voting, more weight is given to taggers that
have shown high accuracy, e.g. a tagger known to produce
high overall accuracy gets more weight when voting. Oth-
erwise, the voting mechanism works similarly as in simple
voting.

CombiTagger

CombiTagger is implemented in Java using the SWT
toolkit?. The main purpose of the program is to read data
files generated by individual taggers and use them to develop
a combined tagger according to a specified algorithm. Note
that CombiTagger supports any tagger, because it uses their
output files but not the taggers themselves. Figure 1 shows
an overview of CombiTagger’s functionality, which will be
explained in more detail below.

The graphical user interface consists of tabs to lead the
user through the process of collecting information about the
combined tagging approach. In the first tab, “Data Input”,
the user specifies the location of the output files already gen-
erated by the individual taggers. At least two tagger output
files need to be specified and it is assumed that each line in a
tagger output file contains a word and its corresponding tag,
separated by a space or a tab. Figure 2 shows a screenshot
after having added five tagger output files.

ttp://www.eclipse.org/swt/
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Figure 1: Overview of CombiTagger

The words of the input text can be provided by a separate
wordlist file — containing one word per line. This option can
be used if, for example, the words themselves do not appear
in the output of the individual taggers. If no additional input
file is provided, the program uses the words at the beginning
of each line in the first specified tagger output file. A gold
standard (i.e. a file containing correct PoS tagging) can also
be provided. This file should be in the same format as the
tagger output files described above.

In the second tab, “Preferences”, the behavior of the pro-
gram can be adjusted. First, the user can specify a file con-
taining all possible tags in the specific tagset. By explicitly
specifying the tagset, CombiTagger is not dependent on the
“Word Space Tag” format. Instead, CombiTagger uses the
tagset information to search for tags in each line matching
one of the tags in the given tagset. The Penn Treebank tag-
set (Santorini 1990) is provided with the program but other
tagsets can be added. The second option in this tab is the
selection of the output behavior. It is either possible to write
the output to a file or to a table (described in the paragraph
below about the “Result” tab).

In the third tab, “Algorithm”, the combination algorithm
is specified. Every algorithm is implemented in JavaScript.
Two scripts, for simple and weighted voting, are already pro-
vided. In both these scripts, the resolving of ties depends
on the exact order of the tagger output files. For example,
if there is a voting tie between two tagger groups A and B
then the tag proposed by group A is selected if one of its tag-
gers output has been loaded into CombiTagger before some

2. runCombinedTaggingAlgorithm():

output from group B.
Other user defined scripts can be added easily. The
JavaScript files are divided into two functions:

1. createAlgorithmSpecificGUI (): used to ex-
tend the graphical user interface for giving information
needed by the algorithm (e.g. the weight for each tagger
output).

the imple-
mentation of the algorithm itself.

CombiTagger stores the output of the different taggers in
the two-dimensional Java string array tagArray and it
requires the result of the combination algorithm in the
one-dimensional string array resultingTags. With the
help of a JavaScript engine, these objects (tagArray and
resultingTags) can be accessed in the JavaScripts. Due
to this functionality, the choice of a combination algorithm
is very flexible.

In the fourth tab, “Result”, the combination algorithm can
be started with the specified preferences. When the algo-
rithm terminates, the tab displays the settings and shows var-
ious statistical information (absolute and relative values) as:
in how many cases i) do all the taggers agree, ii) do all the
taggers except one agree, iii) do all the taggers agree with
the gold standard, iv) does the combined tagger agree with
the gold standard (and more).

If the option to create a table is chosen (in the “Prefer-
ences” tab), it appears in a new tab, “Output Table”. An
example output table is shown in Figure 3.
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Figure 2: CombiTagger start screen. Five different tagger output files have been added as input data and a gold standard file has
been specified.
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Figure 3: Example of an output table using five different taggers and a gold standard. The second column contains the words
(tokens) and columns 3-6 contain the tags proposed by the five taggers, respectively. A highlight function has been used to
show those rows where there is only one match with the gold standard.



No. | Tagger Accuracy (%)
1. fnTBL* 90.15
2. Ice* 91.83
3. MBT 89.28
4. MXP 89.03
5. TnT* 91.25
6. TreeTagger 89.30

Table 1: The average tagging accuracy of the individual tag-
gers

In this table, it is possible to highlight rows that match the
different statistical aspects described above. Furthermore,
the user has the possibility to edit the result column of the
combined tagging as well as the gold standard column. The
changes can be saved to a file. This can, for example, be
used to produce a new gold standard.

Test Cases

PoS taggers for Icelandic have been evaluated by apply-
ing 10-fold cross-validation on the IFD corpus (Helgadottir
2005; Loftsson 2006; Dredze and Wallenberg 2008). In our
experiments described below, we follow Loftsson (2006) by
using the output of individual taggers for the first nine test
files and present accuracy numbers as averages from these
nine runs. To test the functionality of CombiTagger and
the two provided combination algorithms, we used Combi-
Tagger for developing and evaluating combined taggers for
Icelandic. We present the combined taggers in five test cases
below.

As input to CombiTagger, we used the output of the six
individual taggers: fnTBL, IceTagger, MBT, MXP, TnT,
and TreeTagger (described in section “Individual Taggers
Used”). We used enhanced versions of the taggers fnTBL,
TnT, and IceTagger — called faTBL*, TnT* and Ice*, re-
spectively (Loftsson 2006). Table 1 shows the average tagg-
ing accuracy of the individual taggers when tagging the first
nine test files.

In the first test case, we used the simple voting algorithm
of CombiTagger. We loaded the output files of the first five
taggers listed in Table 1 in alphabetical order (this effec-
tively means that ties are resolved in random order). This
resulted in an accuracy of 93.09%. Interestingly, according
to CombiTagger, 2.29% of all tokens are not tagged correctly
by any of the taggers. This means that the best simple or
weighted combination can only reach 97.71% accuracy.

In the second test case, we rearranged the order of the
five individual tagger output files, i.e. we loaded them into
CombiTagger using descending order of accuracy: Ice*,
TnT*, tnTBL*, MBT, and MXP. Thus, in the case of a tie,
the tag proposed by the most accurate tagger in the tie is
selected. This resulted in an accuracy of 93.35%, which is
consistent with the results obtained by Loftsson (2006) us-
ing the same taggers.

In the third test case, we added the sixth tagger, TreeTag-
ger, to the combination pool, hoping for an increase in tagg-
ing accuracy relative to the previous text case. We loaded

No. | Combination Voting Accuracy
method (%)
1. fnTBL*, Ice*, MBT, Simple 93.09
MXP, TnT*
2. Ice*, TnT*, fnTBL* Simple 93.35
MBT, MXP
3. Ice*, TnT*, fnTBL*, Simple 93.24

TreeTagger, MBT, MXP
4. fnTBL*, Ice*, MBT,
MXP, TnT*

5. Ice*, TnT*,fnTBL*,
MBT, MXP

Weighted 93.33

Weighted 93.41

Table 2: The average tagging accuracy of the combined tag-
gers

the tagger output files into CombiTagger using descending
order of accuracy: Ice*, TnT*, fnTBL*, TreeTagger, MBT,
and MXP. This test, however, resulted in an decrease in ac-
curacy to 93.24%. Thus, the combined tagger does not ben-
efit from adding TreeTagger to the combination pool. The
reason seems to be that there are too many incorrect tags pro-
posed by TreeTagger that become part of the “winner vote”.
Adding a sixth tagger to the combination pool is thus proba-
bly only beneficial if the given tagger is relatively accurate.
For the remaining test cases, we therefore left TreeTagger
out and only used the first five taggers.

The remaining two test cases were carried out using the
weighted voting algorithm, in which the results depend more
on the given weights and less on the order of the tagger out-
put files. In the fourth test case, we weighted each of the
five tagger output files with its corresponding tagging accu-
racy (from Table 1) and ordered them alphabetically. This
resulted in an accuracy of 93.33%, which is 0.24 percentage
points higher than using the simple voting algorithm with
the same ordering of the tagger output files. Note that when
all the given weights are close to 1.0, and random order of
tagger output files is used, this test case is more or less equiv-
alent to ordering the tagger output files using descending or-
der of accuracy, as carried out in the second test case.

Finally, in the fifth test case, we again rearranged the order
of the five individual tagger output files using descending
order of accuracy. Furthermore, we weighted Ice* with 2.0,
MXP with 1.1, but the three other taggers with 1.0. The
reason for doing this is that we had noticed that in some
cases Ice* and MXP agree on a correct tag, but are outvoted
when the other three taggers agree on an incorrect tag. The
given weight allocation will thus result in 3.1 votes to the
joint tag proposed by Ice* and MXP, but 3.0 votes for the
joint tag proposed by the other taggers. Applying this last
combined tagger resulted in an accuracy of 93.41%.

To summarize, the difference between the best individ-
ual tagger and our best combined tagger is 1.58 percentage
points, which amounts to an error reduction rate of 19.3%.
Table 2 shows the results of the five test cases.



Conclusion

In this paper, we have argued that it is important to develop
combined taggers for morphologically complex languages,
where tagging accuracy (using a single tagger) is low. We
have described CombiTagger, an open source system for de-
veloping and evaluating combined taggers. CombiTagger
is a language and tagset independent tool, which could en-
courage the development of combined taggers for various
languages.

We have demonstrated that CombiTagger is flexible in the
sense that different combination algorithms can be applied
and that (voting) ties can be handled in an appropriate man-
ner. Moreover, we have demonstrated the functionality of
CombiTagger by using it to develop and evaluate combined
taggers for tagging Icelandic text.

The current version of CombiTagger calculates tagging
accuracy for all words. For future work, we propose an ad-
dition to CombiTagger to handle unknown words separately.
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