
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Using Flipped Classroom and Team-Based Learning
in a First-Semester Programming Course:

An Experience Report
Hrafn Loftsson

Department of Computer Science
Reykjavik University
Reykjavik, Iceland

hrafn@ru.is

 Ásrún Matthíasdóttir
Department of Sport Science

Reykjavik University
Reykjavik, Iceland

asrun@ru.is

Abstract— The use of the flipped classroom (FC) approach
and team-based learning (TBL) has gained popularity in recent
years by instructors in introductory programming courses
(CS1), due to increased emphasis on student success and active
learning. In this paper, we present an experience report about
using FC and TBL in a CS1 course. We present the motivation
for restructuring the course, the specific implementation, the
results of two student surveys, and the outcome of several
exams. We discuss the results, present what actions were taken
during the course period, and what changes will be carried out
in the future. The results from the surveys show that 47% of the
students were pleased with the organization of the course,
whereas up to 33% of the students were displeased (in particular
the female students). About 60% of the students liked the TBL
in class, but about half of the students felt that the course lacked
traditional lecturing. Finally, it was surprising that 44% of the
students never or seldom read the textbook before class, while
74% watched the videos.

Keywords—flipped classroom, team-based learning, CS1,
experience report

I. INTRODUCTION
Learning programming has been considered difficult for

many students, which often leads to high failure and drop-out
rates from programming courses [10]. A large study involving
161 introductory programming courses in 15 countries shows
that the mean worldwide pass rate is 67.7%, and that it has not
significantly improved over time [13]. Moreover, the study
shows that there is no significant difference in the pass rates
based on the programming language taught. Kunkle and Allen
[5] state that theories have been put forth about the difficulties
that novices experience in learning to program, but that
several decades of research have not yielded definitive
answers. Luxton-Reilly [7] indeed challenges the view that
learning programming is hard and states that our expectations
of what students should be able to do at the end of a first
programming course are unrealistic.

Due to increased emphasis on student success, active
learning, and effective communication between instructor and
student, several CS departments have experimented with
using the flipped classroom (FC) approach and team-based
learning (TBL) in programming courses [1, 4, 6, 11, 12]. In
FC, in-class and out-class activities are flipped: students are
expected to study a specific course material outside the class
and then be able to apply the knowledge to complete various
activities related to the material during class under the
guidance of an instructor.

One way of putting structure to FC is using TBL [3, 6]. In
TBL, students work in teams to apply their knowledge as

opposed to working individually on activities. One of the key
components of TBL is that students must have immediate
feedback. Moreover, in TBL it is common to assess the
student's level of understanding on the assigned readings, both
with an individual test and a group test [6].

Thus, the FC approach and TBL offers an opportunity to
incorporate active learning methods in the classroom, while
still covering necessary learning material. The main objective
during class time is to test the understanding of concepts and
apply them on increasingly complex problems. Some research
has shown that these approaches can improve student’s
learning and performance in an introductory programming
course [1, 6, 12].

Finelli et al. [2] state that previous research has shown that
there are several barriers to adoption of active learning
methods, e.g. concerns about student resistance, efficacy of
the methods, teacher preparation time, and the ability of the
teacher to cover the course syllabus. In particular, the authors
propose stategies to reduce student resistance, which they
define as “negative behavioral responses to active learning”.

In this paper, we present an experience report about using
FC and TBL in a first-semester introductory programming
course (CS1) at Reykjavik University. We present the
motivation for restructuring the course in Section II and the
specific implementation in Section III. The results and
discussion about two student surveys and exams are presented
in Section IV and instructors‘ reactions in Section V. Finally,
a conclusion is presented in Section VI.

II. MOTIVATION
The BSc program in the Department of Computer Science

(DCS) at Reykjavik University is a three year program. The
vast majority of the students who enroll into the CS program
are novice programmers.

Before the work reported in this paper, the first-semester,
12-week, programming course in the DCS had been taught
using a traditional lecture and laboratory-based format. The
instructor introduced the text material in lectures (3-4 lecture
hours per week) and demonstrated programming concept
while the students listened and sometimes participated in the
programming part. In the labs (2 lecture hours per week),
students were given programming exercises to practice the
concepts given in the lectures. Additionally, several
homework projects were given during the term, on which the
students could work in a group of two. The C++ programming
language had been used in the course for several years.

In fall semester 2018, the DCS decided to use the FC
approach and TBL in the CS1 course, in order to encourage

the students to take more active part in their learning. By
freeing class time for in-class activities, students would get
more practice in solving programming problems and students
interaction with the instructor would increase. At the same
time, the programming language used in the course was
changed from C++ to Python.

III. IMPLEMENTATION
At the start of the CS1 course, 325 students were

registered. In order to facilitate the FC approach and TBL, the
students were divided into seven sections. Five of the sections
had about 55 students each, whereas the remaining 50 students
were divided between a special evening class section and an
off-campus section. Inside each section, students were
randomly divided into a group of 5–6 students. Each section
met two days a week in class, for four lecture hours each day.

One faculty member, the main instructor, was responsible
for the overall organization of the course (syllabus,
assessment, quizzes, projects, exams, etc.). Six instructors and
seven teaching assistants had the role of tutoring in the
sections (one instructor had two sections).

Our implementation of FC and TBL is based on
implementations described in e.g. [1, 3, 4], and is as follows:

• In advance of most of the classes, students were
expected to read a given chapter of the textbook [9]
and watch 1–2 short YouTube videos related to the
specific concepts. The videos were provided as
supplementary material to the (more important)
textbook chapters.

• At the beginning of each class, the students were
given the chance to ask questions about the material
and in some cases the instructor spent 5–10 minutes
giving an overview of the main topics in the
underlying chapter.

• After the question and overview session, in most of
the classes students were given a short quiz,
containing ten multiple choice questions which were
directly linked to the given textbook material. After
this individual quiz, students discussed the same quiz
in their group and the team turned in a single copy as
their collective answers.

• For the remainder of the class, students were given
several short programming assignments for practicing
the specific concepts. Students worked on these
assignments in their groups, but each student needed
to submit his/her solution at the end of the class. If a
student was not able to finish all the assignments in
class, he/she had the opportunity to submit a solution
four hours (at the latest) after the class finished.

• In addition to the short programming assignments
given in class, the students were given larger
programming projects each week to be worked on at
home, optionally in a group of two students.

• Each week a special open session was available in
which students could receive additional help (from 2–
3 teaching assistants) on any issue regarding the
course.

1 https://www.mimirhq.com/

Table I: The general organization of each class

Activity Description

Discussion Students ask questions and the
instructor gives an overview of the
material.

Individual quiz Students answer 10 multiple-
choice questions.

Group quiz Students discuss the same quiz in
groups and hand in a single copy
as answers.

Programming assignments Students work on the assignments
in groups but each student submits
his/her solution.

Table I shows the breakdown of activities performed in
most of the classes during the course period.

The course assessment was the following:

• Quizzes (individual and group) in class: 10%.

• Short programming assignments in class: 15%.

• Homework programming projects: 15%.

• Two midterm exams (the higher one counted): 20%

• Final exam: 40%

Solutions to individual quizzes were automatically graded
by Mimir Classroom. 1 For the group quizzes, IF-AT
(Immediate Feedback Assessment Technique) scratch cards,
which reveal the results to the student as they answer the
questions (see [6]), were used. Solutions to the programming
assignments in class were automatically graded by Mimir
using predefined test cases. Thus, an effort was made to make
sure that students received immediate feedback in class on
their level of understanding.

Solutions to the homework programming projects were
also run against test cases in Mimir, but the final grade was
decided by a group of 6–7 teaching assistants, who based the
grade on the code quality as well as the functionality.
Solutions to exams (midterms, final and retake) were
submitted by students in Mimir, but graded by the instructors
in a similar manner as the homework assignments.

It should be evident from the description above that
considerable effort and manpower was needed to administer
and run the FC/TBL version of the CS1 course. Overall, about
20 individuals (instructors and teaching assistants) contributed
to the course in some way or another. This is about double the
number needed to administer and run the course when it had
been taught in the traditional manner.

IV. RESULTS AND DISCUSSION
In this section, we present and discuss the results of two

online surveys carried out among students registered in the
course. Furthermore, we discuss results from the various
exams given during the course period.

Table II: Answers to the question "Are you generally pleased or
displeased with the course"

Rating Answer Count Ratio

5 Very pleased 39 20%

4 Rather pleased 52 27%

3 Moderate 40 20%

2 Rather displeased 36 18%

1 Very displeased 29 15%

Table III: Answers to the question "Are you generally well or

poorly prepared for classes"

Rating Answer Count Ratio

5 Very well 52 26%

4 Rather well 84 43%

3 Moderate 49 25%

2 Rather poorly 10 5%

1 Very poorly 1 1%

A. First survey
The first survey was administered by the Office of

Teaching Affairs and was given to students in the 5th week of
the course. Of the 325 registered students, 196 (60%)
submitted answers. The survey consisted of 8 questions of
which the most important two (for the purpose of this paper)
are shown in Tables II and III (both questions are rated on a
five level Likert scale).

Table II shows that 47% of the students were pleased with
the course (gave the rating 5 or 4) whereas 33% of the students
were displeased (gave the rating 2 or 1). The average rating
was 3.17. This result came as a surprise to the instructors,
because in previous runs of the CS1 course the rating
distribution has not been as bi-modal as here is shown.
Usually, the ratio of students being displeased with the course
has been in the range 10–15% and a higher ratio of students
has been pleased. What was even more surprising was the fact
that the average rating given by the female students was only
2.72, compared to the average rating of 3.45 given by the male
students. Later in this section, we argue for a plausible reason
for this gender difference.

Table III shows that only 6% of the students felt that they
were poorly prepared for classes. In Section IV.B, we will
compare this to the result of a question regarding textbook
reading before class.

In this first survey, students were able to comment on what
were the advantages of the course and what could be
improved. The following items were mentioned most often as
advantages:

• The organization of the course / the flipped classroom

• The amount of useful and challenging programming
problems

• Python

• Mimir Classroom

• The need to come prepared for class

• Quiz at the start of each class

The following items were mentioned most often that could
be improved or mentioned as disadvantages:

• More teaching (as in traditional lecturing) needed

• Allow students to submit programming assignments
later than four hours after class finishes

• Projects too hard / too much work

• Grades for homework projects should be returned
sooner

When further analyzing the text responses it became clear
that several of the female students were intimidated by some
male students in the TBL work in class. Presumably, the
reason is that in most cases the female students are novice
programmers, whereas some of the male students enter the
course with previous programming background (as shown in
Section IV.B). This may be partly the reason why the average
rating given by the female students is much lower than the
average rating given by the male students.

Many students pointed out that more traditional teaching
was needed, either in class or with video lectures. The
enhancement made to the course (after this first survey) was
that the instructor in each section started every class by
discussing the material as well as solving the first
programming assignment jointly with the students.

Many students felt that there was too much pressure and
too little time for submitting solutions to the programming
assignments given in class. Some of the students wanted to be
able to return these assignments the day after. The instructors,
however, were not willing to change this part, because they
wanted the students to work on the assignments mainly in
groups inside the class.

B. Second survey
The second survey, designed by the authors of this paper,

was much more comprehensive than the first one. It consisted
of 23 questions and given to students in the 10th week of the
course. 178 (55%) of the registered students answered this
survey. The first four questions were background questions
identifying the participants‘ gender, age, semester, and
programming skills:

• 114 (64%) of the participants were male students and
64 (36%) female students.

• The participants‘ average age was 24.4 years, ranging
between 18 and 46 years.

• Most students, or 148 (83%), were first semester
students.

• Most of the participants, or 119 (67%), rated their
programming skills very little or little before they
entered the course and only 24 (14%) students rated it
as great or very great. The average rate (on a five level
Likert scale) was 2.25 for male students and 1.52 for
female students.

The remaining nineteen questions were geared towards the
course organization, the teaching, study material, midterms,
group work and use of systems. The results for selected

Table IV: Course organization and the teaching

Question Totally
agree and
agree

Totally
disagree and
disagree

The organization of the course is good 47% 27%

The classes each week are useful to me 46% 29%

The course lacks traditional lectures 49% 30%

Communication with instructors in
class help me to study

61% 16%

I like the organization of the quizzes 45% 28%

Table V: Study material and group work

Question Totally
agree and
agree

Totally
disagree and
disagree

The textbook helped me in my studies 25% 45%

I usually read the textbook before class 35% 44%

The videos helped me in my studies 58% 20%

I usually watch the videos before class 74% 13%

The discussion with fellow students in
class helped me in my studies

59% 23%

I like to work in a group with fellow
students

62% 17%

questions are presented in Tables IV and V. In what follows,
we interpret and discuss the results.2

The first question shown in Table IV and the question in
Table II are similar in nature. Answers to these two questions
show an almost similar bi-modal distribution and that a
substantial part of the students (27–33%) were not pleased
with the course.

Table IV shows that half of the students (49%) felt that the
course lacked traditional lectures and this result is consistent
with the most common criticism in the first survey. This table
also shows that the majority of the students felt that
communications with the instructor in class was beneficial,
which is indeed one of the advantages of using the FC
approach.

The most striking result for the instructors in this survey
can be seen in the answers to the first two questions (regarding
the textbook) in Table V. Only 25% of the students felt that
the textbook was of help in their studies and only 35% usually
read the textbook before class. On the other hand, Table V
shows that most students prepared for classes by watching the
videos, which were considered by the instructors to be a
supplementary material for the textbook. Recall that a small
ratio (6%) of students felt that they were poorly prepared for
classes, according to the result presented in Table III. It is thus
clear that many students do not see reading the textbook as
part of the preparation for class.

Finally, Table V shows that the majority of the students
liked to communicate with fellow students and the group work

2 In another paper [8], we apply linear regression, on the data obtained in
the second survey, in order to find out what best explains the students’
positive learning experience.

Table VI: Exam results

Exam Students Average
grade

Failure
rate

Midterm 1 281 (86.5%) 7.1 19.9%

Midterm 2 227 (69.8%) 6.3 36.1%

Final 279 (85.8%) 4.4 55.6%

Retake 133 (40.9%) 5.4 41.3%

in class, which, in our mind, supports the continuing use of
TBL in the course.

C. Exam results
In this course, students were able to take four exams, i.e.

two midterms, a final exam, and a retake exam. All the exams
were “open book”, i.e. students were allowed to use the
textbook, slides, notes, and solutions to assignments in the
exam. Grades are given on a 0–10 scale, and a grade below 5
is a failing grade.

The first midterm was given in the 4th week of the course.
The material for the exam were basic programming concepts
like variables, types, operators, assignment statements,
expressions, if-statements, and loops. The second midterm
was given in the 8th week of the course. In addition to the
material covered in the first exam, the second one included the
following concepts: functions and top-down refinement,
scope, file I/O, exception handling, lists and tuples. At the time
of final exam, the following concepts had been added:
dictionaries, sets, (large) program development, and classes.

Results of the four exams are shown in Table VI. Of the
325 students registered at the start, 281 (86.5%) showed up for
the first midterm. We can thus assume that about 14%
students had dropped out of the course by week 4. The
number of students participating in the second midterm
dropped down to 227. The drop is due to the fact that only the
higher grade of the two midterm counted toward the final
grade and many students that had received a high grade on the
first midterm decided to skip the second one.

The failure rate of about 56% in the final exam was the
highest the DCS had seen in many years. This was
disappointing to the instructors – the failure rate in the final
exam in previous running of the course had been in the range
33–50%.3 For further comparison, the failure rates in the other
first-semester 12-week courses (taught using a traditional
lecture and laboratory-based format) pursued by the students,
Discrete Mathematics, Software Analysis and Design, and
Computer Architecture, was 23.3%, 20.7%, and 17.8%,
respectively.

When grading the final exam, it became evident that the
most common problem the failing students had was the
inability to apply functional decomposition, i.e. break a
problem description into individual tasks and implement
functions for those tasks. Many of the homework
programming projects indeed practiced this skill as well as
several of the programming assignments in class. In our
opinion, greater emphasis needs to be put on this skill in future
running of the course. Furthermore, we believe that the lack

3 The final (Python) exam in this course was comparable to the final (C++)
exams given in the previous years. The grading schemes used in the
Python exam and the C++ exams were also similar.

of textbook reading (see Section IV.B) plays a role in the high
failure rate. Note, however, that we are not able to confirm
this belief, due to the anonymity of our surveys.

On the other hand, it should be mentioned that 49 students
(17.6%) did very well on the final exam, i.e. obtained a grade
higher or equal to 9.0. 85% of these students were not novice
programmers, according to the results of a special survey
given to these students.

The number of students that showed up in the retake exam4
was 133, of which 128 had taken the final exam. The number
of students that had failed the final exam was 155, of which
27 did thus not show up in the retake exam.

Overall, 199 students, or 61.2% out of the 325 students
registered at the start, passed the course. This is a bit lower
pass rate than the average worldwide pass rate of 67.7% in
CS1 courses (see Section I).

V. INSTRUCTOR’S REACTIONS
As presented in Sections IV.A and IV.B, a significant part

of the students, or 27–33%, were displeased with the
organization of the course. This ratio is higher than the DCS
has experienced in previous (traditional) running of the
course. Furthermore, as presented in Section IV.C, the failure
rate in the final exam was the highest the DCS had seen in
many years. Both of these issues came as a surprise to the
instructors, because they had anticipated that, by switching to
FC and TBL, the students would be at least as satisfied with
the course as in earlier years, and would be able to do at least
as well on the final exam.

The six instructors of the course were generally satisfied
with the course organization and all of them want to continue
with using FC and TBL in CS1. In particular, they liked the
effective communication with students in class and the
tutoring related to the various programming assignments.
There are, however, several issues the instructors would like
to improve when running the course again using FC and TBL
(these improvement are related to part of the criticism that
surfaced in the surveys discussed in Sections IV.A and IV.B):

• Lack of lecturing. The most common criticism by
students was the lack of traditional lecturing. The
instructors had not anticipated this criticism, but it is
understandable given the fact that 44% of the students
either never or seldom read the textbook before class
(see Table V). When teaching this course next time,
the instructors will make it even clearer that reading
the textbook before class is of prime importance, but,
additionally, they plan to spend more time in class to
discuss the main material covered in the text.
Admittedly, this criticism regarding lack of traditional
lecturing should have been anticipated as it is, for
example, discussed in [6]. On the other hand, it
should be pointed out that in the previous running of
the course, using traditional lecturing, the attendance
levels in lectures gradually decreased as the course
progressed.

• Pressure of submission. The second most common
criticism that appeared in the first survey relates to the

4 All students are able to take the retake exam. However, generally, the
students showing up in the retake exam are the ones who either failed or
missed the final exam.

pressure many students felt in the submission of the
programming assignments in class (recall that these
assignments counted towards the course grade).
Many students felt that they did not have enough time
to finish the assignments (even with four more hours
after class). It has not yet been decided if or how the
instructors react to this issue. One option might be to
make the class programming assignments not count
towards the course grade, but that indeed might
discourage the students to work on the assignments in
class and leave after the quizzes.

• Projects are too hard. The third most common
criticism found in the first survey was that many
students felt that the programming projects were too
hard. Furthermore, after the final exam, many
students felt that the instructors had established
unrealistic expectations regarding the students‘
programming skills. While the instructors do not
agree with this view, it is consistent with the view
expressed in [7], and it will be discussed further in the
DCS.

• Students with previous programming
background. As mentioned in Section IV.B, 67% of
the students in the course were novice programmers.
Most of the students with programming background
are male students and, according to our first survey, a
substantial number of the female students (who were
novice programmers) felt intimidated by these male
students during TBL. Another “problem” with the
students with programming background is that they
feel bored in the first weeks of the course, because the
material is too elementary for them. The instructors
had hoped that the students with programming
background would help, and indeed teach, their
teammates, particularly in the programming
assignments in class. This seemed to be working out
in the very first few weeks, but, as the time passed,
many of them lost interest in helping their teammates.
The instructors would like to “solve” these problems,
when teaching the CS1 course next time, by making a
special section for the students with previous
programming background, as done by various other
institutions [14]. In this special section, it will thus be
possible to present these students with more
challenging programming problems, and, hopefully,
get rid of the intimidation problem.

VI. CONCLUSION
In this paper, we presented an experience report about

using FC and TBL in a CS1 course. We presented the
motivation for restructuring the course, the details of the
implementation, the results of two surveys carried out, and the
outcome of four exams. We discussed the results in detail,
presented what actions were taken during the course period
and what changes are intended to be made to it when it will be
offered in the future.

The surveys showed that up to 33% of the students were
displeased with the course – in particular the female students.
About 60% of the students liked the TBL in class, but about

half of the students felt that the course lacked traditional
lectures. It was surprising that 44% of the students never or
seldom read the textbook before class, whereas 74% watched
the videos. The instructors were disappointed with the failure
rate of about 56% in the final exam, which is the highest
compared to previous years. Nevertheless, the instructors
were generally pleased with the experience of using FC and
TBL in the course and intend to apply these teaching methods
again in an improved version of the same course next year.

It should be clear from our description of the
implementation of the course that various other changes were
made to it, in addition to the adoption of FC and TBL. For
example, a switch was made to Python from C++, additional
lecture hours were introduced, and more people were
involved. One may argue that some of these issues affected
the outcome. In our opinion, it is unlikely that the switch to
Python from C++ had any significant affect. In Section I, we
referred to a large study that has shown that the difference in
pass rates is not based on the programming language being
taught. The two other changes mentioned above, i.e.
additional lecture hours and more people involved, were
needed to facilitate the implementation of the FC. One would
think that additional lecture hours would be beneficial to the
students, but, currently, we are not in a position to verify that.
Having different instructors involved in different sections of a
course may result in different performances between students
in the different sections. Indeed, in the final exam we noticed
that one of the sections “outperformed” the others by some
margin. However, it is possible, for example, that a higher
ratio of students with previous programming background were
part of this particular section.

From the experience gained, questions have arisen about
the teacher‘s role and responsibility. In our case, the DCS
decided to change the implementation of a course using
recognized pedagogical approaches, i.e. making the students
take an active part in the learning process and work on projects
in teams during classes. The teachers were pleased with the
change, but a significant part of the students was displeased.
Moreover, the failure rate was very high. How should the
teachers react to this situation? Should they continue and run
the course again using the same format, should they give up
and go back the traditional lecture and laboratory-based
format, or should they consider the students complaints and
improve the implementation? If we agree with the last option,
new questions arise. How much of the complaints from
students should be taken into account, and how will the
improvements affect the learning outcomes and the attendance
in classes?

REFERENCES

[1] Saleh Alhazbi. 2016. Using flipped classroom approach to teach

computer programming. In Proceedings of the IEEE International
Conference on Teaching, Assessment and Learning for Engineering
(TALE). Bangkok, Thailand.

[2] Cynthia J. Finelli, Kevin Nguyen, Matthew DeMonbrun, Maura
Borrego, Michael Prince, Jenefer Husman, Charles Henderson, Prateek
Shekhar, and Cynthia K. Waters. 2018. Reducing Student Resistance
to Active Learning: Strategies for Instructors. Journal of College
Science Teaching, 47, 5 (2018), 80–91.

[3] Krisztina V. Jakobsen and Megan Knetemann. 2017. Putting Structure
to Flipped Classrooms Using Team-Based Learning. International
Journal of Teaching and Learning in Higher Education 29, 1 (2017),
175–185.

[4] Antti Knutas, Antti Herala, Erno Vanhala and Jouni Ikonen. 2016. The
Flipped Classroom Method: Lessons Learned from Flipping Two
Programming Courses. In Proceedings of the 17th International
Conference on Computer Systems and Technologies. Palermo, Italy.

[5] Wanda M. Kunkle and Robert B. Allen. 2016. The Impact of Different
Teaching Approaches and Languages on Student Learning of
Introductory Programming Concepts. Transactions on Computing
Education 16, 1 (2016), 3:1–3:26.

[6] Patricia Lasserre. 2009. Adaptation of Team-based Learning on a First
Term Programming Class. In Proceedings of the Conference on
Innovation and Technology in Computer Science Education (ITiCSE
’09). Paris, France.

[7] Andrew Luxton-Reilly. 2016. Learning to Program is Easy. In
Proceedings of the Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’16). Arequipa, Peru.

[8] Ásrún Matthíasdóttir and Hrafn Loftsson. 2019. Flipped Learning in a
Programming Course: Students’ attitudes. In Proceedings of the 15th
International CDIO Conference. Aarhus, Denmark.

[9] William F. Punch and Richard Enbody. 2017. The Practice of
Computing Using Python (3rd. ed.). Pearson Education, New York,
NY.

[10] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning
and Teaching Programming: A Review and Discussion. Computer
Science Education 13, 2 (2003), 137–172.

[11] Jason H. Sharp. 2014. Journey Toward a Flipped C# Programming
Class: An Experience Report. In Proceedings of the Information
Systems Educators Conference . Baltimore, MD, USA

[12] Manoj D. Souza and Paul Rodriques. 2015. Investigating the
Effectiveness of the Flipped Classroom in an Introductory
Programming Course. The New Educational Review 40, 2 (2015), 129–
139.

[13] Christopher Watson and Frederick W.B. Li. 2014. Failure Rates in
Introductory Programming Revisited. In Proceedings of the
Conference on Innovation and Technology in Computer Science
Education (ITiCSE ’14). Uppsala, Sweden.

[14] Chris Wilcox and Albert Lionelle. 2018. Quantifying the Benefits of
Prior Programming Experience in an Introductory Computer Science
Course. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education (SIGCSE ’18). Baltimore, Maryland,
USA.

