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Abstract

Natural language processing (NLP) is a very young discipline in Iceland. Therefore,
there is a lack of publicly available basic tools for processing the morphologically
complex Icelandic language.

In this thesis, we investigate the effectiveness and viability of using (mainly)
rule-based methods for analysing the syntax of Icelandic text. For this purpose,
and because our work has a practical focus, we develop a NLP toolkit, Ice NLP. The
toolkit consists of a tokeniser, the morphological analyser IceMorphy, the part-of-
speech tagger IceTagger, and the shallow parser IceParser.

The task of the tokeniser is to split a sequence of characters into linguistic units
and identify where one sentence ends and another one begins.

IceMorphy is used for guessing part-of-speech tags for unknown words and
filling in tag profile gaps in a dictionary.

IceTagger is a linguistic rule-based tagger which achieves considerably higher
tagging accuracy than previously reported results using taggers based on data-
driven techniques. Furthermore, by using several tagger integration and combi-
nation methods, we increase substantially the tagging accuracy of Icelandic text,
with regard to previous work.

Our shallow parser, IceParser, is an incremental finite-state parser, the first
parser published for the Icelandic language. It produces shallow syntactic anno-
tation, using an annotation scheme specifically developed in this work. Further-
more, we create a grammar definition corpus, a representative collection of sen-
tences annotated using the annotation scheme.

The development of our toolkit is a step towards the goal of building a Basic
Language Resource Kit (BLARK) for the Icelandic language. Our toolkit has been
made available for use in the research community, and should therefore encourage
further research and development of NLP tools.
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Chapter 1

Introduction

It has been predicted that, in the future, the main method of communication
between humans and computers (or other processing devices) will be natu-
ral language (NL), in both spoken and written forms. This, indeed, seems
evident; since we humans communicate most easily with one another using
NLs, why should we not use this innate capability of ours to communicate
with computers as well? Moreover, communicating with devices using NL
will enable the average person to interact with computers without demanding
any special skills or training.

In fact, today, humans already use NL for interacting with various systems,
i.e. writing queries to search engines and entering credit-card numbers using
voice. Furthermore, various systems have already been developed to process
NLs for some particular task, e.g. grammar correction, information extrac-
tion, corpus annotation and machine translation.

Language technology (LT) is the underlying technology that enables us
to use NLs for communicating with computers and enables computers to pro-
cess, understand and interpret NLs. LT is a multidisciplinary field which re-
quires knowledge from different disciplines like linguistics, psychology, engin-
eering and computer science. Generally, it can be said, however, that LT
comprises two main subcategories: speech technology and natural language
processing (NLP).

Speech technology, which uses data in spoken form, includes two main
subfields, i.e. speech synthesis and speech recognition. The former is con-
cerned with producing human speech, whereas the latter addresses reco-
gnition of human speech.

In contrast, NLP, which is the subject of this thesis, deals with automatic
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processing of NLs in written or textual form. NLP is among the oldest
disciplines of computer science — work on machine translation started as
early as in the 1950s. The field of NLP has grown significantly the last
ten years, mainly due to the increased amount of textual data available for
processing on the World Wide Web (www). Processing, understanding and
interpreting NLs is, however, not a trivial task. The reason is that NLs
are ambiguous, i.e. a particular word or a word segment can have different
interpretations depending on the context.

Ambiguity is, usually, categorised into two types: lexical and syntactic.
Lexical ambiguity arises when a particular word can have more than one
meaning. For example, in the above sentence part “a particular word or a
word segment”, the word “segment” is lexically ambiguous, because it can
either be a noun or a verb. Syntactic ambiguity, on the other hand, is
caused by the grammatical structure of a sentence. For example, in the
widely used illustrative sentence “I saw the man with a telescope”, a syntactic
ambiguity arises because it is not clear from this sentence alone whether “I1”
used “a telescope” to see “the man” or whether “the man” was seen holding
“a telescope” (this kind of syntactic ambiguity can be represented as the
problem of prepositional phrase attachment).

In this thesis, we will address lexical ambiguities and analyse the gram-
matical structure of sentences using Icelandic as our working language. We
will develop a NLP toolkit, Ice NLP, for processing Icelandic text. IceNLP
consists of a tokeniser/sentence segmentiser, a morphological analyser, Ice-
Morphy, a part-of-speech (POS) tagger, IceTagger, for resolving lexical am-
biguities, and a shallow parser IceParser to recover syntactic information
(without resolving syntactic ambiguities). Notice that we are only concerned
with syntax issues with regard to the Icelandic language, but leave out se-
mantics and pragmatics for future work.

1.1 Motivation

The Icelandic population is very small; about 300,000 people live in Iceland
and probably less than 400,000 people speak the language worldwide. Con-
sequently, one can reflect upon whether it is worth the effort to make the
Icelandic language suitable for use in an information technology (IT) society.
In this context, making the language suitable means, for example, translating
software packages from English (or other languages) to Icelandic and build-
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ing the necessary tools that are a prerequisite for efficient LT research and
development.

Why not simply use the English language for I'T in Iceland? Icelanders
start to learn English at the age of ten, British and North-American TV
programs are common, and the proficiency of the Icelandic people in English
is generally considered good. Nevertheless, the question above has to be
answered negatively.

First, one can consider patriotic views. In addition to preserving its Sagas,
the Icelandic nation is well known for the preservation of its language. It is
a common opinion in the small Icelandic population that the language has
to be preserved. Without preservation of the mother tongue in all fields of
national life, Icelandic literature and other cultural particularities will grad-
ually disappear. Instead of incorporating new English names for inventions
and processes into the language, as many nations do, the Icelandic commu-
nity has the tendency, unforced, to make new Icelandic words for things as
they come up. As people gradually communicate more with computers using
NLs, the lack of Icelandic translations and the scarcity of NLP and speech
recognition tools will become a hindrance. Without it, Icelanders will need
to use English to communicate with computers. In the long run this will
endanger the language the Icelandic people care so much about.

Secondly, realistic political positions should be considered. Modern IT
systems have already become European Union (EU) multilingual and lo-
calised. One of the main reasons for this is the strong position of big lang-
uage communities in Europe, like France and Germany. In these countries
there is a strong policy to use the mother tongue in all areas of IT. More-
over, the EU has encouraged multilingual use, e.g. through its Multilingual
Information Society Programme (MLIS 1996-1999; http://www.cordis.lu/
ist/98vienna/xmlis.htm). Thus, we can assume that future I'T systems will
have multilingual support as one of their design criteria and, hence, adap-
tation of the systems to the particularities of the Icelandic language should
neither be very difficult nor extremely costly.

1.1.1 Language Technology in Iceland

LT in Iceland was practically non-existent only a few years ago. In 1999,
a report was written by a commission for the Icelandic Ministry of Edu-
cation, Science and Culture (MESC) on the status of LT in Iceland. The
following points, borrowed from the report (Arnalds 2003), were amongst
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the conclusions:

e Far fewer language technology tools were available for Icelandic than
for more widely used languages in neighbouring countries.

e Individual information technology companies did not have the resources
to perform basic research in language technology.

e Basic research in language technology in Iceland hardly existed.

To react to this situation, the commission proposed that the government
supported an effort to improve the state of LT in Iceland. The propositions
were as follows (Olafsson 1999):

Corpora should be built and made accessible for research and develop-
ment of LT tools.

A special fund should be established to support research in the field of
LT.

e Companies should be sponsored in order to develop LT tools.

Educational programs in the field of L'T should be established.

As can be inferred from the points above, LT in Iceland in 1999 was in its
infancy. LT tools were scarce, no funds existed for supporting the field and
no university offered educational programs in LT. Icelandic corpora were
scarce in 1999 but some, in the interest of LT, had been constructed at the
Institute of Lexicography (IL) at the University of Iceland. Most notable
was the Icelandic Frequency Dictionary (IFD) published in 1991 (Pind et al.
1991).

After the establishment of the The Icelandic Language Technology Fund
in 2001 (by MESC), a small number of projects have been carried out in the
field of LT by universities and private companies (Menntamalaraduneytio
2004). Moreover, a MA program in LT has now (2002) been established by
the University of Iceland.
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1.2 Basic Language Resource Kit

The first item in the list of propositions above is related to the concept of
BLARK — Basic Language Resource Kit. The concept of the BLARK was
first introduced in the ELRA (European Language Research Association)
newsletter in 1998 (Krauwer 1998). In the newsletter, it was stated that a
BLARK for a language should contain a specification of:

e the minimum general text corpus required to be able to do any precom-
petitive research for the language at all, say (as an arbitrary example)
10 million words of recent newspaper text, annotated according to
generally accepted standards

e something similar for a spoken text corpus
e a collection of basic tools to manipulate and analyse the corpora

e a collection of skills that constitute the minimal starting point for the
development of a competitive NL /Speech

In later writings, the BLARK has been defined as “the minimal set of
language resources that is necessary to do any precompetitive research and
education at all” (Krauwer et al. 2004). Note that the contents of a BLARK
can vary from language to language, and that over time it may gradually
evolve as new technologies emerge. However, the underlying idea has been
to make a general BLARK definition applicable in principle to all languages,
since such a definition saves time and effort when a BLARK is developed for
new languages.

An important point, with regard to BLARK, is that “in order to make a
BLARK for a language maximally impactful, the language resources of which
it consists should be easily and reliably accessible, inexpensive and usable”
(Krauwer et al. 2004).

1.3 Key research hypothesis

During the last ten to fifteen years or so, data-driven methods (DDMs) have
been used extensively to develop syntax analysis components for various lang-
uages. The purpose of DDMs is extracting information from data automat-
ically and thus (mostly) eliminating the need for human intuition in the
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analysis of the data. In contrast, linguistic rule-based methods (LRBMs) are
based on hand-crafted rules, which are built using human linguistic know-
ledge. The proliferation of DDMs can be attributed to i) the increased avail-
ability of annotated corpora which these methods can “learn” from; i) the
fact that most DDMs are language independent and can thus be applied to
various languages; and i) the effectiveness (i.e. high accuracy) of many of
these methods!.

However, in this thesis, we hypothesise that LRBMs provide an effective
(with regard to performance) and a viable (with regard to resource/manpower
needs) approach for developing syntax analysis components for Icelandic.
More specifically, we hypothesise that:

e Due to data sparseness, a higher tagging accuracy can be ob-
tained by a linguistic rule-based tagger when tagging Icelandic
text, than achieved by a state-of-the-art data-driven tagger.
Moreover, this can be achieved without using an enormous
effort in development of the tagging system.

e The use of a finite-state parsing method for a morphologically
complex language, with a relatively free word order, like Ice-
landic, is effective, and additionally, that an enormous effort
is not needed in the development of a finite-state parser for
the language in order to obtain good results.

The motivation for the first hypothesis above is discussed in Section 5.3.1,
and for the second hypothesis in Section 6.1. Here, we provide a brief sum-
mary:

e Previous part-of-speech tagging experiments for Icelandic using DDMs
have demonstrated inferior results compared to related languages. We
presume that this is due to data-sparseness, i.e. the size of the tagset
used in relation to the size of the training data. Hence, we presuppose
that a higher tagging accuracy can be obtained by developing a method
which uses linguistic knowledge. Moreover, in order not to spend an
enormous time in developing local rules (see Section 5.3.4), we will also
use heuristics (see Section 5.3.5) in the disambiguation process.

'In Chapter 2, we discuss some data-driven methods in the context of part-of-speech
tagging and parsing.
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e No syntactically annotated corpus of Icelandic text exists and develop-
ing a data-driven parser for Icelandic is thus currently not an option.
Shallow parsing, as opposed to full parsing, is sufficient in many NLP
systems. Finite-state parsing, which relies on a set of local syntactic
patterns, is one form of shallow parsing which has proven to be effective
for various languages. Despite the fact that Icelandic has a relatively
free word order, its rich case system should help when writing patterns
for grouping words into phrases and identifying syntactic functions.
Hence, we presuppose that using a finite-state parsing method for Ice-
landic will be viable and result in an effective parser.

1.4 Thesis contribution

Since NLP is a very young discipline in Iceland, basic tools like a tokeniser,
a sentence segmentiser, a tagger and a parser are not yet available for the
research community. The lack of basic tools does, of course, hinder develop-
ment of more sophisticated tools like software for grammar correction, infor-
mation extraction, question-answering, corpus annotation, and machine trans-
lation.

The main contribution of this thesis is the following:

e An NLP toolkit, Ice NLP, has been developed for the purpose of pro-
cessing Icelandic text. The development of this toolkit is a step towards
the goal of building a BLARK for the Icelandic language.

Our toolkit consists of the following sequentially applied modules?:

1. Preprocessor
(a) Sentence segmentation
(b) Tokenisation
2. POS tagger — IceTagger
(a) Morphological analyser — IceMorphy
i. Dictionary lookup
ii. Unknown word guessing

iii. Tag profile gap filling

2Each of these modules can also be used as a stand-alone unit. The toolkit as a whole
can be tested by visiting http://nlp.ru.is.
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(b) Disambiguation
i. Local rules
ii. Heuristics
3. Finite-state parser — IceParser

(a) Phrase structure module
(b) Syntactic functions module

Each of the above modules will be described in detail in Chapters 5
and 6.

e A morphological analyser/unknown word guesser for Icelandic, Ice-
Morphy, has been developed and evaluated. IceMorphy includes a tag
profile gap filler module. In the literature, we have not found equivalent
modules for other languages. No other such morphological analyser for
Icelandic is publicly available.

e A linguistic rule-based tagger for tagging Icelandic text, Ice Tagger, has
been developed and evaluated. It achieves considerably higher accuracy
than previously reported results using taggers based on data-driven
techniques. This is the first linguistic rule-based tagger developed for
tagging Icelandic text. The development time of our linguistic rule-
based tagging system was only 7 man months which can be considered
a short development time for a linguistic rule-based system. We are not
aware of another comparable system, developed in such a short time
frame, which outperform state-of-the-art data-driven methods which
use supervised learning.

e By using several tagger integration and combination methods the tagg-
ing accuracy of Icelandic text has been increased substantially, com-
pared to previously reported results.

e A shallow syntactic annotation scheme has been developed for Icelandic
text. Moreover, a grammar definition corpus, a representative collec-
tion of sentences annotated using the annotation scheme, has been
compiled®. This is the first syntactically (semi-automatically) anno-

3The development of the annotation scheme and the grammar definition corpus was
jointly carried out with Professor Eirikur Roégnvaldsson (University of Iceland), in the
project “Shallow parsing of Icelandic text”, funded by the Icelandic Research Fund in
2006.
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tated corpus for Icelandic text.

e A shallow parser, IceParser, which produces shallow syntactic anno-
tation for Icelandic text, has been developed and evaluated. This is
the first publicly available parser for the Icelandic language. Eval-
uation shows that IceParser obtains results that are comparable to
related languages. On the other hand, a comparison with related lang-
uages indicates that our results are good. The overall time spent on
development of the parsing system (including the annotation scheme
and the grammar definition corpus) was about 1 man year.

e Our work and evaluation results supports our hypothesis, i.e. that
LRBMs provide an effective and a viable approach for developing syn-
tax analysis components for Icelandic.

1.5 Outline

The remainder of this thesis is divided into eight chapters.

Chapter 2 presents introductory material on NLP, with emphasis on lang-
uage analysis, i.e. tokenisation, morphological analysis, POS tagging and
(shallow) syntactic parsing.

Chapter 3 describes the Icelandic language with the purpose of giving the
reader “a feel” for the morphological complexity of the language and basic
syntactic issues.

Chapter 4 gives an overview of the corpora and the tagset used in this
research.

Chapter 5 describes our tagging system, the main component of IceNLP.
Individual components of the system are described and discussed with regard
to previous work.

Chapter 6 describes the other part of Ice NLP, the parsing system.

Chapter 7 presents evaluation results on tagging Icelandic text. Results
are given for IceTagger and compared to results obtained by data-driven tagg-
ers. Moreover, this chapter demonstrates how various combination methods
can be used to improve the tagging accuracy.

Chapter 8 presents evaluation results on parsing Icelandic text, both for
constituent structure and syntactic functions.

Finally, we conclude in Chapter 9 with an overview and a discussion on
future work.




Chapter 2

Natural Language Processing

This chapter presents some introductory material on NLP. First, the task and
the goal of NLP are defined. Then, individual stages of NLP applications
are described along with a review of the literature.

2.1 Introduction

The discipline of NLP concerns itself with the design and implementation of
computer systems that communicate with humans using natural language.
The goal of NLP is to build systems that can analyse, understand and gene-
rate natural languages. The main emphasis is on practical development of
language processing systems and on building reusable modules that can be
glued together to construct NLP applications’.

“Traditionally, work in natural language processing has tended to view
the process of language analysis as being decomposable into a number of
stages, mirroring the theoretical linguistic distinction drawn between syntax,
semantics and pragmatics”? (Dale 2000). The syntax stage can, further, be
viewed as a sequence of the finer grained stages: tokenisation, lexical analysis
and syntactic analysis.

1Sometimes, a distinction is made between NLP and Language Engineering (LE). Cun-
ningham (2000) defines NLP as “the part of science of computation whose subject-matter is
computer systems that process human language”, and LE as “the discipline of engineering
software systems that perform tasks involving processing human language”.

2This is, for example, reflected in the chapter organisation of the well known textbook
on Speech and Language Processing by Jurafsky and Martin (2000).

11



12 2. Natural Language Processing

The first stage of a typical NLP application is preprocessing or tokeni-
sation, in which the stream of input text is broken into tokens and sentences.

The second stage, lexical analysis, can, broadly speaking, be defined as
determining the lexical features of the individual words in the text. Which
lexical features are identified depends on the application at hand, but, typi-
cally, NLP applications need information on morpho-syntactic features, i.e.
morphological and POS information.

Syntactic analysis, or parsing, follows the lexical phase. Syntactic analysis
is the task of analysing sentence structure and the dependencies between its
individual parts. Parsing is, usually, not a goal in itself, but is a necessary
step for the next stage, semantic analysis.

In order to “understand” NL texts it is necessary to assign meaning to in-
dividual sentences. This is the task of semantic analysis, the fourth stage. Se-
mantics of NI have been less studied than issues of syntax, probably because
semantic analysis depends on the aforementioned stages, which need to be
“mastered” first, and, additionally, because assigning meaning to sentences
might, in fact, be a more difficult step.

Finally, we have the stage of pragmatic analysis, whereby the meaning of
the utterance or text in context is determined.

In the following sections, we will restrict the description of the NLP stages
to the work presented in this thesis — namely preprocessing, lexical analysis
(i.e. POS tagging and morphological analysis) and parsing.

2.2 Preprocessing

Most work in NLP requires preprocessing steps which performs sentence
segmentation and word tokenisation. Sentence segmentation identifies where
one sentence ends and another one begins. The task of tokenisation is to
split a sequence of characters into simple tokens (linguistic units) like words,
numbers and punctuation marks.

The above preprocessing steps are often considered trivial but, in fact, can
present surprising problems. In the case of sentence segmentation, it is, for
example, not sufficient to search for the standard end-of-sentence characters,
periods, exclamation points and question marks, because sometimes semi-
colons, colons, dashes and commas can serve as an end-of-sentence marker.
Furthermore, each of these punctuation characters can serve several pur-
poses. For example, a period can serve as an end-of-sentence marker, an
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abbreviation, a decimal point, etc.

Like sentence segmentation, tokenisation might at first seem like a simple
task, but there are a number of things that need to be accounted for. Special
care needs to be taken when tokenising punctuation characters, abbreviations
and multipart words, and multiword expressions may need to be accounted
for. Moreover, since text commonly contains mark-ups, like HITML, SGML
or XML codes, text filtering needs to be carried out. A good coverage of
sentence segmentation and word tokenisation can be found in (Grefenstette
and Tapanainen 1994, Palmer 2000).

In the context of programming language compilation, tokenisation and
lexical analysis are used interchangeably. When programming languages are
compiled, the first phase consists of lexical analysis whose goal is to iden-
tify the minimal units of analysis (i.e. tokens) to constitute the starting
point for the second phase, syntactic analysis. In contrast, in the context of
NLP, lexical analysis has a broader meaning than tokenisation alone, since
it often includes morphological analysis and disambiguation (POS tagging;
see Section 2.3). On the one hand, the goal of lexical analysis of a natural
language is the same as for a programming language, i.e. to prepare text for
syntactic analysis. On the other hand, there are many important differences
between lexical analyses of the two kinds of languages (Silberztein 1997).

First, there is the size of the vocabulary used. Programming languages
typically use only dozens of keywords, but the vocabulary for natural lang-
uages can consist of tens or hundreds of thousands of words, compiled into a
dictionary. Secondly, because words in texts are commonly inflected and
because of the existence of unknown words (i.e. words unknown to the
dictionary at hand), morphological analysis is required when processing nat-
ural languages. Finally, words in natural languages can be ambiguous at
various levels, but programming languages are designed to be unambiguous.
For example, the ambiguity at the lexical level, i.e. the fact that a given
word can have various POS, calls for a special disambiguation phase, POS
tagging, before syntactic analysis is carried out.

2.3 Part-of-speech tagging
POS tagging is the task of labelling words with the appropriate word class

and morphological features (therefore, POS tagging is often referred to as
morpho-syntactic tagging). POS tagging can be seen as a mapping from
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sentences to strings of labels. The string used as a label is called a tag, the set
of labelling strings is called a tagset, and a program which performs tagging is
called a tagger. Tagging text is needed for several NLP tasks, e.g. grammar
correction, syntactic parsing, information extraction, question-answering and
corpus annotation.

To illustrate, consider the following Icelandic sentence: “gamli madurinn
bordar kalda sipu med mjog goori lyst” (old man-the eats cold soup with very
good appetite). Next, we show this sentence with possible tags accompanying
each word (“_” is used as a separator between tags):

gamli/Tkenvf madurinn/nkeng bordar/sfg3en sfg2en
kalda/lThenvf lkfosf lveosf lkepvf lhepvf lheovf lheevf
sipu/nveo _nvep nvee med/ap aa

mjdg/aa goori/lvebsf lyst/nvep nveo nven

In Section 4.2, we will describe the semantics of these tags in detail,
but, very briefly, the tags denote word class information and morphological
features, like gender, number and case.

Since a word can be ambiguous in its POS (i.e. a word can have multiple
possible tags), the main function of a tagger is to remove ambiguity. Many
taggers perform this task by, first, introducing ambiguity (lexical phase) and,
then, performing disambiguation (disambiguation phase). The former, a rela-
tively easy task, consists of introducing the tag profile (the set of possible
tags) for each word, both known and unknown words. This can be car-
ried out with the help of a pre-compiled dictionary and an unknown word
guesser, whose function is to guess the tag profile for words not known to
the dictionary. The disambiguation task is more difficult, since, in order to
disambiguate, a tagger needs to consider the context in which a particular
word appears.

After disambiguation, our illustrative sentence has the following tags:

gamli/Tkenvf maodurinn/nkeng bordar/sfg3en kalda/lveosf sipu,/mveo
med/ap mjog/aa goori/lvepsf lyst/nveb

There are two main methodologies for disambiguation: the data-driven
and the linguistic rule-based (constraint-based) approach. In the data-driven
approach a pre-tagged training corpus is used to automatically obtain infor-
mation to be used later during disambiguation. The disambiguation infor-
mation acquired can, for example, be in the form of statistics or rules. In
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contrast, a linguistic approach uses hand-crafted rules or constraints to elim-
inate inappropriate POS tags depending on context.

The earliest taggers used hand-crafted rules for assigning tags to words
based on character affixes of words and on the basis of the tags of the sur-
rounding words (Klein and Simmons 1963, Cherry 1980). The tagset used in
the Cherry tagger was small (only 10 labels) since the purpose of the tagger
was only to label each word with its word class. Tagging words with only the
word class is in most cases of limited use for NLP applications. Therefore,
it is common, nowadays, to use a tagset consisting of tens or hundreds of
different tags — the larger the tagset the more precise the POS analysis for
each word.

There has been a tendency to develop data-driven taggers (DDTS) in
the last ten to fifteen years. The DDTs are language and tagset indepen-
dent and usually simpler to develop than hand-crafted rule-based taggers
because no (or limited) human effort is needed for rule writing. Additionally,
developing a linguistic rule-based framework, able to compete with DDTs, has
been considered a difficult and time-consuming task (Brill 1992, Samuelsson
1994, Voutilainen 1995). A different opinion has, however, been expressed in
(Chanod and Tapanainen 1995).

A number of different data-driven tagging methods have been developed.
Well known methods include, for example, probabilistic methods based on
a Markov model (Church 1988, Cutting et al. 1992, Brants 2000), a maxi-
mum entropy approach (Ratnaparkhi 1996), a transformation-based learning
approach (Brill 1992; 1995a) and a memory-based approach (Daelemans et al.
1996). About 96-97% accuracy (the ratio of corrected tags to the total num-
ber of tags) has been achieved with these taggers for English text (using the
Penn Treebank tagset; see next section). It is widely accepted that, in order
to achieve 100% tagging accuracy, a tagger would need to incorporate seman-
tic or world knowledge (see Abney (1996) for a rationale). A comprehensive
systematic evaluation of DDTs for other languages than English, can, for
example, be found in a study using the Swedish language (Megyesi 2002). In
this study, a tagging accuracy of 89.3%-93.6% was obtained, using a tagset
of 139 tags.

In contrast to DDTs, linguistic rule-based taggers (LRBTs) are developed
with the purpose of tagging a specific language using a particular tagset.
One of the better known linguistic rule-based methods is the Constraint
Grammar (CG) framework (Karlsson 1990, Karlsson et al. 1995) which has
been applied to several languages. The English Constraint Grammar parser,
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EngCG, was “the first serious linguistic competitor to data-driven statistical
taggers” (Samuelsson and Voutilainen 1997).

It has been shown that combining taggers will often result in a higher
tagging accuracy than achieved by individual taggers. The reason is that
different taggers tend to produce different errors and the differences can be
exploited to yield better results. A number of different combination methods
exists, e.g. simple voting, weighted voting and stacking (van Halteren et al.
2001), as well as combinations using linguistically motivated rules (Borin
2000).

2.3.1 Tagsets

“Historically, the most influential tagsets have been the ones used for tagging
the American Brown corpus (the Brown tagset) and the series of tagsets
developed at the University of Lancaster, and used for tagging the Lancaster-
Oslo-Bergen (LOB) corpus and more recently, the British National corpus
(CLAWSI through CLAWS5)” (Manning and Schiitze 2002, chap. 4).

Recently, however, the most common tagset used for tagging English text
is the relatively small Penn Treebank tagset consisting of 45 tags (Marcus
et al. 1993). For comparison, the University of Lancaster CLAWST tagset,
for example, consists of 137 tags, but the size of the set is due to lexical
differentiation rather than inflectional complexity.

Naturally, tagsets are dependent on the underlying language, and, obvi-
ously, a larger tagset will make more fine-grained distinctions. Because of
inflectional properties, the tagsets used for the Scandinavian languages are
considerably larger than those most often used for the English language. For
example, 139 tags were used in the previously mentioned Swedish tagging
experiment (Megyesi 2002) and the Danish Parole tagset consists of 151 tags
(Hardt 2001). The Icelandic tagset used in our research contains about 660
tags (see Section 4.2).

It is common that tagsets for highly inflectional and agglutinative lang-
uages consists of 400-1000 tags, e.g. the tagsets for Hungarian, Czech, Ro-
manian, and Slovene (Haji¢ 2000).

It has generally been assumed that larger tagsets result in lower tagging
accuracy, since, in that case, the tagger simply has more tags to choose from
for each word. However, the relationship between tagset size and tagging
accuracy is vague. Research has shown that, in fact, the use of a larger tagset
can, at least for inflectional languages, result in higher accuracy (Elworthy
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1995). The reason is that a more detailed tagset may help the tagger select
tags for words that are in some way connected. For example, this might be
true in case of a subject-verb agreement and nominal feature agreement in
phrases.

2.3.2 Dictionaries

Dictionaries used by taggers commonly consist of key-value pairs®. Each key
is a word form and the corresponding value is the tag profile for the given
word form. A typical dictionary format is thus (using “ 7 as a separator
between tags):

wp = tll_tlg_. .. _t151
Wy = t21_t22_. .. _tQSQ
Wy = tnl_tng_. .. _tnsn

Here, n is the number of word forms in the dictionary, w; is word form
number i, t;, is the k" tag for w;, and s; is the number of tags for word
form i (i = 1...n). In some cases, the tags for a given word form are sorted
according to frequency — e.g. the most frequent tag might appear first in the
tag profile for a given word form. To illustrate, the following is a record from
an Icelandic dictionary for the word “vi0” (see Appendix B for explanation
of the individual tags):

vid=ao_fplfn_ap aa_nkeo

Most taggers use dictionaries containing tens of thousands of word forms.
For larger dictionaries, and when speed is of prime importance, a more com-
pact dictionary format may be suitable. A known method is to represent the
dictionary as a deterministic-finite automaton (DFA), which ensures both
low access time and small storage space.

A dictionary in the “standard” format described above can be encoded in
the following manner. First, a special kind of tree, called a trie is built. The
branches in the trie are labelled with letters and the leaves are labelled with

3Following Ciura and Deorowicz (2001), we distinguish between a dictionary and a
lexicon. The latter does not have any values associated with the keys.
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a tag profile. Then, the resulting trie is minimised into a DFA (for example,
by using an algorithm described by Ciura and Deorowicz (2001)).

2.3.3 Evaluating taggers

The purpose of an evaluation of a tagger (or an NLP tool in general) is to
give an indication of how well or badly the tagger performs on new unseen
texts. Moreover, an evaluation can be used to compare the performance of
different systems. In that case, it is of prime importance that the systems
are evaluated using the same training and test data, and the same tagset as
well.

The tagger evaluation method described below is the one that has become
a standard, and is generally used in the literature. First, a tagged corpus is
split into a training set and a test set. The training set is then used to train
data-driven taggers and/or build dictionaries used by either data-driven or
linguistic rule-based taggers!. Thereafter, the test set (the unseen part) is
used to evaluate the performance of the taggers. This method is usually
referred to as the holdout validation method, presumably because the test
data is held out such that the taggers are not allowed to use it for training.

The evaluation figures obtained by a holdout method can potentially be
dependent on the exact split into training and test data. In order to filter
out this dependance, the so-called n-fold cross-validation method is normally
used. In this method, the data set (i.e. the corpus) is divided into n subsets,
and the holdout method is repeated n times. Each time, one of the n subsets
is used as the test set and the other n — 1 subsets are put together to form
a training set. The evaluation figures presented are then the average figures
over all n trials.

In the literature, one finds several measures that are used to indicate the
performance of a tagger (van Halteren (1999) presents a good overview). The
most common are accuracy, error rate, ambiguity rate, precision and recall.

Accuracy (also called correctness) measures how many tokens assigned

“Indeed, dictionaries for many linguistic rule-based taggers/morphological analysers
(e.g. taggers based on the CG framework) have been built by hand or derived from other
machine readable resources than corpora. In that case, comparison with a data-driven
tagger becomes less reliable.
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by a tagger receive a contextually correct tag:

# of correctly tagged tokens
total # of tokens

accuracy = (21)

The error rate of a tagger is defined as 1.0 — accuracy.

The ambiguity rate measure is often used when a tagger does not perform
full disambiguation, i.e. in the case of ambiguous tagging. Ambiguity rate
measures the average number of tags assigned to each token. The less the
better, i.e. assuming ambiguous tagging it is preferable that the ambiguity

rate is low:
total # of tags

total # of tokens

Additionally, the measures precision and recall (originating in information
retrieval) are often used to indicate the performance of ambiguous taggers.
For tagging, precision measures how many of the tags suggested by a tagger
are actually correct, and recall measures how many of the correct tags are
actually proposed by the tagger:

ambiguity rate = (2.2)

_ # of correct tags produced by tagger
Precision = (2_3)
total # of tags produced by tagger

# of correct tags produced by tagger

recall = (2.4)

# of correct tags

In addition to obtaining a single value for precision and a single value for
recall for a tagger, these measure can be used to indicate the performance of
a tagger for each individual tag. In that case, precision measures how many
of the tokens tagged X are tagged X correctly, and recall measures how many
of the tokens that ought to have the tag X are indeed tagged X.

Note that when a tagger performs full disambiguation, ambiguity rate=1
and accuracy=precision=recall.

2.3.4 Data-driven methods

Data-driven tagging methods use machine learning to automatically derive a
language model from, usually, hand-annotated corpora. The main advantage
of the data-driven approaches is that they are language independent and no
(or limited) human effort is needed for derivation of the model. On the other
hand, the disadvantage is, first, that a pre-tagged corpus, which can be very
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time consuming to construct, is essential for training, and, second, that a
limited context size is normally used for disambiguation (e.g. three words in
the case of a trigram tagger; see below).

In the machine learning literature, distinction is made between supervised
learning methods and unsupervised methods. Supervised methods use anno-
tated training data to learn a function which can be used to predict the value
of any input data. In the context of tagging, the annotated training data is
a tagged corpus and the function is a classifier which predicts the tags of
input words.

In contrast, unsupervised methods do not require annotated training
data, but, rather, induce a model to fit observations. For tagging, the un-
supervised models use computational methods to automatically induce word
groupings (i.e. tagsets) and based on those automatic groupings, to either
calculate the probabilistic information needed by stochastic taggers (Cutting
et al. 1992) or to induce the context rules needed by rule-based systems (Brill
1995h).

In this thesis, we only experiment with supervised tagging methods.
In the following sections, we describe four types of supervised data-driven
methods: two probabilistic methods, a transformation-based learning method
and a memory-based learning method. A number of papers have been pub-
lished in which taggers based on these methods have been evaluated and
compared. Various languages have been used, e.g. English (Brill 1995a, Rat-
naparkhi 1996, Daelemans et al. 1996, Brants 2000), Dutch (van Halteren
et al. 1998), Hungarian (Kuba et al. 2004), Icelandic (Helgadottir 2004),
Slovene (Dzeroski et al. 2000), and Swedish (Megyesi 2002).

2.3.4.1 Probabilistic tagging

One type of a DDT is a probabilistic (stochastic) trigram tagger based on a
Markov model. The states of the model represent pairs of tags and the model
emits words each time it leaves a state. A trigram tagger finds an assignment
of POS to words by optimising the product of lexical probabilities and con-
textual probabilities. Lexical probability is the probability of observing word
i (w;) given POS j (p(w;|t;)) and contextual probability is the probability of
observing POS i given k previous POS (p(t;|ti—1,ti—2,...,ti—r); k = 2 for a
trigram model). The probabilities of the model are estimated from a train-
ing corpus using maximum likelihood estimation. Thereafter, a sentence can
be tagged automatically by assigning it the tag sequence which receives the
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highest probability by the model.

The main advantage of a probabilistic tagger is that the necessary statis-
tics can be automatically acquired and no or very little linguistic knowledge
is built into the system. The disadvantage of this approach is, however, that
the knowledge is hidden in large tables of statistics which can make improve-
ments to the tagger difficult. The TnhT tagger (Brants 2000) is an example
of an effective and an efficient trigram tagger.

Another type of a probabilistic DDT, MXPOST, is based on a maxi-
mum entropy approach (Ratnaparkhi 1996). It generates probability distri-
butions like other statistical methods and, additionally, uses a binary feature
representation to model tagging decisions which can be compared to rules in
rule-based methods. A feature f; asks a yes/no question about a particular
history, h; (a sequence of words and tags), available when predicting tag t;.
The feature f;, which restricts the value of ¢;, encodes any information that
can be used to predict ¢;, such as the spelling of the current word or the
identity of tags and/or words. The goal of the model is to maximise the
entropy of a distribution subject to certain feature constraints.

A tagger based on the maximum entropy approach has similar advan-
tages/disadvantages as a tagger based on a Markov model.

2.3.4.2 Transformation-based learning

A third type of a successful DDT is the transformation-based learning (TBL)
approach (Brill 1992; 1995a). This approach is rule-based, but the transfor-
mation rules (which change a tag X to tag Y) are not hand-crafted, but,
rather, automatically acquired from a pre-tagged corpus.

The tagger initially assigns each word its most likely tag without regard
to context®. At each iteration, the current assignment is compared to the
pre-tagged text and a transformation is learnt which results in the greatest
reduction of errors. The current assignment is updated using the learnt
transformation before the next iteration starts. At the end, the result is an
ordered list of transformations that can be applied to the output of the initial
assignment to increase the accuracy. New unseen text is then tagged by first
applying the initial annotator followed by the application of the ordered
transformation rules.

5Thus, a transformation-based tagger is an example of a tagger which does not start
by introducing the whole tag profile for each word.
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This method has the advantage over the probabilistic methods that the
learnt linguistic information is represented in a concise and perspicuous man-
ner in the form of learnt rules. The disadvantage with the standard TBL
approach is its long training time when used on large-sized corpora. Each
iteration step in the algorithm requires that a transformation rule candidate
is applied to the whole corpus to calculate the effects of applying the rule
and the current assignment of the corpus updated before the next iteration
starts.

A fast version of TBL (fnTBL), which speeds up the training time of
the standard version without sacrificing performance, has been developed by
Ngai and Florian (2001). Instead of applying a new rule to the whole corpus,
the fnTBL method identifies which previously generated rules and associated
words (samples) are influenced by the new rule.

The transformation rules are stored in memory at each iteration (instead
of being regenerated each time), together with two sets, G(r) and B(r).
G(r) is the set of samples to which the rule r applies and changes them
to the correct classification. B(r) is the set of samples to which the rule r
applies and changes a correct classification to an incorrect one. The objective
function for r is f(r) = |G(r)|—|B(r)|. Given a new learnt rule b, the fnTBL
method identifies the rules 7, for which at least one of G(r), B(r) is modified
by the application of rule b. Thus, only samples that change f(r) need to be
checked.

A disadvantage with the standard transformation-based approach is that
the tagging of new sentences is inefficient. For each individual rule acquired
during the learning phase, the algorithm scans the input from left to right
while attempting to match the rule. “The algorithm treats each rule as a
template of tags and slides it along the input, one word at a time” (Roche
and Schabes 1997). Moreover, the rules can potentially interact, i.e. one rule
can undo a change carried out by a previous rule. Roche and Schabes have
shown that the sequential application of rules can be represented by a single
non-deterministic finite-state transducer®. This non-deterministic transducer
can then be converted into a deterministic one, which makes the resulting
tagger very efficient.

6 A finite-state transducer is a finite-state automaton that consumes input and produces
output on each state transition.
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2.3.4.3 Memory-based learning

The memory-based learning tagger (MBT) (Daelemans et al. 1996) uses
similarity-based reasoning when making tagging decisions. The method is
called memory-based because the tag of a word is determined from the most
similar cases held in memory.

Each case in memory consists of a word, its left and right context, and
the corresponding tag for the word in that context. The memory, which
is composed during the learning phase, consists of examples represented as
vectors of feature values with an associated tag label. A new sentence is
tagged by selecting, for each word in the sentence and its context, the most
similar case(s) held in memory and a single tag is selected for the word by
applying a nearest neighbour technique.

Memory-based learning is computationally expensive since the feature
value vector representing a word (and its context) to be tagged has to be
compared to the feature value vectors of each case held in memory. A com-
pression formalism, IGTree, has been developed to make the method more
effective (Daelemans et al. 1996). The formalism restricts the search to match
a new case to those that have the same feature value at given “important”
features.

2.3.5 Linguistic rule-based methods

In contrast to DDTs, LRBTs are developed with the purpose of tagging
a specific language using a particular tagset. The purpose of the rules is
either to assign tags to words depending on context or, in the more common
reductionistic approach, to remove illegitimate tags from words based on
context.

The advantage of LRBTs is that they do not rely (to the same extent
as DDTs) on the existence of a pre-tagged corpus and rules can be written
to refer to words and tags in the entire sentence. The construction of a
LRBT can, however, be a time-consuming task since the rules are usually
hand-crafted and the number of rules is often in the hundreds or thousands.
As an illustration of the number of rules used in LRBTs, one can mention
the Swedish CG project, in which 2,100 rules are used to remove ambiguity
(Birn 1998) and EngCG-2 (English Constraint Grammar version 2), a project
developed over several years, with 3,600 constraints (rules) (Samuelsson and
Voutilainen 1997). The Norwegian Constraint Grammar project, which took
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seven man labour years, is another example of a labour intensive linguistic
rule-based project (Hagen et al. 2000). A prerequisite for the effectiveness of a
CG parser is the construction of an extensive dictionary and a morphological
analyser, both of which demand large resources.

The input tokens to a CG parser are morphologically analysed words.
Each word is labelled with tags indicating POS, inflection, derivation, etc.,
as well as with syntactic function tags. The constraints, which are formulated
on the basis of extensive corpus studies, are then used to remove as many
inappropriate tags from these words as possible.

A disadvantage of the CG Framework is “that constraints cannot be gen-
eralised, but have to be stated in a case by case fashion” (Hinrichs and
Trushkina 2002). This is probably the reason for the large number of rules
usually developed under this framework.

In the German parsing scheme GRIP, two kinds of disambiguation rules
are used: ordinary disambiguation rules, which eliminate readings for a single
token based on local context, and general double reduction rules, which reduce
readings of a sequence of tokens, e.g. inside noun phrases (Hinrichs and
Trushkina 2002). Our tagger uses a similar idea, i.e. local rules for initial
disambiguation and global rules or heuristics, to force feature agreement for
further disambiguation (see Section 5.3.5).

The error rate of the EngCG-2 system has been reported as an order-
of-magnitude lower than the error rate of a statistical tagger (Samuelsson
and Voutilainen 1997). However, it is important to note that the EngCG-2
system does not perform full disambiguation and the results are, thus, only
presented for the same ambiguity levels” in the two taggers. Hence, it is not
clear what the difference in the error rate between the two systems would be
if both would perform full disambiguation. Moreover, it can be inferred from
this research that, when testing the EngCG-2 system, the unknown word
ratio (which is not specified in the paper) is less than the corresponding ratio
(2.01%) when testing the statistical tagger. The reason is that the former
system uses a large hand-compiled dictionary, but the latter a dictionary
derived from a training corpus.

By making a syntactic parser eliminate ambiguity, which standard CG
rules were not able to handle, a LRBT was able to achieve about 99%
accuracy, using full disambiguation, when tagging English text (Voutilainen
1995). However, one can argue that using a LRBT along with a syntactic

"An ambiguity level is a predefined ambiguity rate (average number of tags per word).
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parser to eliminate remaining ambiguity does not constitute a fair comparison
with DDTs because a DDT could also been implemented in such a way.

Another tagger comparison, using the French language, demonstrated
superior performance of a constraint-based tagger over a statistical one (Chanod
and Tapanainen 1995). In this research, a tagged corpus was not available
and thus the statistical tagger was trained and tuned using suitable amount
of untagged text (i.e. unsupervised learning was used). Since the tagger was
not trained using a tagged corpus, so-called biases were set to instruct the
tagger what is likely (and what is not) in a given context. The biases, which
serve as initial values before training, represent kinds of lexical probabilities
and contextual probabilities. The same amount of time was spent on develop-
ing rules for the rule-based tagger as was spent on the training phase of the
statistical tagger. It is, however, important to bear in mind that statistical
taggers based on unsupervised learning are generally less accurate than those
based on supervised learning (Merialdo 1994).

2.3.6 Morphological analysis

Morphological analysis is the task of recognition and production of word
forms. In the recognition phase, word forms are parsed and recognised as be-
ing a part of a particular morphological class. In the production (generation)
phase, word forms are produced given a base form belonging to a particular
morphological class.

The computational model two-level morphology, by Koskenniemi (1983;
1984), is undoubtedly the best known morphological model used in NLP.
It is a language independent model, based on the formalism of generative
phonology, in which the morphology of a language is described with a set
of rewriting rules. A rewriting rule changes or transforms one symbol into
another symbol. “The rules start from an underlying lexical representation,
and transform it step by step until the surface representation is reached”
(Koskenniemi 1984). In contrast to unidirectional rules in generative phonol-
ogy, the rules in two-level morphology (which are represented by a finite-state
transducer) are bidirectional, i.e. they can be used both for recognition and
production of word forms.

In addition to rewriting rules, the two-level model needs a lexical com-
ponent, which lists indivisible words and morphemes in their underlying form.
The two components work together to perform both production and reco-
gnition.
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In the context of POS tagging, where only the phase of recognition is nec-
essary, morphological analysis is often referred to as unknown word guessing.
During tagging, unknown word forms need to be recognised as belonging to
particular morphological classes, denoted by one or more possible tags.

2.3.6.1 Unknown word guessing

The main problem in the lexical phase of tagging is guessing the tag profile for
unknown words. In fact, the tagging accuracy of unknown words considerably
affects the total tagging accuracy. Continuously extending the dictionary,
to minimise the number of unknown words, is not practical because new
words are constantly being introduced into a language. Therefore, in order
to develop a high accuracy tagger, a good quality unknown word guesser is
essential.

The methods used by the aforementioned DDTs (discussed in Section
2.3.4) for guessing unknown words are rather different. The unknown word
guesser of the TnT trigram tagger uses ending analysis based on a probability
distribution. The distribution for a particular ending is generated from words
in the training corpus that share the same ending of some predefined length.
Interestingly, the module assumes that endings of infrequent words in the
training data are a better approximation for unknown words, rather than
endings of frequent words. Additionally, the module generates a different
distribution around capitalised words from those not capitalised.

The maximum entropy tagger MXPOST uses a similar assumption regard-
ing the distribution of unknown words as the TnT tagger, i.e. that rare words
in the training data are similar to unknown words in the test data, with re-
spect to how affixes help predict their tags. The feature templates used when
predicting tags for unknown words include prefixes and suffixes of length < 4,
as well as information regarding whether the word contains uppercase letters,
hyphen or a number.

The transformation-based tagger fnTBL uses a method, originally pro-
posed by (Brill 1995a), which automatically learns cues to predict the most
likely tag for unknown words. First, an unknown word is labelled as a proper
noun if capitalised and a common noun otherwise. Secondly, transformation
templates are used to learn rules which change the initial tag X to another
tag Y. These templates make reference to any string of characters up to a
bounded length and, typically, refer to suffixes or prefixes of words.

The memory-based tagger MBT allows one to encode the last X letters
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of unknown words as separate features. Additionally, one can encode the
first letter as a feature and thus provide information about prefixes and
capitalisation. Thereafter, context information is added to the case at hand
in a similar way as is done with known words.

Since LRBTs are developed in order to tag a particular language, they
usually include a morphological component/unknown word guesser specifi-
cally tailored to the language at hand. Most unknown word guessing modules
use morphological /compound analysis and/or ending analysis. The differ-
ence between morphological analysis and ending analysis is that the former
bases its analysis on morphologically related words already known to the
dictionary, whereas the latter bases its analysis solely on a word’s ending.
Not surprisingly, research has shown that morphological analysis is more ac-
curate than ending analysis (Mikheev 1997, Nakov et al. 2003). This can
be explained by the fact that morphologically related words share the same
stem (the common part shared by all forms) as the given unknown word,
whereas ending analysis does not take the stem into account. Therefore,
ending analysis, generally, produces more tag candidates than morphological
analysis.

The Morphy tool consists of a morphological analyser and a POS tagger
for German (Lezius 2000). The morphological analyser performs inflectional
analysis by determining the stem by a reversing morphological process. The
analyser requires a dictionary of stems and their corresponding inflection
types. If a dictionary entry is found for a stem candidate, the stem’s in-
flection is generated according to the inflection type (morphological class).
The original word form is then matched against this list of generated words.
The tool also contains an ending analyser (used if the morphological analysis
fails) which relies on German suffix statistics.

Nakov et al. (2003) describe ending-guessing rules for classification of un-
known German nouns. The system accepts raw text as input and produces
a list of unknown nouns along with their stem and morphological class. The
rules are automatically generated in a similar manner as in Mikheev’s system
(see below). From a training text, a set of potential rules is generated de-
pending on endings, the corresponding morphological class and frequencies.
Potential rules are then scored to filter out rules that are sensitive to data
sparseness.

Mikheev (1997) presents a technique for automatic rule induction for
unknown word guessing. The method guesses possible POS tags for unknown
words based on their starting and ending segment. Morphological rules (both
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prefix and suffix rules), as well as ending guessing rules, are statistically
induced using a general-purpose dictionary mapped to a particular tagset,
and a raw corpus. When the induced guessing rules were incorporated into
existing taggers, the tagging accuracy improved significantly.

2.3.7 Combination methods

Tagger combination methods are a means of correcting for the biases of in-
dividual taggers. It has been shown that combining taggers will often result
in a higher tagging accuracy than achieved by individual taggers (Brill and
Wu 1998, van Halteren et al. 1998; 2001, Sjobergh 2003). The reason is
that different taggers tend to produce different errors, and the differences,
“provided they are complementary and systematic” (Borin 2000), can be ex-
ploited to yield better results. For a tagger combination pool, it is thus
important to select taggers that are based on different language models.

A number of different combination methods exists, e.g. simple voting,
weighted voting and stacking (van Halteren et al. 2001), as well as combina-
tions using linguistically motivated rules (Borin 2000).

In simple voting, each tagger gets an equal vote when voting for a tag
and the tag with the highest number of votes is selected. In weighted voting,
more weight is given to taggers that have shown high accuracy, e.g. a tagger
known to produce high overall accuracy gets more weight when voting, or a
tagger known to produce high precision for a given class of tags gets higher
weight for that class (see (van Halteren et al. 2001) for a detailed discussion).

A combination method is called stacking when a learner (classifier) is
trained to produce tags, using the output of one or more taggers for training
(Wolpert 1992). Apart from the training phase, two other important features
of stacking differentiate it from voting. First, stacking does not necessarily
select one of the tags proposed by the individual taggers and, second, when
deciding on a combined tag, the learner can use contextual information. It
has been shown that stacking methods can result in higher accuracy com-
pared to using voting methods (van Halteren et al. 2001).

Combining taggers using linguistically motivated rules is similar to weighted
voting in the sense that the relative strength of a given tagger, in a particular
linguistic context, is utilised in the combination. Furthermore, by using lin-
guistically motivated rules, tags can be chosen with regard to context, as is
the case for stacking.

Adding more taggers to a combination pool normally improves the tagging
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accuracy, even if the new taggers are not very good (Sjobergh 2003). This
is, however, generally not the case when adding a tagger which is in some
sense similar to another tagger(s) in the pool (because similar taggers make
similar errors).

When combining N taggers, the time needed to process the text to be
tagged can be expected to be at least a factor IV greater compared to using a
single tagger. However, using a combination method is worthwhile when the
processing time is much less important than the additional gained tagging
accuracy, e.g. in the case of corpus annotation.

A combined tagger is, moreover, of important use when estimating and
locating errors in an annotated corpus. We will discuss this, with regard to
the IFD corpus, in Section 7.4.4.2.

2.3.8 Integration methods

Tagger integration is a task which is not discussed frequently in the litera-
ture. By tagger integration, we mean making one tagger use a feature or a
functionality of another tagger (or a morphological analyser), in such a way
that the resulting system runs like a single tagger.

In order to integrate functionality of one tagger into another, it is often
necessary to have access to the source code of one or both taggers — this
fact, indeed, is probably the reason why integration methods are infrequently
discussed.

In Section 7.3, we will show how a rule-based method can be integrated
with a statistical method, and wice verse, in order to improve the tagging
accuracy on Icelandic text. Moreover, we show how our morphological ana-
lyser can be integrated with two data-driven taggers.

2.4 Parsing

Syntactic analysis, or parsing, is the task of analysing sentence structure
and the dependencies between its individual parts. A parser is a program
which performs parsing. Usually, the input to a parser is morphologically
disambiguated word-tag pairs (i.e. the input has been tagged) and the out-
put is a structural description of the sentences and tags denoting various
dependencies. The syntactic structure is described using a grammar which
depends on a particular grammar formalism.
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Syntactic analysis for natural languages is often divided into two cate-
gories. On the one hand, there is full parsing, in which a complete parse
tree is constructed for each sentence. On the other hand, there is shallow
(partial) parsing, where sentence parts or chunks are analysed without build-
ing a complete parse.

2.4.1 Full parsing

The purpose of full parsing is to compute a complete syntactic analysis for
a given sentence using a particular grammar formalism. The best known
grammar formalism is the context-free grammar (CFG), which associates
the conventional phrase structure tree with each sentence. Well known pars-
ing algorithms that can parse all context-free languages include the CYK
(Cocke-Younger-Kasami) algorithm (Younger 1967) and the Earley algorithm
(Earley 1970).

The standard version of the CYK algorithm recognises languages defined
by grammars in Chomsky normal form®. The algorithm uses dynamic pro-
gramming to build a recognition matrix which lists, for each substring of a
string to be parsed, all the non-terminal symbols N which generate the sub-
string. This matrix can be used to recognise if a particular string is in the
language or not and, additionally, with small modifications, to build a parse
matrix which includes information on how to derive the string.

The Earley algorithm performs a top-down search and can handle left-
recursive grammars. It is similar to the CYK algorithm in the sense that
for each input symbol scanned a state is constructed which represents the
condition of the recognition process at that point in the scan. The algorithm
uses a data structure called a chart which is used for looking up parsed con-
stituents (partial parse trees) and, hence, re-parsing already seen constituents
is avoided.

A number of other different grammar formalisms have been developed or
adopted from linguistics to facilitate full parsing. Among the most used are
the constraint-based grammar models, e.g. Head-Driven Phrase-Structure
Grammar (HPSG) (Pollard and Sag 1994) and Lexical Functional Grammar
(LFG) (Kaplan 1989), which extend the CFG with formal descriptions of

8Grammar G is said to be in Chomsky normal form if all rules of G are of the form
A — BC or A — a, where A, B, and C are non-terminals and a is a terminal. Any
context-free grammar can be converted to an equivalent Chomsky normal form.
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grammatical units (words, phrases and sentences), so-called feature struc-
tures. The feature structures are sets of attribute-value pairs which can be
nested, i.e. the values themselves can be atomic symbols or feature struc-
tures. The purpose of the features is to put some constraint on grammatical
units — hence the name constraint-based model. These constraint-based
models are also sometimes referred to as unification grammar because they
“share a uniform operation for the merging and checking of grammatical infor-
mation, which is commonly referred to as unification” (Uszkoreit and Zaenen
1995). According to Ait-Mokhtar et al. (2002), the main disadvantage of
these systems is the lack of robustness.

Another class of popular full parsing methods is based on probabilistic
context-free grammars (PCFG). These methods automatically extract grammar
rules from a treebank (see Section 2.4.5) and ambiguity is resolved using prob-
abilities estimated from the treebank. These methods assign a probability to
every parse tree T' (or at least to all parses it constructs) of a given sentence
S and return the most likely parse: P(S) = argmaxyP(T|S).

The disadvantage with probabilistic parsing methods is that a large quan-
tity of annotated training data, i.e. a treebank, is needed. Moreover, the
learnt rules and associated probabilities are very dependent on the treebank
at hand. On the other hand, the main advantage is that the grammar rules
are automatically extracted, but not written by hand.

Early probabilistic methods used conditional probability models for grammar
rules based on POS tags and parent rules (e.g. Magerman and Marcus
(1991)). Later probabilistic parsing methods have used lexical (word) infor-
mation as well. The methods by Collins (1996) and Charniak (1997a) use
lexical dependencies between heads of phrases to guide the parser’. Heads of
phrases are used because of “the common linguistic intuition that the forms
of a constituent and its sub-constituents are determined more by the consti-
tuent’s head than any other of its lexical items” (Charniak 1997a).

Experience has shown that using lexical information does result in a
higher parsing accuracy. A good English statistical parser which does not
use lexical information, i.e. only probabilities computed from POS sequences
and parent rules, can achieve about 75% labelled average precision/recall'.
Contrastingly, a parser which, additionally, uses information on how par-

9The head of a phrase is the most important lexical item of the phrase. For example,
in the noun phrase a probabilistic method the noun method is the head word.
10Refer to Section 2.4.6 for the definition of labelled precision and recall.
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ticular English words fit together achieves labelled precision/recall rates of
about 87-88% (Charniak 1997b).

Dependency parsing is one form of full parsing which has gained increas-
ing interest in recent years. “One important reason seems to be that depen-
dency parsing offers a good compromise between the conflicting demands of
analysis depth, on the one hand, and robustness and efficiency, on the other”
(Nivre and Scholz 2004). Dependency parsing does not generate constituents,
but, rather, syntactic structure is indicated by relations, called dependencies,
between the words of a sentence. Nivre and Hall (2005) have developed a
language-independent system based on dependency parsing, which has been
applied to several languages. Apparently, an advantage of this method is that
a reasonable performance is obtained using a relatively small treebank (on the
order of 100k words or less) for training. In other words, evaluation showed
that the parsing accuracy of structurally similar languages was quite similar
despite a large difference in the size of the training data for these languages.
Note that, a treebank in dependency format is needed for the training phase
(a conversion from phrase structures to dependency structures is possible).

2.4.2 Shallow parsing

The main problem with full parsing is that the set of solutions can grow
exponentially because, generally, the parser considers all possible analyses of
a given sentence. Moreover, since the goal is to build a complete parse tree
for each sentence, the parser sometimes rejects correct analyses of a sentence
part on lower levels in the parse tree on the ground that it does not fit
into a global parse. Shallow parsing techniques do not have these problems
because their aim is “to recover syntactic information efficiently and reliably
from unrestricted text, by sacrificing completeness and depth of analysis”
(Abney 1996). It is important to note that no attempt is made to resolve
syntactic ambiguity in shallow parsers.

In many NLP applications, it can be sufficient to analyse sentence parts
or phrases (e.g. noun phrases) without demanding that the particular parts
fit into a global parse tree. This can be the case in areas like information
extraction and text summarisation, where identification of phrases is more
important than a global parse. Additionally, in cases of low quality input or
spoken language, a shallow parsing method can be more robust!! than a full

1 Ait-Mokhtar et al. (2002) define robustness “as the ability for a language analyser
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parsing method because of noise, missing words and mistakes in the input
(Li and Roth 2001).

Abney’s work on chunk parsing (Abney 1991) has been influential for
recent work on shallow parsing. Abney argues that the human parser pro-
cesses sentences by a chunk-by-chunk strategy and that there is psychologi-
cal evidence for the existence of chunks, such as pause durations in reading.
Accordingly, chunks correspond, in some way, to prosodic patterns. In later
work, chunks have, additionally, been defined as non-recursive phrases. This
penultimate sentence contains the following chunks:

[Accordingly| [chunks correspond| [in some way| [to prosodic patterns].

The parser implemented by Abney consists of a Chunker and an Attacher.
The Chunker, which uses a simple CFG to describe the structure of chunks,
converts a stream of word-tag pairs into a stream of chunks by using a
bottom-up LR parsing technique (Aho et al. 2007). The Attacher attaches
one chunk to another with the purpose of converting a stream of chunks into
a stream of complete parse trees. Dividing the parsing process up between
these two modules allows for simple CFG techniques in the Chunker and
limits the use of more expensive techniques, for resolving attachment am-
biguities, to the parts of the grammar where they are needed, i.e. in the
Attacher.

2.4.2.1 Finite-state parsing techniques

Instead of using standard bottom-up or top-down parsing techniques which
rely on CFGs, non-recursive language models, like finite-state grammars,
have been used successfully to produce shallow parsers from the early 1990’s.

The method by Koskenniemi (1990, 1992) was influenced by the CG
approach, where, instead of using phrase tree structures to represent parses,
syntactic tags are associated with words. First, each sentence to be analysed
is fed through a morphological analyser which returns all morphological in-
terpretations and all possible syntactic functions (see Section 2.4.3) of the
analysed words. The sentences returned are represented as regular express-
ions, or equivalently as finite-state automata, which list all the combinatoric

to provide useful analysis of real-world input text, such as web pages, news, technical
documentation, e-mail or FAQs.”
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possibilities to interpret them. Second, morphological disambiguation (tagg-
ing) is carried out. At last, sentences are run through finite-state rules to
choose the correct type of boundaries between each two words and determine
the correct syntactic tag for each word.

As input sentences, the rules are represented using regular expressions
and transformed into finite-state networks using a compiler. “The whole
finite-state grammar consists of a set of rules which constrain the possible
choices of word interpretations, tags and boundaries to only those which
are considered grammatical” (Koskenniemi et al. 1992). The purpose of the
parser is to compute the intersection of the sentence automaton and each
rule automaton. The result is then, preferably, one correct grammatical
reading of the input sentence. It is noteworthy in this framework that the
parsing does not build any new structures, but, rather, consists of excluding
ungrammatical readings from a set of all possible readings returned by the
morphological analyser.

The above method has been called a reductionist approach because all
possible readings of a sentence are reduced to one correct reading by a set of
elimination rules. A contrasting method is the constructive approach which
is based on a lexical description of a collection of syntactic patterns. The
use of finite-state transducers (also called finite-state markers (Grefenstette
1996)) to introduce syntactic labels into the input sentences is one example
of the constructive approach.

At the Xerox Research Centre (XRC), extensions to the standard regular
expression calculus have been developed, in order to create finite-state trans-
ducers for syntactic processing (Karttunen et al. 1996). Furthermore, XRC
has developed a finite-state compiler (XFST), based on this calculus, for
building and manipulating finite-state networks. In addition to the standard
regular expression operators (union, concatenation, optionality, Kleene oper-
ators, complement, intersection, etc.), XFST supports special high level op-
erators: restriction, replacement and longest match (Karttunen et al. 1996).
The restriction operator is used to exclude unwanted analysis and the replace-
ment operator to replace a string with another string with or without regard
to a given context. The longest match operator is a special kind of replace-
ment operator which only replaces the longest matched string.

A common constructive approach is to string together a sequence of trans-
ducers to build incremental (or cascading) shallow parsers (Grefenstette 1996,
Abney 1997). Each transducer adds syntactic information into the text, such
as brackets and names for grammatical functions. For example, in (Grefen-
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stette 1996), a first transducer marks noun and verb phrases, a second trans-
ducer marks head words within groups (by using markers set by the previ-
ous transducer) and the last transducer applies syntactic filters to extract
non-contiguous syntactic dependencies (like subjects of verbs), again using
markers set by previous transducers.

Another (similar) constructive finite-state shallow parsing methods is
based on Cascading Finite-State Automata (Abney 1997). It is called cas-
cading because the parser uses a sequence of levels where a sentence part
(phrase) on one level is built on a sentence part on a previous level. In other
words, the parser consists of a sequence of finite-state automata, where each
automaton contains a grammar part which is responsible for recognising a
particular sentence part. In contrast to incremental finite-state transducers,
where syntactic labels are inserted into the word stream, finite-state cascades
reduce the input tokens to single elements, as in traditional bottom-up pars-
ing. The grammar written for a particular level does not include recursion,
i.e. phrases never contain same level or higher level phrases. The grammar
for each level consists of a category and a regular expression which is trans-
lated to a finite-state automaton. The union of the automata yields a single,
deterministic recogniser.

The hybrid method by Ait-Mokhtar and Chanod (1997) merges the con-
structive and the reductionist approaches by defining chunks (core phrases)
by constraints rather than syntactic patterns.

Finite-state parsing methods have been used to develop a number of
shallow parsers for different languages, e.g. Spanish (Molina et al. 1999),
Swedish (Megyesi and Rydin 1999), German (Schiehlen 2003) and French
(Chanod and Tapanainen 1996). The advantage of finite-state methods
is that they are generally less domain-specific than probabilistic methods
because large quantities of training data are not needed. Moreover, parsers
built using finite-state methods are usually robust and fast because they are,
in fact, just a pipeline of lexical analysers. On the other hand, finite-state
methods are, by nature, not as complete as full parsing methods.

Ait-Mokhtar et al. (2002) have stated that “incrementality is a method-
ological principle commonly used to build robust, broad-coverage parsers
that rely on computationally tractable syntactic descriptions”. They argue
that incremental parsing has two properties that distinguish it from more

traditional parsing: self-containment and descriptive decomposition'?.

2Tnterestingly, Ait-Mokhtar et al. (2002) have used the idea of incrementality to build
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Each incremental rule (transducer) is self-contained in the sense that its
result depends only on the contextual restriction stated in the rule and the
results accumulated by previous rules (transducers). If a substring matches
a pattern stated in a rule, the corresponding result is generated without any
backtracking — if no matches are found the rule does not have any affect on
the results generated so far. This behaviour is different from traditional full
parsing, in which rules can match substrings of the input (as in bottom-up
parsing), but the parser might reject the analysis on the ground that it does
not fit into a global parse.

The second item, descriptive decomposition, actually enforces modularity.
Since each rule (transducer) is responsible for recognising a particular syn-
tactic construction, the overall task of syntactic annotation is automatically
divided into a number of subtasks. Broad coverage can thus be obtained by
using a variety of subtasks, which as a whole are responsible for recognising
a variety of linguistic constructions occurring in real texts.

2.4.3 Grammatical function analysis

Many parsing systems (both full and shallow) not only derive sentence struc-
ture but, additionally, analyse dependencies between the sentence’s individ-
ual constituents. Different constituents can belong to the same category (e.g.
noun phrase) but can have different grammatical functions (GFs). The pur-
pose of GFs analysis is, for example, to identify the subjects and objects of
verbs. Subcategorisation frames for verbs can be used to help attach the right
arguments to the verbs, i.e. to distinguish between arguments and adjuncts
of verbs. For example, in the sentence “John ate the soup in the restaurant”,
only the subject “John” and the object “the soup” are required arguments
but the adjunct “in the restaurant” is optional.

Usually, grammatical functions and syntactic structures are annotated
by two different components. “While shallow structures describe constituents
which are subject to syntactic restrictions, GFs describe the relations between
those constituents [...| while the order of tokens in a chunk is relatively fixed,
the order of the GFs is relatively free ...” (Miiller 2004). This generally
means that syntactic structures can be annotated using POS tags only, while
the annotation of GFs requires additional morphological information and a
dictionary containing information about verb subcategorisation.

an incremental deep (full) parser for French.
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Finite-state techniques have been used successfully to annotate GFs. Grefen-
stette (1996) uses “syntactic filters”, which specify what must not appear be-
tween two items, to extract non-contiguous syntactic dependencies. These
filters depend on the labels inserted by previous transducers, e.g. labels
marking heads of noun phrases and types of verbs.

A GFs annotation for German also uses a cascade of finite-state trans-
ducers (Miiller 2004). The main emphasis in that project is to make a dis-
tinction between complements (e.g. object-nominative, object-dative and
object-accusative), typically subcategorised by a verb or an adjective. The
component annotating the GFs uses all the linguistic information added by
the previous shallow-structure-marking transducers.

2.4.4 Designing a parsing scheme

When designing a parser (or a treebank; see next section) for a natural
language it is important to outline a parsing scheme (an annotation scheme).
In the context of shallow parsing this includes i) deciding what kind of chunks
to annotate, ii) what kind of grammatical functions to annotate and iii)
guidelines (general principles) on how to perform the annotation (Voutilainen
1997). Additionally, since “the correct analysis” is not always clear, detailed
instructions are needed where the general principles are not unambiguously
applicable.

Voutilainen points out that the parsing scheme (or the grammatical repre-
sentation, as he calls it) can be specified with the help of a grammar def-
inition corpus (GDC). A GDC is a representative collection of sentences,
consistently analysed using the guidelines and the detailed instructions. The
purpose of the GDC is to “provide an unambiguous answer to the question
how to analyse any utterance in the object language” (Voutilainen 1997).
Furthermore, the GDC can be used to help with the development of the
parser itself because the parser should at least be able to correctly annotate
the sentences in the GDC.

2.4.4.1 The EAGLES guidelines

In 1996, EAGLES proposed guidelines for syntactic annotation of corpora

(EAGLES, Expert Advisory Group for Language Engineering Standards 1996).
In the proposal, the following layers of information are recognised (which

may or may not be encoded in a particular syntactic annotation scheme):
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1. Bracketing of segments. Involves the delimitation of segments, usu-
ally with square brackets, which are recognised as having a syntactic
integrity (sentences, clauses, phrases, words).

2. Labelling of segments. Indication of formal category of the con-
stituents identified by the bracketing, such as a noun phrase, a verb
phrase, a prepositional phrase, etc.

3. Showing dependency relations. Head-dependent relations between
words, e.g. adjectives and the nouns they modify. Usually shown with
dependency trees: a set of arrows pointing from a head to a dependent
(or vice verse).

4. Indicating functional relations. Labelling of segments according to
their syntactic function, such as subject, object, predicate, etc.

5. Marking subclassification of syntactic segments. Assigning feat-
ure values to phrases or words, e.g. marking a noun phrase as singular
or a verb phrase as past tense.

6. Deep or logical information. This includes a variety of syntactic
phenomena, such as co-referentiality, cross-reference and syntactic dis-
continuity.

7. Information about the rank of a syntactic unit. This is obtain-
able from most parser outputs by the embedding of marked brackets.

8. Special syntactic characteristics of spoken language. Indication
of false starts, reiterations, pauses etc.

2.4.5 Treebanks

A treebank is a syntactically annotated corpus, in which the annotations
follow a particular annotation scheme. Most treebanks have been built by
manually, or semi-automatically, adding syntactic annotations to a POS
tagged corpus. Treebanks have, for example, been used to facilitate ling-
uistic research, as training corpora for data-driven methodologies and as
evaluation resources for parsers. Three main kinds of annotation are used in
practise: annotation of constituent structure, annotation of functional struc-
ture (grammatical functions) and theory-specific annotation (Nivre 2002).
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The annotation found in most treebanks is, in fact, a combination of two or
even three of theses categories.

The annotation of constituent structure (or bracketing) is the most common
annotation method. It is, for example, used in the well known Penn Treebank
(Marcus et al. 1993). Usually, this kind of annotation consists of POS tags
for individual words, augmented with annotation of major constituents, like
noun phrases, prepositional phrases, verb phrases, etc. These schemes are
“usually intended to be theory-neutral and therefore try to use mostly un-
controversial categories that are recognised in all or most syntactic theories
that assume some notion of constituent structure” (Nivre 2002). Thus, the
advantage with this annotation method is that the treebank can be used by
a larger group of researchers working within different theoretical frameworks.
The disadvantage, however, is the risk that the annotation contains to little
information which makes the treebank inadequate to use for anyone.

In recent years, annotation of functional structure has become increas-
ingly important. First, grammatical function annotation has been added to
many corpora annotated with constituent structure, e.g. the Penn Treebank
IT (Marcus et al. 1994). Secondly, so-called dependency syntax annotation
schemes (signifying dependencies between words) have been developed, in
which dependency structure is added directly on top of morphological infor-
mation without any bracketing. The Prague Dependency Treebank of Czech
is probably the best known example of this type of annotation structure
(Haji¢ 1998).

The third kind of annotation scheme is the one which uses representations
from a particular grammatical theory, for example HPSG, to annotate sen-
tences. The advantage with theory-supporting treebanks is that they are
more useful for people working with the selected type of grammatical theory,
but the disadvantage is that they are not as appropriate for people who do
not use the specific theoretical framework.

2.4.6 Evaluating parsers

A variety of parser evaluation methods have been used in the literature —
for a general overview the reader is referred to Carroll et al. (1998). In this
section, we only describe the most common method used — the Parseval
scheme (Black et al. 1991, Grishman et al. 1992).

The original version of this scheme only compares phrase structure brack-
ets in the output of a parser with the brackets in a treebank, i.e. in a gold
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standard?, without considering the constituent labels. Two main metrics are
used, precision and recall, defined in the following manner:

.. # of correct brackets produced by parser
precision = (2.5)
total # of brackets produced by parser

# of correct brackets produced by parser
# of brackets in treebank

These two metrics are then normally combined into the so-called F'-
measure, the weighted harmonic mean of precision and recall:

(2.6)

recall =

(14 «) - (precision - recall)

(2.7)

F, — measure = —
a - preciston + recall

When o = 1, we get the widely used Fi-measure (in which precision and
recall are evenly weighted):

2 - precision - recall

(2.8)

F; — measure = —
precision + recall

Another measure originating in Parseval is the mean number of crossing
brackets per sentence. This measures the number of bracketed sequences in
the parser which overlap with one from the treebank and where neither is
properly contained in the other.

A more recent version of the original Parseval scheme takes labelling into
account, i.e. the measures used are labelled precision and labelled recall
(e.g. (Collins 1996)). Sekine and Collins (1997) have developed a widely
used program, which automatically computes labelled precision, recall and
Fi-measure.

Most work on evaluation for full parsing has been focused on the English
language using the Parseval scheme and the Penn Treebank as the gold
standard. Because of this dominant paradigm, it has been pointed out that
parser development might be tuned in order to obtain high precision and
recall scores when tested using Parseval and the Penn Treebank (Gaizauskas
et al. 1998). In order to filter out the particular grammar formalism implicit
in the Penn Treebank, Gaizauskas et al. advocate using a gold standard
that “encodes for each sentence only the constituents upon which there is

13A gold standard is a benchmark which is widely accepted as being correct or the best
available.
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broad agreement across a range of grammatical theories”, basically resulting
in flatter structure.

Another path of work with regard to evaluation for full parsing in recent
years is dependency-based evaluation (Lin 1998). Instead of comparing
phrase boundaries, comparisons are made between the dependency relations
in the parser output and the gold standard.

In the case of shallow parsing, the combination of Parseval and a gold
standard with full parsers (e.g. Penn Treebank) is not suitable because obvi-
ously recall will be very low. If a partially parsed treebank is not available, a
dependency based evaluation might be more appropriate (Kiibler and Heike
2002).

2.4.7 Parsing Icelandic text

To our knowledge, only one parser has yet been developed for parsing Ice-
landic text. The project, which concluded in 2005, was carried out at the
Icelandic software company Frisk Software International. In November 2004,
36 man months had been spent on the project (Albertsdottir and Stefansson
2004). The parser is a full parser based on HPSG and uses a proprietary
morphological analyser developed by the same company. The purpose of the
project is to build a basic NLP unit which can be used for further develop-
ment of NLP tools.

One other project regarding syntactic analysis of the Icelandic language
is, indeed, worth mentioning. A corpus of spoken Icelandic (IS-TAL) has
been compiled and POS tagged using the TnT tagger and the large Ice-
landic tagset (Rognvaldsson 2005). Moreover, in this project, scripts have
been developed that convert morphological information into syntactic infor-
mation. This conversion is possible due to the substantial amount of syntactic
information included in the Icelandic POS tags. For example, nouns, pro-
nouns and adjectives are marked by case which should make it possible to
deduce subject or object function for these words. Additionally, words can
be grouped into phrases by using the fact that feature agreement between
a noun and its modifiers is a characteristic of Icelandic noun phrases. This
syntactic annotation is then enhanced by using a few simple hand-written
rules for correcting the syntactic tags according to the syntactic environment
and assigning some hierarchical structure to the sentences. The result is “a
rather flat structure with lots of errors and inconsistencies [...| but it is far
better than having no syntactic information at all” (Régnvaldsson 2005).




Chapter 3

The Icelandic Language

The Icelandic language is one of the Nordic languages which comprise the
North-Germanic branch (Danish, Swedish, Norwegian, Icelandic, Faroese) of
the Germanic language tree. Linguistically, Icelandic is most closely related
to Faroese and the dialects of Western Norway. Iceland was mainly settled
in the late ninth and early tenth century, mostly by people from Western
Norway, but settlers also came from the British Isles. The language which
prevailed was that of the people from Western Norway.

The Icelandic language is a morphologically rich language, due to inflect-
ional complexity. From a syntactic point of view, Icelandic has a basic
subject-verb-object (SVO) word order, but, in fact, the word order is rela-
tively flexible, because morphological endings carry a substantial amount of
syntactic information.

In this chapter we will, first, in section 3.1, briefly describe the morpho-
logy of the Icelandic language, and then, briefly, discuss syntactic issues in
section 3.2.

3.1 Morphology

Icelandic words are usually divided into 3 categories (11 word classes): nom-
inals (nouns, adjectives, pronouns, the definite article and numerals), verbs
and non-inflected words (conjunctions, prepositions, adverbs (some of which,
in fact, are inflected for comparison), the infinitival marker and interjections).
Let us now briefly consider the different word classes — for a thorough de-
scription of the Icelandic language the reader is referred to (Préainsson 1994,

42
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Svavarsdottir 2005).

3.1.1 Nominals

The main feature of nominals is declension. Icelandic has four cases: nomina-
tive, accusative, dative and genitive. The oblique cases, accusative, dative
and genitive, are mainly controlled by verbs and prepositions. Addition-
ally, most nominals are marked by number (singular and plural) and gender.
There are three genders: masculine, feminine and neuter.

3.1.1.1 Nouns

"The gender for nouns is primarily a formal characteristic, and even if the
grammatical gender generally matches the natural gender or sex in words
denoting animates, it is still highly arbitrary |...]" (Svavarsdottir 2005).

Generating the plural for Icelandic nouns is more complicated than in
the other Nordic languages, as well as in English. In contrast to English,
Icelandic does not have a general rule, which applies to all the genders, for
generating the plural. There are specific endings for plural masculine nouns,
other endings for plural feminine nouns and, usually, no specific endings for
plural neuter nouns. Moreover, vowel mutation often occurs in the plural,
especially for neuter nouns.

Icelandic nouns are often divided into a number of inflectional classes
(see (Prainsson 1994) for a thorough discussion). The classification is based
on the ending of the genitive singular, the gender, and the ending of the
nominative plural.

Table 3.1 shows an example of the declension for nouns belonging to three
different inflectional classes: the (indefinite) masculine noun “fiskur” (fish),
the (indefinite) feminine noun “tunga” (tongue), and the (indefinite) neuter
noun “bord” (table). The common part shared by all forms, the stem, is
“fisk”, “tung”, and “bord”.

Nouns can have a suffixed article which makes them definite (see below).

3.1.1.2 Adjectives

Adjectives have a strong or a weak declension. A strong declension is used
in indefinite noun phrases whereas a weak declension is used in definite noun
phrases. Moreover, adjectives inflect in the positive and in the superlative.
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Case Singular Plural  Singular Plural Singular Plural
Nominative fisk-ur fisk-ar  tung-a  tung-ur  bord bord
Accusative  fisk fisk-a tung-u  tung-ur  bord bord
Dative fisk-i fisk-um tung-u  tung-um bord-i bord-um

Genitive fisk-s fisk-a tung-u  tung-na  bord-s boro-a

Table 3.1: Examples of the declension for Icelandic nouns

Tables 3.2 and 3.3 show an example of a strong and a weak declension,
respectively, for the adjective “raudur” (red). “raudur fiskur” stands for the
indefinite masculine a red fish (strong declension), while “raudi fiskurinn”
stands for the definite the red fish (weak declension). In the weak declension,
notice the masculine definite article “inn” as an inflectional ending for the
noun, e.g. “raudi fiskur-inn”.

3.1.1.3 Pronouns

Pronouns are divided into 6 subcategories; demonstrative pronouns, reflexive
pronouns, possessive pronouns, indefinite pronouns, personal pronouns and
interrogative pronouns. An example of each category is shown in table 3.4.
Table 3.5 shows the inflection of the first person personal pronoun, “ég” (I)
in the four cases, singular and plural.

3.1.1.4 Article

The Icelandic definite article is only one word, i.e. “hinn”. The article, which
exists in the three genders, singular and plural, makes the nouns definite.
Suffix use of the article is the most common and in that case the article
is not considered a special word, but rather an inflectional ending. Table
3.6 shows the declension of the singular words, “madurinn”, “konan” and
“barnid” (the man (masculine), the woman (feminine), the child (neuter)).

3.1.1.5 Numerals

Icelandic numerals are ordinals or cardinals. The ordinals inflect like nouns

PRI

as well as the first four cardinals: “einn”, “tveir”, “ prir”, “fiorir” (one, two,
three, four). Table 3.7 shows the declension of the cardinal “einn”.
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Strong declension

Case Singular Plural
Nominative raud-ur fisk-ur raud-ir fisk-ar
Accusative  rauod-an fisk rauod-a fisk-a
Dative raud-um fisk-i raud-um fisk-um
Genitive rau0-s fisk-s raud-ra fisk-a

Table 3.2: An example of a strong declension for the adjective “raudur”
(modifying the noun “fiskur”)

Weak declension

Case Singular Plural
Nominative raud-i fisk-ur-inn raud-u fisk-ar-nir
Accusative  raud-a fisk-inn rauo-u fisk-a-na
Dative raud-a fisk-i-num raud-u fisk-u-num
Genitive raud-a fisks-ins raud-u fisk-a-nna

I

Table 3.3: An example of a weak declension for the adjective “raudur’
(modifying the noun “fiskur”)

Category Example English equivalent
Demonstrative sé, pessi, hinn this, that, the other one
Reflexive sig himself /herself/itself
Possessive minn, pinn, sinn mine, yours, his
Indefinite annar, enginn, allir other, nobody, all
Personal ég, b, hann/hin/pad I, you, he/she/it
Interrogative  hver, hvor who, which

Table 3.4: Examples of Icelandic pronouns
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Case Singular Plural
Nominative ég vio

Accusative  mig okkur
Dative mér okkur
Genitive min okkar

Table 3.5: Inflection of the first personal pronoun ég (I)

Case Masculine  Feminine  Neuter
Nominative madur-inn  kona-n barn-id
Accusative  mann-inn konu-na barn-id
Dative manni-num konu-nni barni-nu
Genitive manns-ins  konu-nnar barns-ins

Table 3.6: Examples of suffixed article declensions

Case Masculine Feminine Neuter
Nominative ein-n ein eitt
Accusative  ein-n ein-a eitt
Dative ein-um ein-ni ein-u
(Genitive ein-s ein-nar ein-s

Table 3.7: Declension of the cardinal “einn”
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Person Present tense Past tense
(singular/plural) Singular Plural Singular  Plural

1%t (ég/vid) bord-a  bord-um bord-adi  bord-udum
274 (bt /bid) bord-ar  bord-id  bord-adir bord-udud

3" (hann/peir)  bord-ar  bord-a  bord-adi  bord-udu

Table 3.8: Conjugation of a regular verb in indicative mood and active voice

Person Present tense Past tense
(singular/plural) Singular Plural Singular  Plural

1%t (ég/vid) bord-i bord-um bord-adi  bord-udum
2m (b /pid) bord-ir  bord-id  bord-adir bord-udud

374 (hann/peir)  bord-i  bord-i bord-adi  bord-udu

Table 3.9: Conjugation of a regular verb in subjunctive mood and active
voice

3.1.2 Verbs

Icelandic verbs conjugate in person, number, tense, mood and voice. There
are two morphological tenses: present tense and past tense. A finite verb
form can have any of the three moods: indicative, subjunctive or imperative.
Verbs can also have three infinite forms, i.e. the infinitive form and two
participles: present and past. The voices are active and passive. Table 3.8
shows the conjugation of the regular verb “borda” (eat) for the present and
past tenses in indicative mood and active voice. The subjunctive form of the
same verb appears in table 3.9. Note that for regular verbs the past tense is
the same in indicative and subjunctive moods.

Ablaut appears in the stem of irregular verbs when they are conjugated.
Table 3.10 shows the irregular verb “bita” (bite), in indicative mood. The
subjunctive form of the same verb appears in table 3.11.

Past and present participle is used with the copula “vera” (be), e.g. “hann
var bitinn” (he was bitten) and “ég er hlaupandi” (I am running). The present
participle is easily recognised by the suffix “-andi”. The infinitive is “ad” (to),
i.e. “ad lesa” (to read), “ad bita” (to bite), etc.

In Icelandic, transitive verbs govern cases. As an example, consider the
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Person Present tense Past tense
(singular/plural) Singular Plural Singular Plural
1%t (ég/vid) bit bit-um  beit bit-um
274 (bt /bid) bit-ur  bit-id  bei-st bit-ud
37 (hann/peir)  bit-ur bit-a  beit, bit-u

Table 3.10: Conjugation of an irregular verb in indicative mood and active
voice

Person Present tense Past tense
(singular/plural) Singular Plural Singular Plural
1%t (ég/vid) bit-i bit-um  bit-i bit-um
274 (b1 /bid) bit-ir bit-id  bit-ir bit-ud
3" (hann/peir)  bit-i bit-i bit-i bit-u

Table 3.11: Conjugation of an irregular verb in subjunctive mood and active
voice

sentence “Eg borda fisk” (I eat fish). The nominative case for fish is “fiskur”
but here the verb “borda” demands an accusative case object. As another
example, consider the verb “vera” (be) which demands a predicate nomina-
tive. In the sentence “Petta er fiskur” (This is a fish), the noun “fiskur” is in
the nominative case.

3.1.3 Non-inflected words

The non-inflected word classes in Icelandic are conjunctions, prepositions,
adverbs, the infinitival marker and interjections. Excluding adverbs, these
classes are closed, i.e. new words do not enter them.

3.1.3.1 Conjunctions

Conjunctions in Icelandic are of two kinds; coordinating conjunctions and
subordinate conjunctions. The predominant coordinating conjunctions are:
“og” (and), “en” (but) and “eda” (or). The main subordinate conjunctions
are: “a0” (that), “sem” (which), “ef” (if) and “pegar” (when).
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3.1.3.2 Prepositions

Prepositions govern oblique cases in Icelandic. The following is a list of some

of the prepositions that govern the accusative, dative or genitive cases.
Accusative: “um” (about), “¢” (in), “@” (on), “yfir” (over), “undir” (under),
“med” (with), “eftir” (after), “vid” (by) , “fyrir” (for), “gegnum” (through),
“kringum” (around), “upp” (up), “nidur” (down).

Dative: “frd” (from), “af” (of), “undan” (from under), “ad” (towards), “samkvemt”
(according to), “dsamt” (together with), “handa” (for), “gegn” (against),
“medfram” (along).

Genitive: “til” (to), “dn” (without), “auk” (in addition to), “medal” (among),
“milli” (between), “vegna” (because of).

WA W W
¢ )

Note that some of the prepositions (e.g. d’, “undir”, and “yfir”) can

govern both the accusative and the dative case.

3.1.3.3 Adverbs

Adverbs are the biggest category of the non-inflectional words and the only
one which accepts new words, i.e. adverbs that can be derived from adjec-
tives. In some cases an adverb takes on the role of a preposition when it
governs the case of a nominal. A few adverbs can compare. Adverbs are usu-
ally subcategorized, like “hdttaratviksord” (adverbs of manner), “tidaratviksord”
(adverbs of time and frequency), “stadaratviksoro” (adverbs of place), “ dherslu-
atviksord” (adverbs of degree), and “ spurnaratviksord” (adverbs of question).

3.1.3.4 The infinitive

Only one word is in this category, i.e. “ad” (to). “A0” is used with a verb in
the infinitive mood, e.g. “ad borda” (to eat).

3.1.3.5 Interjections

Interjections are words that are “shouted” and describe, for example, joy,
astonishment or fear. An example of words in this category is: “he” (hi),
“hd” (whoopee), “@” (ouch), “ja” (yeah), “nei” (nah), “uss” (shush).
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3.2 Syntax

The following passage, borrowed from Svavarsdottir (2005), is a good intro-
duction to a discussion on Icelandic syntax:

Inflection takes much of the load of showing the internal structure
of sentences. Agreement in gender, case and number between
a noun and its modifiers (adjectives, pronouns, etc.) indicates
which words belong together and form constituents, and case
marking differentiates them and is indicative of their syntactic
function. Subjects are, for example, typically in the nominative
and most objects in either accusative or dative, depending on
the verb. Furthermore, the finite verb agrees with the subject in
person and number. Word order can thus be relatively free, even
if the freedom is restricted in many ways. Icelandic has a basic
SVO order (subject — verb — object), in subordinate as well as
in main clauses, and any deviations from that are syntactically,
semantically or stylistically marked.

In the following sections, we discuss phrases (constituents), grammatical
(syntactic) functions and word order in more detail.

3.2.1 Phrases

In a discussion on syntax, it is, generally, assumed that sentences are made
out of group of words, called phrases. Each phrase contains a head (the main
word) which determines the type of the phrase. The typical phrase consists of
the head, an optional modifier (specifier) preceding the head, and an optional
complement following the head. Both the modifier and the complement can
be phrases themselves. In Icelandic, nominal modifiers agree with the head
in gender, number and case. In contrast, the head, generally, governs the
case of its nominal complements.

Phrases in Icelandic are, broadly speaking, categorised into the familiar
five type of phrases: adverb phrase (AdvP), adjective phrase (AP), noun
phrase (NP), preposition phrase (PP) and verb phrase (VP).

An AdvP consists of a sequence of one or more adverbs, of which the
rightmost adverb is the head. Similarly, an AP contains a sequence of one
or more adjectives. Additionally, an AP includes an optional AdvP as a
modifier. Clause 3.1 shows the phrase “mjdg géour” (very good), an example
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of an AP along with a modifying AdvP (we use brackets and labels to indicate
the beginning and end of a phrase):

[AP [AdvP mjog AdvP| goour AP| (3.1)

A NP comprises a sequence of optional modifiers followed by a noun (or
a pronoun) as the head. The order of the modifiers is strict, i.e. indefinite
pronoun, demonstrative pronoun, numeral and adjective (phrase). A typical
example, “Allir pessir fioru fallegu hestar” (All these four beautiful horses)
is given in 3.2.

NP Allir pessir fjorir [AP fallegu AP] hestar NP| (3.2)

Agreement, in gender, number and case between a noun and its mod-
ifiers, is a characteristic of Icelandic noun phrases. The modifiers “inherit”
their feature values from the head word of the phrase. For example, in 3.2, the
indefinite pronoun “allir”, the demonstrative pronoun “pessir”, the numeral
“fiorir”, the adjective “fallegu”, and the noun “hestar” all appear in mascu-
line, plural and nominative. As another example, in the sentence “ Ollum litlu
bornunum var hjdalpad” (All (the) little children were helped ) the indefinite
pronoun “ollum”, the adjective “litlu”, and the noun “bornunum” all appear
in the neuter, plural and dative.

The genitive complement, expressing possession, is an example of a noun
complement phrase. Consider, for example, the clause “pessir fallegu hestar
litlu strakanna” (these beautiful horses small boys), shown in 3.3.

[NP bessir [AP fallegu AP| hestar NP| [NP [AP litlu AP| strakanna NP)|
(3.3)

The phrase “litlu strdikanna” appears in the genitive case and specifies
who owns the horses.

A PP, typically, consists of an optional AdvP, a preposition (the head)
and a following noun phrase as a complement. The preposition governs the
case of the complement. For example, in the sentence “Jon stéd vid vegginn”
(John stood by (the) wall), shown in 3.4, the preposition “vid” demands an
accusative case for the noun “wvegginn”.

[NP Jon NP] [VP st6d] [PP vid [NP vegginn NP] PP] (3.4)

A VP consists of a head verb followed by an optional object/complement
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phrase, depending on the type of the verb.

3.2.2 Grammatical functions

In our discussion on grammatical functions, we will assume that phrases can
have different functions, of which the most important are:

e A subject: a NP
e An object: a NP
e A (verb) complement: a NP/AP, or a past participle verb phrase

In declarative sentences, the subject is the phrase which precedes the
(finite) VP and the object/complement the phrase which follows the VP.

In Icelandic, a subject is normally in the nominative case. The finite
verb agrees with the subject in person and number. In the sentence “Jon las
bokina” (John read (the) book) in 3.5, the finite verb “las” agrees with the
nominative subject “Jdén” in person (3"¢) and number (singular).

[NP Jén NP] [VP las [NP bokina NP| VP] (3.5)

Non-nominative subjects (often referred to as quirky case) are, however,
not uncommon, e.g. “mig (accusative) vantar” (I need), “mér (dative) leidist”
(I'm bored), and “there is, thus, no one-to-one relationship between morpho-
logical case marking and grammatical function” (Prainsson 1994). In the
case of non-nominative subjects the verb is always in the 3"¢ person (instead
of agreeing with the subject in person).

A transitive verb govern the case (accusative, dative or genitive) of its
object phrase, while an intransitive verbs either does not require an object
or demands a nominative complement. In 3.5, the verb “/as” demands an
accusative object.

In the case of di-transitive verbs, generally, the first object (the indirect
object) is in the dative case, whereas the second object (the direct object)
is in the accusative — see for example the sentence “Jon gaf Mariu bokina”
(John gave Mary (the) book) shown in 3.6:

NP Jon NP| [VP gaf] [NP Mariu (dat.) NP] [NP bokina (acc.) NP| (3.6)
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Other case patterns for the indirect and direct objects do indeed appear, i.e.
accusative-dative, dative-dative, accusative-genitive and accusative-accusative.

In the sentence “Jdn er gédur kennari” (John is good teacher), the cop-
ula verb “er” (be) is an example of a verb which demands a nominative
complement; see 3.7:

[NP Jon NP] [VP er [NP [AP godur AP]| kennari NP| VP] (3.7)

3.2.3 Word order

Since the case marking gives an indication of the grammatical function, the
subject-object word order in Icelandic is relatively free. Consider the follow-
ing two sentences “Jon bordadi fiskinn” (John ate (the) fish) and “Fiskinn
bordadi Jon” ((The) fish ate John; meaning: the fish, John ate), shown in
3.8 and 3.9:

INP Jon (nom.) NP| [VP bordadi| [NP fiskinn (acc.) NP| (3.8)

[NP Fiskinn (acc.) NP] [VP bordadi| [NP Jon (nom.) NP| (3.9)

The difference in semantics between these two sentences in subtle. The
latter puts emphasis on the fact the John ate the fish as opposed to John
eating something else.

In Icelandic declarative clauses, the finite verb occupies the familiar Ger-
manic verb-second (V2) positions. “Thus if something is preposed or topi-
calised the subject will follow the finite verb rather than precede it” (Prains-
son 1994) — see for example the sentences “ Oft las Jon bokina” (Often read
John (the) book) and “ Hverjum gaf Jon bokina?” (To whom gave John (the)
book?) shown in 3.10 and 3.11:

[AdvP Oft AdvP| [VP las| [NP Jon NP| [NP bokina NP (3.10)

INP Hverjum NP| [VP gaf| NP Jon NP| [NP bokina NP|? (3.11)

Icelandic auxiliary or modal verbs precede the main verb, as exemplified
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in the sentences “Hann hafoi farid burt” (He had gone away), and “Hun gat
ekki bordad fiskinn” (She could not eat fish-the), shown in 3.12 and 3.13:

[NP Hann NP| [VP hafoi fario VP| [AdvP burt AdvP] (3.12)

[NP Hiin NP| [VP gat [AdvP ekki AdvP] bordad VP] [NP fiskinn NP]
(3.13)
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Chapter 4

Data

4.1 The corpora

4.1.1 The IFD corpus

The main corpus (and the tagset; see section 4.2) used in our research was
created during the making of the Icelandic Frequency Dictionary (IFD) (Pind
et al. 1991). The following description is borrowed from Helgadottir (2004):

The IFD corpus is considered to be a carefully balanced cor-
pus consisting of about 590k tokens. All the 100 fragments of
texts in the corpus were published for the first time in 1980-1989.
The corpus comprises five categories of texts, i.e. Icelandic fic-
tion, translated fiction, biographies and memoirs, non-fiction and
books for children and youngsters. No two texts are attributed
to the same person and all texts start and finish with a complete
sentence.

Table 4.1 lists some statistics from the IFD corpus. In the table, tokens
refers to word tokens, and types refer to word types, i.e. different words.

It is interesting that the ratio of ambiguous tokens, 59.66%, is much
higher than for languages like English (38.65%), Czech (45.97%), Estonian,
(40.24%), Hungarian (21.58%), Romanian (40.00%), Slovene (38.01%) (Haji¢
2000). This seems to indicate that the most frequent tokens in Icelandic are
(very) ambiguous. Table 4.2, which lists the 10 most frequent tokens along

26
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with their tag profile!, shows, indeed, that this conjecture is true (except for
the first three tokens).

The computer files for the IFD corpus each contain one text excerpt. To
make the corpus suitable for ten-fold cross-validation?, the computer files of
the corpus have been divided (by Helgadottir) in the following way. Each
file has been divided into ten approximately equal parts, and from these,
ten different disjoint pairs of files have been created. Each pair consists of
a training set, containing about 90% of the tokens from the corpus, and a
test set, containing about 10% of the tokens. By using this procedure, each
stratified set should contain a representative sample from all genres in the
corpus. The test corpora are independent of each other, whereas the training
corpora overlap and share about 80% of the examples. All words in the texts,
except proper nouns, start with a lower case letter. Table 4.3 shows statistics
for the 10 test corpora. A word in a test corpus is considered unknown if it
does not appear in the associated training corpus.

4.1.2 Other corpora

In this thesis, we will, additionally, use the following five different tagged
text segments for testing taggers. The first one consists of “young” literary
works from the period after 1980. The second segment consists of “old” lit-
erary works from the last part of the 19th century and first part of the 20th
century. The third segment consists of a text about computers and infor-
mation technology acquired from the newspaper Morgunbladio, a newsletter
from the University of Iceland Computing Services and the web sites of sev-
eral information technology companies. The fourth segment comprises text
about law and business taken from various sources. The last segment consists
of newspaper text from January 2004, acquired from Morgunbladio.

The first four text segments are the same as were used in (Helgadottir
2004), but with the following differences. First, we have removed texts from
“young”, which also appear in the IFD corpus. Secondly, we have hand-
corrected various tagging errors that existed in these segments.

'In this thesis, we refer to the set of possible tags for a given word w as the tag profile
for w.

2In ten-fold cross-validation a corpus is randomly divided into ten disjoint subsets of
(approximately) equal size. The training is performed ten times on nine of these ten
disjoint data sets and then testing is performed on the one left out, each time leaving out
a different one.
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Feature Number  Ratio
Sentences 36,922  15.99¢
Tokens 590,297
Ambiguous tokens 352,200 59.66%
Ambiguity rate® 2.74
Types 59,358
Types occurring once 34,979 58.93%
Unambiguous types 49,995 84.16%
Ambiguous types 9,403 15.84%
Types occurring with 2 tags 6,568 11.07%
Types occurring with 3 tags 1,758  2.96%
Types occurring with 4 tags 577 0.97%
Types occurring with 5 tags 209  0.35%
Types occurring with 6 tags 92  0.15%
Types occurring with 7 tags 67 0.11%
Types occurring with 8 tags 26 0.04%
Types occurring with 9 tags 21 0.04%
Types occurring with 10 tags 18 0.03%
Types occurring with 11 tags 23 0.04%
Types occurring with 12 tags 7 0.01%
Types occurring with 13 tags 10 0.02%
Types occurring with 14 tags 9 0.02%
Types occurring with 15 tags 5  0.01%
Types occurring with 16 tags 1 0.00%
Types occurring with 17 tags 6 0.01%
Types occurring with 18-24 tags 6 0.01%

Table 4.1: Statistics for the IFD corpus

®Average sentence length.
5For all tokens.
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Frequency Token English Tags®
translation®

33181 . .

22176 og and ¢

22083 ,

21011 ao to cn_c_ap aa

15319 1 in ap _ao_aa

12450 & on ap ao_sfglen sfg3den aa nven nveo nvep au
8040 hann  he fpken fpkeo
7905 var was sfg3ep sfglep lkensf
7676 sem that ct_c_aa_sfglen
6357 er is sfgden sfglen ct_c

Table 4.2: The 10 most frequent tokens in the IFD corpus

acc 2

is used as a separator between tags. The tagset is explained in section 4.2.
bCorresponding to the most frequent tag.

Test # of # of unknown word
corpus tokens sentences ratio
01 09,169 3,503 7.57%
02 58,967 3,601 6.79%
03 09,077 3,541 6.88%
04 09,067 3,776 6.69%
05 59,075 3,861 6.51%
06 59,136 3,748 6.70%
07 09,109 3,688 6.70%
08 58,981 3,698 6.93%
09 09,143 3,743 6.80%
10 08,073 3,753 6.83%
Average: 59,030 3,691 6.84%

Table 4.3: Statistics for the ten test corpora derived from the IFD corpus
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Test # of # of unknown word
corpus tokens sentences ratio

young 3,881 234 7.21%

old 6,023 226 8.88%

law /business 2,778 134 13.97%
computers 2,926 142 15.07%
newspaper 10,016 500 11.08%

Table 4.4: Statistics for the other corpora

We constructed a tagged version of the newspaper texts in the following
manner. First, we used a combined tagger (see section 7.4) to perform initial
tagging. Then, we processed the resulting file word by word and hand-
corrected the tagging errors.

Table 4.4 shows statistics for these text segments. Here, a word in a test
corpus is considered unknown if it does not appear in the IFD corpus.

4.2 The tagset

Due to the morphological richness of the Icelandic language, the main tagset
(the IFD tagset) is large and makes fine distinctions compared to related
languages. The rich inflections of an Icelandic word contribute more infor-
mation about POS of surrounding words than is the case, for example, for
English where word order is not as free. The tagset consists of 662 possible
tags: 192 noun tags, 163 pronoun tags, 144 adjective tags, 82 verb tags,
27 numeral tags, 24 article tags, 16 punctuation tags, 9 adverb/preposition
tags, 3 conjunction tags and 1 tag for foreign words and words not analysed.
639 tags of the possible 662 tags in the Icelandic tagset appear in the IFD
corpus.

We can illustrate the preciseness of the tags by examining the semantics
of a tag. Each character in a tag has a particular function. The first character
denotes the word class. For each word class there is a predefined number of
additional characters (at most six) which describe morphological features,
like gender, number and case for nouns; degree and declension for adjectives;
voice, mood and tense for verbs, etc.

Tables 4.5 and 4.6 show the semantics of the tags for nouns and adjectives,
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Char Category/ Symbol — semantics

# Feature

1 Word class n-noun, l-adjective

2 Gender k-masculine, v—feminine, h-neuter, x—unspecified
3 Number e-singular, f-plural

4 Case n-nominative, o—accusative, p—dative, e—genitive
5 Article g-with suffixed article

5t Declension v—strong, s—weak

6 Proper noun m-person, 6—place, s—other

6 Degree f-positive, m—comparative, e—superlative

Table 4.5: The semantics of the tags for nouns and adjectives

Char Category/ Symbol — semantics

# Feature

1 Word class s—verb (except for past participle)

2 Mood n—infinitive, b—imperative, f-indicative, v—subjunctive,
s—supine, l-present participle

3 Voice g-active, m-middle

4 Person 1-1°¢ person, 2-2"¢ person, 3-3"¢ person,

5t Number e-singular, f-plural

6 Tense n—present, p—past

Table 4.6: The semantics of the tags for verbs

and the semantics of the tags for verbs, respectively. Consider, for example,
the tag “nken”. The first letter, “n”, denotes the word class “nafnord” (noun),
the second letter, “k”, denotes the gender “karlkyn” (masculine), the third
letter, “e”, denotes the number “eintala” (singular) and the last letter, “n”,
denotes the case “nefnifall” (nominative case).

To give another example, consider the phrase “fallegu hestarnir stukku”
(the beautiful horses jumped). The corresponding tag for “fallegu” is “ lkenuf”,
denoting adjective, masculine, singular, nominative, weak declension, posi-
tive; the tag for “hestarnir” is “nkfng”, denoting noun, masculine, plural,
nominative with suffixed definite article, and the tag for “stukku” is “sfg3fp”,
denoting verb, indicative mood, active voice, 3-rd person, plural and past
tense. Note the agreement in gender, number and case between the adjective
and the noun, and the agreement in number between the subject and the
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verb (the verb also agrees with the subject in person, but since all nouns
are 3" person by default, the person feature is not overtly expressed in this
case).

A complete description of the tagset can be found in the Appendix B.




Chapter 5

The Tagging System

The tagging system consists of a tokeniser/sentence segmentiser, a morpho-
logical analyser, IceMorphy, a linguistic rule-based tagger, IceTagger and a
trigram tagger, TriTagger. The tokeniser is used for tokenising a stream
of characters into linguistic units, IceMorphy for guessing the tags of un-
known words, and IceTagger and TriTagger for assigning unambiguous tags
to words in text.

Similar to a CG system, our tagging system is linguistic rule-based (ex-
cluding TriTagger). It, however, differs from a typical CG system in mainly
four ways:

e Its main dictionary is automatically derived from the IFD corpus (the
dictionary contains about 60,000 word forms), and is thus far from
extensive. This means that IceMorphy mainly uses information derived
from the IFD corpus. Moreover, the main dictionary has a number of
tag profile gaps, as discussed in Section 5.2.5.

e As discussed in section 5.3.4, the number of constraints (local rules)
are only about 175, instead of in the thousands as is common in CG
taggers. In addition, the tagger uses general heuristics, discussed in
section 5.3.5, as an aid in the disambiguation phase.

e In addition to POS tagging, typical CG systems also tag syntactic
functions.

e The CG framework is designed to be language independent, but mini-
mal effort is made in our system to support language independence.

63
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The development time of our tagging system (excluding TriTagger) was
only 7 man months which can be considered a short development time for
a linguistic rule-based system. The short development time is mainly due
to the emphasis on using heuristics for disambiguation, instead of writing
a large number of rules. Furthermore, the dictionaries used by the system
are (in most cases) automatically derived from the IFD corpus. We are not
aware of other systems like this one, developed in such a short time frame,
that outperform state-of-the-art data-driven methods which use supervised
learning.

In this chapter, we describe each component of the tagging system in
detail.

5.1 Tokenisation

Our tokeniser is used for tokenising input files and converting between differ-
ent file formats.

The tokeniser reads an input file which can have three possible formats:
one token per line, one sentence per line, or an unspecified format. First,
if the input has one token per line (i.e. it has already been preprocessed)
the main task of the tokeniser is sentence segmentation. Secondly, assuming
the input consists of one sentence per line, the task of the tokeniser is to
split each line up to linguistic units (tokens). Third, if the input format is
unspecified (it could for example be a mixture of one token, many tokens
and one sentence per line) the purpose of the tokeniser is, first, to perform
sentence segmentation and, then, to perform tokenisation. The tokeniser can
read input files in one format and produce output files in another format.

The main purpose of the sentence segmentiser is to “decide” when a token
constitutes a full stop (end of an sentence). A sentence is constructed by read-
ing the input file character by character and constructing a character string,
which is returned to the calling program when a full stop is encountered.
The candidates for a full stop are the tokens . ! ¢ : " These characters
are considered full stops if they are the last character of the current line or a
space follows and various special conditions do not hold. Special conditions
occur, for example, when the character is a period which is a part of a known
abbreviation or a part of an ordinal number (e.g. 72. street).

Once sentence segmentation has been carried out, each sentence is split up
into tokens. The task is, thus, to “decide” where one token ends and another
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token starts. Each sentence is read character by character and substrings
of the sentence are matched against various patterns. For example, a word
starts with a letter and can be followed by any letter or digit or a special
character from a predefined set (e.g. the characters “” and “ 7). One of the
complications in producing tokens has to do with the period character, i.e.
it needs to be determined when a period is part of a token. This is similar to
the decision made when encountering a period during sentence segmentation.

5.2 IceMorphy

The unknown word guesser, IceMorphy, was designed to be a stand-alone
module callable from different applications and to be used as an unknown
word guesser in IceTagger. The purpose of IceMorphy is to generate the tag
profile for a given word. This is fulfilled by either i) returning the tag profile
for a known word found in a dictionary, or ii) guessing the tag profile for
an unknown word. Moreover, IceMorphy is able to fill in the gaps of a tag
profile (a gap signifies a missing tag in the profile) for words belonging to
particular morphological (inflectional) classes.

IceMorphy uses a familiar approach for unknown word guessing, i.e. it
performs morphological analysis, compound analysis and ending analysis.
Since morphological analysis (and compound analysis) is more accurate than
ending analysis, it is important to design a system where the main emphasis
is on the former, and the latter is used when morphological analysis fails.

IceMorphy uses a general purpose dictionary, i.e. a dictionary derived
from a tagged corpus. It is, therefore, not dependent on a base-form diction-
ary, as is the case, for example, with morphological analysers based on a
two-level morphology.

5.2.1 The morphological analyser

The first component of the unknown word guesser is the morphological ana-
lyser. It tries to classify an unknown word as a member of a particular
morphological class. A word belongs to a morphological class if the word’s
morphological ending is consistent with the inflection rules of the class. The
current version uses 18 morphological classes for nouns, 5 classes for adjec-
tives and 5 classes for verbs.

Basing the analysis on morphological classes is a common approach. It
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is, for example, used in two German morphological systems which use a
previously compiled stem dictionary for lookup (Lezius 2000, Nakov et al.
2003). However, the morphological analyser of IceMorphy is not dependent
on a stem dictionary. Any general purpose dictionary, in which each word is
tagged using the Icelandic tagset, will do, but the dictionary currently used
is generated automatically from a tagged corpus.

For a given unknown word w, a morphological class is guessed based on
the morphological ending of w. Then, the stem r of w is extracted and
all k£ possible morphological endings for r are generated, resulting in search
strings, s; (i = 1,...,k), such that s; = r + ending;. A dictionary lookup is
performed for s; until a word is found having the same morphological class
as was originally assumed or no match is found.

The morphological analyser tries, first, to classify the unknown word w
as a verb, using the method described above. No matter if it succeeds or not,
it next tries to classify w as a noun or an adjective, but not both. Therefore,
w may be assigned both verb tags and noun/adjective tags.

A similar approach has been taken when automatically inducing rules for
unknown word guessing in the work of Mikheev (1997), i.e. searching the
dictionary for words that share the same stem, but have other morphological
endings. However, the automatic rule induction method used to generate the
rules for a tagger is very dependent on the training lexicon. Understandably,
only rules that can be deduced by the lexicon will be produced. In contrast,
the rules of IceMorphy are not dependent on a training lexicon since they are
compiled using linguistic knowledge!. Another disadvantage with the auto-
matic method is that it is not able to capture vowel mutation (e.g. “kékur”
(cakes, plural) vs. “kaka” (a cake, singular)) which IceMorphy can handle
because it is specifically tailored to Icelandic.

Consider the following example. Let us assume the word “hesturinn” (the
horse; a masculine, singular, nominative case noun with a suffixed definite
article) is an unknown word. Based on the suffix “urinn” the word is assumed
to belong to the morphological class of regular masculine nouns. Conse-
quently, the stem “hest” is extracted and all other inflectional endings for the
stem are generated (“hest-ur”, “hest-", “hest-i”, “hest-s”, “hest-ar”, “hest-a”,
etc.). Hence, search strings, s;, are generated, such that s;—=“hest”+ending;.
A lookup is performed for each s;, and if a lookup is successful for a given

ITo some extent, the rules used by IceMorphy are dependent on a corpus, because a
development corpus was used during development /testing of the rules.
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search string, the corresponding tag(s) is returned.

Subsequently, modifications need to be performed on the tag returned.
Let us assume a lookup is successful for the search string “hesti” (s3) whose
corresponding tag is “nkep”. The fourth letter of a noun tag denotes the
case and, since we assumed a nominative case for “hesturinn”, we need to
change the tag “nkep” to “nken”. Furthermore, the fifth character for noun
tags represents suffixed article and, therefore, the article letter (“¢”) needs to
be added to this tag, resulting in the correct tag “nkeng”.

If the above algorithm does not succeed in finding a morphologically re-
lated word using the ending of the original word as a guideline, then the
following prefix handling is used. A prefix p; (obtained from a hand-written
list of common Icelandic prefixes; (i = 1,...,k)) is prefixed to a given un-
known word w. Thus, search strings, s;, such that s;—=p;+w (i = 1,...,k),
are generated. A dictionary lookup is performed for each s; until a word
is found in the dictionary. If a word is found, then the original word w is
assigned the same tag profile as was found for s;.

The morphological analyser is, however, not flawless. To illustrate, con-
sider what happens when analysing the word “buar” (neighbours). Based
on the morphological ending “r” and the verb “bia” (to live), the analyser
classifies this word as a third (or second) person singular verb (similarity
exists, for example, “ég borda” (I eat), “hann bordar” (he eats); see table
3.8). Unfortunately, the third person singular form for this particular verb
is “byr” because the verb is irregular.

5.2.2 The compound analyser

The second part of the unknown word guesser, the compound analyser, uses
a straight-forward method of repeatedly removing prefixes from unknown
words and performing a lookup for the remaining part of the word. If the
remaining word part is not found in the dictionary it is sent to the morpho-
logical analyser for further processing. If the lookup or morphological anal-
ysis deduces a tag t for the remaining word part, the original word (without
prefix removal) is given the same tag t.

To illustrate, consider the compound word “ngfeddur” (newborn). By
removing the first two letters “ng” (a common Icelandic prefix (new)), a
dictionary lookup is performed for the substring “feddur”. If feddur” is
found in the dictionary with tag ¢, the word “ngfeddur” is assigned the same
tag t. Otherwise, “feddur” is sent to the morphological analyser for further
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processing.

As is the case for the the morphological analyser, the compound analyser
can make mistakes. Consider, for example, the past participle “upprisinn”
(risen up). The compound analyser will remove the prefix “upp” and per-
form a lookup for the remaining word “risinn”, which, incidentally, is the
masculine, singular, nominative noun “risi” (a giant) with a suffixed definite
article. Thus, the analyser incorrectly classifies the word “upprisinn” as a
noun.

5.2.3 The ending analyser

The third part of the unknown word guesser, the ending analyser, is called if
an unknown word can be deduced neither by morphological analysis nor by
compound analysis. This component uses a hand-written endings dictionary
along with an automatically generated one. The former, which is consulted
first, is mainly used to capture common endings for adjectives and verbs, for
which numerous tags are possible. By only using an automatically generated
list of endings from a tagged corpus, it is almost certain (unless the tagged
corpus is enormous) that not all possible tags for given adjectives will be
deduced.

The automatically generated ending dictionary is constructed in the follow
ing manner. From a tagged corpus, all possible word endings of length 1 to
5 are collected together with the corresponding tags (the minimum length
of the remaining substring is 2 characters). We assume that the endings are
different for capitalised words vs. other words and, therefore, produce two
endings dictionaries, one for proper nouns and another for all other words.
Endings that appear with less frequency than some specific threshold (10 in
our case) are filtered out.

As pointed out earlier, ending analysis is less accurate than morpho-
logical /compound analysis. For example, for the word “bledillinn” (the sheet),
our ending analyser proposes the four tags “nkeng nkeog lkensf lkeosf”,
based on the “llinn” ending. However, only the first tag is correct for this
particular word.

5.2.4 Default handling

If none of the above analysers is able to produce a tag profile for an unknown
word, then a default mechanism is used.
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Number tokens receive either the tag “¢p” (percentage) or “to” (cardinal).

Other unknown words, which have not been assigned a tag by the previ-
ous modules, are considered i) common nouns (if not capitalised) and receive
the tags “nhen_nheo nhfn_nhfo” (noun, neuter, singular/plural, nomina-
tive/accusative), or ii) proper nouns (if capitalised) and receive the tags
“nken-m_ nkeo-m_ nkep-m_ nkee-m” (noun, masculine, singular, nominative /
accusative/dative/genitive, person name).

5.2.5 Tag profile gaps

An important feature of IceMorphy is its handling of tag profile gaps. A tag
profile gap arises when a particular word, listed in the dictionary, has some
missing tags in its profile (set of possible tags). This, of course, presents
problems to a disambiguator, since its purpose is to select one single correct
tag from all possible ones. For each noun, adjective or verb of a particular
morphological class, IceMorphy is able to fill in the gaps for the given word.

To illustrate this functionality, let us consider three examples. In all of
them, we will use a dictionary D (stating word forms and corresponding tag
profiles), automatically derived from the IFD corpus.

First, consider the noun “afgreidslu” (handling). When this word form
is looked up in D, only the tag “nveo” is found (denoting noun, feminine,
singular, accusative). Based on the “u” morphological suffix (the stem is
“afgreiosl”) and the accusative case of the tag, IceMorphy assumes the word
belongs to a particular morphological feminine noun class, in which singular
accusative, dative and genitive cases have the same word form. Consequently,
IceMorphy generates the correct missing tags: “nvep” and “nvee”.

Second, consider the adjective “leyndarddmsfulla” (mysterious). The lookup
into D returns the tag profile “lkepuf lhenuf” (these tags denote adjective,
masculine, singular, dative, weak declension, positive; and adjective, neuter,
singular, nominative, weak declension, positive, respectively). As stated in
section 5.2.3, the ending analyser is used to capture common endings for
adjectives. The word “leyndardomsfulla” is therefore sent to the ending ana-
lyser, which (based on the “fulla” ending) deduces eight other tags for the
word. The resulting correct tag profile is: “lkepuf [henvf lveosf lkfosf lkeovf
lkeevf lvenuf [heovf lhepuf lheevf”

Finally, consider the verb “skrikva” (lie), whose tag profile (found in D)
is “sfg3fn”. Based on the morphological suffix ”a” (the stem is “skrikv”) and
this given tag, IceMorphy assumes that this word belongs to a particular
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morphological verb class, in which the given word form is the same for i)
indicative, active, third person, plural, present tense, ii) indicative, active,
first person, singular, present tense, and iii) the infinitive. Thus, the two tags
“sfglen_sng”, are added to the tag profile, resulting in “sfg3fn_sfglen sng”.

The filling of tag profile gaps has a significant effect on the overall tagg-
ing performance. During evaluation, we found the overall average tagging
accuracy increase by 0.85% when tag gap filling was used.

Note that, the above tag profile gap filling can of course be applied to
a dictionary in a pre-processing step (off-line), instead of being run dynam-
ically (on-line) during each lookup. On the other hand, the dynamic be-
haviour makes the system more flexible, since IceMorphy can be used with
new dictionaries without having to worry about whether gap filling has been
applied beforehand on the dictionary or not.

Moreover, this on-line vs. off-line choice for profile filling does not have
any impact on the tags produced for a given dictionary D. The reason is
the following. First, the exact same method (programming code) is used for
on-line and off-line gap filling. Second, the profile filling mechanism for a
word w in D, is only dependent on the current tag profile for w, but not on
the profile for any other word. Hence, the fact that a word w’ in D has had
its profile already filled has no effect on the profile filling for w. Moreover, if
w in D has already been “filled” off-line, then the on-line filling mechanism
will simply try to add the exact same tags to the profile for w as were added
off-line (adding duplicate tags has no effect).

5.3 IceTagger

IceTagger is a linguistic rule-based tagger (LRBT), designed for tagging Ice-
landic text?.

In chapter 7, we will discuss previously published tagging results for Ice-
landic text — the tagging accuracy of the best performing DDT is only about
90.4%, when tested against the IFD corpus (Helgadottir 2004). Apart from
the desire to improve this relatively low accuracy?, the following discussion
motivated us to develop a LRBT for tagging Icelandic text.

2As apposed to a data-driven tagger (DDT) trainable on different languages.
31t is a good research methodology to continue working on a problem from where
someone else left off.
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5.3.1 Motivation

It has been argued that although trigram taggers have performed well for
English the same might not necessarily be true for morphologically rich lang-
uages for which large tagged corpora are not available (Schmid 1995). The
problem is data sparseness, i.e. the size of the tagset in relation to the size
of the training data. 639 different tags occur in the [FD corpus and, even
though the size of the training data (the corpus) is moderately large or about
590,000 tokens, the tagset size is very large in relation to the size of the train-
ing data. For example, 639 tags mean that 639% = 261 million contextual
parameters need to be estimated for a trigram tagger. Hence, on the average,
only about 0.002 tokens are available per parameter!

A LRBT is not as sensitive to this data sparseness because its rules are
not automatically derived from a tagged corpus, but, rather, hand-crafted
using linguistic knowledge. Indeed, the rules are, to a certain extent, also
dependent on a corpus — because they are compiled by examining phenom-
ena extracted from it — but to a much lesser degree than a tagger based on
a data-driven method.

Moreover, some of the errors made by a data-driven tagger are due to the
limited window size used for disambiguation (e.g. three words in the case of
a trigram tagger). Contrastingly, a LRBT can disambiguate focus words on
the basis of words or tags which occur anywhere in the sentence, not only in
the nearest neighbourhood.

Hence, one might expect that a carefully constructed LRBT should per-
form better than a data-driven tagger when tagging a morphologically com-
plex language using a large tagset. The aim of developing IceTagger was,
thus, to test the following research hypothesis: Due to data sparseness, a
higher tagging accuracy can be obtained by a linguistic rule-based
tagger when tagging Icelandic text, than achieved by a state-of-
the-art data-driven tagger. Moreover, this can be achieved without
using an enormous effort in development of the tagging system.

Disambiguation rules can be developed using the fact that a limited set
of word forms is responsible for a large part of the total ambiguity. Using
the IFD corpus, we found that the 30 most frequent ambiguous word forms
account for 50% of the total ambiguity, and the 153 most frequent ambiguous
word forms are responsible for 67% of the total ambiguity*. Interestingly, 21

1Total ambiguity = Y i, freq(w;) = tags(w;), where freq(w;) is the frequency of w;
in the given corpus and tags(w;) is the number of possible tags (i.e. the size of the tag
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out of the 30 most frequent word forms (i.e. 70%) are pure function words
or pronouns, i.e. these words do not belong to any other word classes than
adverbs, conjunctions, the infinitive marker, prepositions or pronouns.

For French, it has been found that the 16 most frequent ambiguous word
forms account for 50% of the total ambiguity and 97 most frequent ambiguous
word forms are responsible for 67% of the total ambiguity (Chanod and
Tapanainen 1995). Using this knowledge, one can concentrate on writing
disambiguation rules for the most frequent ambiguous word forms.

Instead of relying only on disambiguation rules (which we call local rules;
see Section 5.3.4), we assume that development time can be shortened and
accuracy increased by using heuristics (see Section 5.3.5). The purpose of
the heuristics is to tag grammatical functions and prepositional phrases, and
use this information to force feature agreement where appropriate. The idea
is that the use of the heuristics minimises the need to spend time on writing
a large set of local rules.

5.3.2 Ambiguity and disambiguation

IceTagger consists of two phases: introduction of ambiguity (lexical phase)
and disambiguation. In the former phase, the tag profile for each word,
both known words (for which tags are sorted by descending frequency) and
unknown words, is introduced. This is achieved with the help of a dictionary,
automatically derived from the IFD corpus, and the unknown word guesser,
IceMorphy.

Each word in a sentence to be tagged is looked up in a dictionary. If the
word exists, i.e. the word is known, the corresponding tag profile for the word
is returned. In the case of a tag profile gap, the unknown word guesser of
IceMorphy is used for filling in the missing tags. If the word does not exist
in the dictionary, i.e. the word is unknown, IceMorphy is used for guessing
the tag profile. At the end of this phase, a given word of a sentence can have
multiple tags, i.e. ambiguity has been introduced.

The purpose of the disambiguation phase is to eliminate as many in-
appropriate tags as possible from each word. The main characteristic of
the disambiguation part of IceTagger is the use of only a small number of
local rules (about 175) along with heuristics that perform further global
disambiguation based on feature agreement. If, after local and global dis-

profile) for w;. Only ambiguous words are taken into account.
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ambiguation, a word is still not fully disambiguated, the most frequent tag,
in the tag profile for the word, is selected. It can be argued that IceTagger
is thus a combination of a rule-based tagger and a base tagger®.

In the following sections, we describe the individual parts of the dis-
ambiguation phase. As will be described in section 5.5, the linguistic know-
ledge built into the disambiguation phase was developed using 10% of the
IFD corpus. We call this subcorpus the development corpus.

5.3.3 Idioms and phrasal verbs

The first step of the disambiguation phase is to identify idioms, i.e. bi-
grams and trigrams which are always tagged unambiguously. Idioms are
identified by examining lexical forms of adjacent words. The list of idioms
was constructed semi-automatically in the following manner. First, we ex-
tracted automatically all trigrams in the IFD corpus that occurred at least
ten times with the same tag sequence. Additionally, we hand-constructed a
list of frequently occurring bigrams tagged unambiguously, by examining the
development corpus.

The second step is to identify phrasal-verbs, whose words are adjacent
in text. An Icelandic phrasal verb is a verb-particle pair (like “fara t”
(go out)) where the particle is an adverb (because it is associated with a
particular verb), but not a preposition. An automatically generated lexicon
(from the IFD corpus) is used for recognising phrasal verbs.

5.3.4 Local rules

The third step of the disambiguation phase is the application of local elimina-
tion rules which perform disambiguation based on a local context (a window
of 5 words; two words to the left and two words to the right of the focus
word). The purpose of a local rule is to eliminate inappropriate tags from
words. This reductionistic approach is common in rule-based taggers, and is,
for example, used in CG systems.

In principle, the local rules are unordered. The firing of a rule is, however,
dependent on the order of the words in a sentence. A sentence to be tagged is
scanned from left to right and all tags of each ambiguous word are checked in a
sequence. The tag profile for each (known) word is sorted in descending order

5 A base tagger always selects the most frequent tag for each word.
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of frequency and therefore the most frequent tag for each word is checked first.
Depending on the word class (the first letter of the tag) of the focus word,
the token is sent to the appropriate disambiguation routine which checks a
variety of disambiguation constraints applicable to the particular word class
and the surrounding words. At each step, only a single tag for the focus
word is eliminated. This iterative process continues until the application of
the rules do not result in a tag being eliminated in the given sentence.

The rules are written in a separate file. A Java-like syntax is used and
the rules are compiled to Java code. The format of a local rule is:

RULE <condition>;

A <condition>> is a boolean expression, whose individual components
can refer to lexical forms or individual characters (word class/morphological
features) of tags. If <condition> is true, then the tag in question for the
focus word is eliminated. Let us now consider a couple of examples of local
rules.

First, consider two rules which apply to preposition tags:

1. RULE nextToken.isOnlyVerbAny();

2. RULE currToken.lexeme.equalsIgnoreCase("um") AND
nextToken.isNumeral();

In the first rule, the preposition tag is eliminated if the following token
(nextToken) has only verb tags (isOnlyVerbAny()). To exemplify, consider
the following sentence part: “vid vorum ” (we were). The word “vid” can
have the following five tags: “ao_ap fplfn_aa_nkeo”. These tags denote a
preposition governing the accusative; a preposition governing the dative; a
first person, plural, nominative personal pronoun; an adverb; and a mascu-
line, singular, accusative noun, respectively. Since the following word is a
verb, “vorum”, this rule eliminates preposition tags in this context, leaving
only the three tags “fpifn_aa_nkeo”.

The second rule refers to the lexical from of the current word. This rule
applies, for example, to phrases like “um 1930”. The word “um” has the
tag profile “ao_aa” (denoting a preposition governing the accusative and an
adverb, respectively). The preposition tag does not apply when a numeral
follows the word “um”, and the above rule thus eliminates the preposition
tag.
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Secondly, consider two rules which apply to noun tags:

1. RULE prevToken.isOnlyWordClass(PREP) AND
Itag.caseMatch(prevToken.getTags());

2. RULE prevToken.isOnlyWordClass(DEMPRONOUN) AND
prevToken.isOnlyCase(NOMINATIVE) AND
Itag.isCase(NOMINATIVE) ;

The first rule ensures that a case agreement holds between a preceding
preposition tag (prevToken.isOnlyWordClass(PREP)) and the current noun
tag. Thus, if the current tag does not agree in case with the preceding prepo-
sition (!tag.caseMatch(prevToken.getTags()), then this rule will eliminate the
noun tag (assuming it is not the only remaining tag). To illustrate, consider
the following preposition phrase: “i bordid” (in table). Let us assume that at
a particular point in the disambiguation phase, the tag profile for the prepo-
sition “7” is “a0” (denoting a preposition governing the accusative) and the
tag profile for the noun “bordid” is “nheog nheng” (denoting neuter, singu-
lar, accusative/nominative, with suffixed definite article). Then the above
rule will eliminate the second tag of the noun.

The second rule eliminates oblique case tags (!tag.isCase(NOMINATIVE))
of a noun when the preceding word is a demonstrative nominative pronoun
(prevToken.isOnlyWordClass(DEMPRONOUN) AND .. .). For example, for
the phrase “su vist” (that stay), this rule eliminates the last two of the three
possible tags, “nven_nveo nwvep” (nominative, accusative and dative) for the
noun “wvist” because the demonstrative pronoun “su” is in the nominative case
(thus enforcing case agreement).

A number of functions exists for the rule writer to use on tokens and tags

to build <condition>. Some of the most useful functions are:

o token.isWordClass(aWordClass): Returns true if token has a tag de-
noting the word class a WordClass.

o token.isOnlyWordClass(aWordClass): Returns true if token has only
tags denoting the word class a WordClass.

o token.isCase(aCase): Returns true if token has a tag with the case
feature aCase.

e token.isOnlyCase(aCase): Returns true if token has only tags with the
case feature aCase.
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tag.isCase(aCase): Returns true if tag has the case feature aCase.

token.caseMatch(aToken): Returns true if token agrees in case with
any tag of the token aToken

tag.caseMatch(aTagProfile): Returns true if tag agrees in case with any
tag in the tag profile aTagProfile

token.genderNumberCaseMatch(aToken): Return true if token agrees
in gender, number and case with any tag of the token aToken.

token.personNumberMatch(aToken): Return true if token agrees in per-
son and number with any tag of the token aToken.

token.isOnlyVerbAny(): Returns true if token has only tags denoting
verbs.

token.isVerbActive(): Returns true if token has a tag denoting a verb
and the active feature.

token.isVerbSubjunctive(): Returns true if token has a tag denoting a
verb and the subjunctive feature.

token.isVerbInfinitive(): Returns true if token has a tag denoting a
verb and the infinitive feature.

token.isVerbPastParticiple(): Returns true if token has a tag denoting
a verb and the past participle feature.

token.isVerbSupine(): Returns true if token has a tag denoting a verb
and the supine feature.

token.isAdjectivePositive(): Returns true if token has a tag denoting
an adjective and the positive feature.

token.isAdjectiveComparative(): Returns true if token has a tag denot-
ing an adjective and the comparative feature.

token.isAdjectiveSuperlative(): Returns true if token has a tag denoting
an adjective and the superlative feature.

token.isPunctuation(): Returns true if token has a tag denoting a
punctuation.
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o token.lezeme.equalslgnoreCase(aString): Returns true if the lexeme of
the tokens equals (ignoring case) the string aString.

o token.lezeme.endsWith(aString): Returns true if the lexeme of the to-
kens ends with the string aString.

5.3.5 Heuristics

Once local disambiguation has been carried out, each sentence is sent to
a global heuristic module. The heuristics are a collection of algorithmic
procedures whose purpose is to tag grammatical functions and prepositional
phrases (PPs), and to force feature agreement where appropriate. We call
these heuristics global because, when disambiguating a particular word, a
heuristic can refer to another word which is not necessarily in the immediate
neighbourhood. Similar heuristics to those described below, may be applied
to other morphologically complex languages.

Before the heuristics are applied, each sentence is partitioned into clauses
using tokens like comma, semicolon and coordinating/relative conjunctions
as separators (care is taken not to break up enumerations into individual
parts). The heuristics then repeatedly scan each clause and perform the
following in order:

1. mark PPs

2. mark verbs

3. mark subjects

4. force subject-verb agreement
5. mark objects

6. force subject-object agreement
7. force verb-object agreement

8. force nominal agreement

9. force PP agreement
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We will now consider each heuristic above in turn as well as briefly de-
scribe other miscellaneous heuristics. Recall that, before the heuristics are
run, local rules have been applied and the tag profile for each known word is
sorted by descending frequency.

We will use the following main illustrative sentence: “gamli madurinn
bordar kalda sipu med mjog goori lyst” (old man eats cold soup with very
good appetite)®. After introduction of ambiguity and the application of local
disambiguation rules by Ice Tagger, the words of this sentence have the follow-
ing tags:

(1) gamli/Tkenvf madurinn/nkeng bordar/sfg3en sfg2en
kalda/Thenvf lkfosf lveosf

lkepvf lhepvf lheovf lheevf
sipu/nveo _nvep nvee med/ap aa
mjig/aa géori/lvepsf lyst/nvep nveo nven’

5.3.5.1 Marking prepositional phrases

The first heuristic searches for words, in the current clause, that have a
preposition tag as their first (i.e. most frequent) remaining tag. Each such
word is assumed to be a preposition and therefore all non-prepositional POS
tags for the word are removed. Additionally, the word is marked with a PP
tag. Nominals following the assumed preposition are marked with a PP tag
as well, if there is a case feature agreement match between the nominals and
the preposition.

In (1), each word (with the exception of the adverb) in the PP “med mjdg
goori lyst” is marked with a PP tag, resulting in the following POS and
syntactic tags:

(2) med/ap PP mjiog/aa goori/lvepsf PP
lyst/nvep nveo nven PP
5.3.5.2 Marking verbs

When marking verbs in the current clause, words are searched that have a
verb tag as their first remaining tag. Each such word is assumed to be a verb

When translating examples to English we use word by word translation.

"sfg3en/sfg2en: verb, indicative, active, 3"?/2"? person, singular, present tense., ab:
preposition governing dative, aa: adverb. See table 4.5 for the semantics of the noun and
the adjective tags.
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and therefore all non-verb POS tags for the word are removed. Each verb
found is marked with a functional verb tag VERB.
In (1), “bordar” is marked with the tag VERB.

5.3.5.3 Marking subjects of verbs

The third heuristic marks the single closest subject of a given verb, i.e. in
most cases the head (a noun) of a subject noun phrase (NP). Since Icelandic
word order is relatively free, both “Jon gaf eina bok” (John gave one book)
and “eina bok gaf Jon” (one book gave John) are possible. The heuristic thus
assumes that subjects can be found either preceding or following the verb.

For each verb v, already marked with a VERB tag, the tokens are first
scanned starting from the left of v (since SVO order is more likely than OVS
order). If the immediate token to the left of v is a relative conjunction or
a comma, then it is assumed that the subject can be found in the previous
clause (see below). Otherwise, if the current token is a nominal (not marked
with a PP tag) and it agrees with v in person and number, it is marked with
a functional tag SUBJ — if not, the scanning continues (to the left) until
the beginning of the clause is reached.

If no subject candidate is found to the left of v, a search continues using
the next two tokens to the right of v (it is thus assumed that subjects appear-
ing further away to the right are unlikely), using the same feature agreement
criterion as before.

If at this point a subject candidate has still not been found, a search is
performed in the previous clause, and the first nominal found is then marked
with a SUBJ tag (if it is not already marked as an object of a verb in an
earlier clause).

In (1), “madurinn” is marked as a subject because it agrees with the
verb “bordar” in person and number (notice that the modifier “gamli” is not
marked — the heuristic described in section 5.3.5.8 will force an agreement
between modifiers and heads of NPs), resulting in the following:

(3) gamli/Ikenvf madurinn/nkeng SUBJ bordar/sfg3en sfg2en VERB

5.3.5.4 Forcing subject-verb agreement

Once verbs and subjects of verbs have been identified, feature agreement is
forced between the respective words.
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In (3), this means removing the second person tag from the verb “bordar”
because the subject “madurinn” is third person. Moreover, if the subject is
in the nominative case (which is generally the case except for subjects of
special verbs that demand oblique case subjects) all non-nominative cases
are removed from the subject.

5.3.5.5 Marking objects of verbs

This heuristic marks direct objects and verb complements. Both types receive
the same functional tag OBJ. For each verb already marked with a VERB
tag, a search is performed for objects following the verb or, if the search is
unsuccessful, for objects preceding the verb.

Objects can be nominals (direct objects or complements) or past partici-
ple verbs (only complements). When searching for nominals, words which
have already been marked with PP or SUBJ tags are ignored. Only the last
word in a sequence of nominals is marked. Effectively, in most cases, this
means that only the head of an NP is marked as an object. For the purpose
of enforcing feature agreement between adjacent nominals, marking the head
is sufficient because, as previously stated, internal NP agreement is forced
by the heuristic described in section 5.3.5.8.

In (1), the noun of the NP “kalda sipu” is marked as an object and the
whole sentence now has the following tags:

(4) gamli/Tkenvf madurinn/nkeng SUBJ bordar/sfg3en VERB
kalda/Thenvf lkfosf lveosf

lkepvf lhepvf lheovf lheevf

sipu/nveo _nvep nvee OBJ med/ap aa PP

mjdg/aa goori/lvepsf PP lyst/nvep nveo nven PP

5.3.5.6 Forcing subject-object agreement

In Icelandic, feature agreement is needed between a subject and a verb
complement. For example, in sentences like “Jon er fallequr” and “Maria
er falleg” (John/Mary is beautiful), the complement adjusts itself to the sub-
ject. Additionally, a subject-object agreement is needed where the object is
a reflexive pronoun, e.g. “Jon meiddi sig” (John hurt himself).

This heuristic forces both gender and number agreement between a sub-
ject and a complement, and between a subject and an object in the form of
a reflexive pronoun.
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5.3.5.7 Forcing verb-object agreement

Icelandic verbs govern the case of their direct objects which is, generally,
either accusative or dative. However, a verb complement is always in the
nominative case. The correct case of a direct object must be “learnt” for
each verb because no general rule applies. For example, “Jon gaf bokina”
(accusative object; John gave book) is correct but not “Jdn henti bokina”,
but rather “.Jon henti bokinni” (dative object; John threw book).

A lookup table, automatically derived from the IFD corpus, is used for
determining the correct case for direct objects (this table, thus, provides
partial verb subcategorisation information). A lookup is performed for a
given verb lexeme and the correct case is returned. Tags of the associated
object that do not include the correct case are then removed. If the lookup
is unsuccessful, and the marked object is not a complement, then only the
nominative case tags are removed from the object®.

In (4), the verb “bordar” demands an accusative object (found with a
lookup) and, as a result, all non-accusative case tags are removed from the
object “supu”. After this removal, the sentence part “bordar kalda sipu”,
thus, contains the following tags:

(5) bordar/sfg3en VERB
kalda/lhenvf lkfosf lveosf
lkepvf lhepvf lheovf lheevf
sipu/nveo OBJ

5.3.5.8 Forcing agreement between nominals

Agreement in gender, number and case between a noun and its modifiers is
a characteristic of Icelandic NPs. This heuristic forces such an agreement
in the following manner. Starting at the end of a clause, it searches for a
nominal n, i.e. a head of a NP. If a head is found, the heuristic searches for
modifiers to the left of n (care must be taken not to step inside a PP phrase
if n itself is not part of that PP phrase). Agreement is forced between the
head and its modifiers by removing inappropriate tags from either word.

In (5), the heuristic removes the six tags lhenvf lkfosf lkepvf lhepvf
__lheovf lheevf from the adjective “kalda”, in order to force gender, num-

8In this case, as discussed in Section 5.3.5.10, the most frequent tag of the objects is
used.
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ber and case agreement with the tags of the following noun “supu” (fem-
inine, singular, accusative). Additionally, this heuristic removes the tags
nveo nven from the noun “lyst” (see (2)) because of the feature agreement
with the preceding adjective “godri”. Notice that an agreement already holds
in the first NP, “gamli madurinn” (see (3)). After these tag eliminations, the
final disambiguated sentence looks like:

(6) gamli/Ikenvf madurinn/nkeng SUBJ bordar/sfg3en VERB
kalda/1veosf sipu/mveo OB.J
med/ap PP mjiog/aa goori/lvepsf PP lyst/nveb PP

There are some special cases regarding adjacent nominals that need to be
accounted for. For example, when two nouns are adjacent to each other, one
of them is, generally, in the genitive case, e.g. “fjilskylda mannsins(genitive)”
(family man’s) or “vesalings(genitive) konan” (poor woman). This heuristic
makes sure to remove non-genitive tags from a noun where appropriate.

5.3.5.9 Forcing prepositional phrase agreement

The last main heuristic forces feature agreement in preposition phrases. Two
things need to be accounted for. First, when a preposition has two possible
case tags, i.e. accusative and dative tags (which is common for prepositions
like “d, eftir, fyrir, i, med” (on, after, for, in, with)), the heuristic removes
one of the case tags based on the case of a following word in the PP.

If the following word does not unambiguously select the correct tag for
the preposition then a search is performed for a preceding verb. A verb-
preposition pair usually unambiguously determines the correct case of the
preposition®. For example, in the sentence “Jon settist d plitu” (John sat-
down on board) the verb-preposition pair “settist ¢” determines an accusative
case for the preposition “d”. In contrast, in the sentence “Jon ld d plétu”
(John lay on board) the pair “ld ¢” determines a dative case for the prepo-
sition “d”. In this case, a lookup table, automatically derived from the IFD
corpus, is used for determining the correct case of the preposition. A lookup
is performed for a given verb-preposition lexeme, the correct case returned
and the conflicting tag of the preposition is removed. If the lookup is unsuc-
cessful the most frequent tag of the preposition is used.

9A verb which is followed by a preposition (phrase) is called a prepositional verb.
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Secondly, once the correct preposition case tag is determined, a case agree-
ment between the preposition and the rest of the words in the PP is forced.
This is straight-forward, since the correct case is now known and the words
to search for have already been marked by the heuristic described in section
5.3.5.1.

This heuristic does not have any effect on our example sentence because
the sentence is, at this point, already fully disambiguated.

5.3.5.10 Other miscellaneous heuristics

In addition to the above main heuristics, specific heuristics are used to choose
between supine and past participle verb forms, infinitive or active verb forms,
and ensuring agreement between reflexive pronouns and their antecedents.

Finally, for words that still have not been fully disambiguated, the default
heuristic is simply to choose the most frequent tag. Consequently, IceTagger
always performs full disambiguation.

5.3.6 Special verbs

Some Icelandic verbs have special characteristics. IceTagger keeps auxiliaries,
the verbs “vera/verda” (be/become), and verbs that demand non-nominative
case subjects in a special (base) dictionary (all possible word forms for these
verbs are included in the dictionary). These verbs are marked in a special
way to facilitate correct disambiguation decisions when encountered. The
special marking, for example, includes information on which case a verb
demands for its (non-nominative case) subject. As another example, tags
for word forms for the verbs “vera/verda” are marked with a special code,
which tells the tagger to expect a predicative nominative for this verb. This
mechanism simplifies rule writing, because rules do not need to be written for
each word form of the given verb. Instead the rules can refer to the special
codes included in the corresponding tags.

5.4 TriTagger

We have re-implemented (in Java and Perl) the functionality of the TnT
tagger (see section 2.3.4.1), and hereafter refer to this tagger as TriTagger.
The difference between these two taggers is that TriTagger uses the same
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list of idioms as IceTagger, and the special dictionary described above as a
backup dictionary. We use this tagger for integration with IceTagger (see
section 7.3).

TriTagger is a statistical tagger based on an HMM. The tagger is data-
driven, i.e. it learns its language model from a pre-tagged corpus. TriTagger
uses the tokenisation method described in section 5.1. The algorithm used
by the tagger is as follows (consult (Brants 2000) for full details):

Known words are handled in the manner described in section 5.3. Since
TriTagger is language independent, it has no knowledge of Icelandic morpho-
logy. Suffix analysis is, therefore, the default method for guessing possible
tags for unknown words.

On the other hand, since IceMorphy already exists, it can be called from
within TriTagger. In that case, if IceMorphy can use morphological /compound
analysis (as opposed to ending analysis or default handling) to guess tags for
an unknown word w, then TriTagger will use those tags, with lexical prob-
abilities, p(wlt;), j = 1...n, set to 1/n. For other unknown words, suffix
analysis is carried out.

The probabilities of the model are estimated from a training corpus using
maximum likelihood estimation. Therefore, TriTagger needs to be trained
on a pre-tagged corpus before it can be used.

5.5 The development phase

In the beginning, we decided to implement the system using the Java pro-
gramming language. There were mainly two reasons for this decision.

First, the main advantage of the Java language is the portability of appli-
cations, i.e. since the language is interpreted by the Java Virtual Machine
(JVM) at run-time, re-compilation of source code is not necessary when the
applications are executed on different platforms.

Secondly, in recent years, Java has been used to a greater extent in the
NLP community. For example, the widely used GATE (General Architecture
for Text Engineering) system (Cunningham 2000) is implemented in Java.
In our view, this increased usage of Java in NLP will simplify the integration
of Ice NLP with other NLP systems.

Logically, we started by implementing the tokeniser, in which various
scenarios needed to be accounted for, as described in section 2.2.
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In the next step, IceMorphy and IceTagger were implemented in par-
allel by an iterative process. This process consisted of writing local rules
and heuristics (for IceTagger) and procedures for morphological and ending
analysis (for IceMorphy), with the purpose to minimise the error rate when
tested against the tenth test corpus (our development corpus) of the IFD
corpus. At each step the most serious errors were corrected, by additions
and /or modifications to the source code, the errors examined, and the pro-
cess started over again. The local rules are not part of the source code itself,
but are instead kept in a separate file, modifiable by a user. A Java-like code
is used to write rules and a rule compiler (developed by us) is then used to
transform the rule code to Java code.

Even though the tenth corpora was used for development and testing, care
was taken to implement general linguistic rules that would be applicable to
any type of Icelandic text. Nevertheless, it is very likely that such a process
will result in a lower tagging accuracy when tested against text not used for
development, as we will demonstrate in section 7.2.5.

In the third step, we implemented TriTagger in Java. As discussed in
section 5.4, the tagger is a re-implementation of the TnT tagger.

Thus, the whole tagging system is written as a collection of Java classes
— totalling about 17,000 lines of source code.

5.6 Discussion

As discussed in section 2.3.5, linguistic rule-based methods are developed
with the purpose of tagging a specific language using a particular tagset. This
fact makes it relatively easy to tailor the method to the language at hand,
which, in contrast, can be difficult to do when using data-driven language
independent methods. This advantage does indeed hold for our linguistic
rule-based system, specifically IceMorphy and IceTagger.

On the other hand, the advantage of our system is also its main disadvan-
tage. Our system was developed for tagging a specific language, Icelandic,
and the emphasis was not to make it usable for tagging other languages. Our
system is thus not a language independent formalism like, for example, the
CG framework.

A natural question to ask is then: Why did we not use CG for building
our linguistic rule-based system? There are mainly two reasons. First, ex-
perience has shown that the construction of a CG for a particular language
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is a demanding and a time-consuming task. This is mainly due to the effort
needed to construct a morphological analyser/lexicon using the framework
of two-level morphology, and, additionally, due to the number of constraints
needed for acceptable performance. This would probably not be suitable for
a PhD project, and, moreover, the degree of originality would be question-
able. We wanted to try to improve the tagging accuracy of Icelandic text by
developing a LRBT without using an enormous time for development. Sec-
ondly, we wanted to investigate the effectiveness of mixing local rules with
heuristics (global rules), which is not possible in CG.

Despite the fact that our tagging system was designed to tag Icelandic
text using a particular tagset, some effort has been made to support lang-
uage and tagset independence. The local rules are written (using Java-like
syntax) in a separate file, which is compiled into Java code. The rules are
thus separated from the program code. In section 5.3.4, we described the
format of the rules and listed some of the functions available for use by the
rule writer. The rule language is a kind of an application programming in-
terface (API) for the rule writer, and the underlying natural language being
processed is completely “hidden”. If, for example, the underlying language
does not have a case feature then the rule writer would simply not use the
functions available that deal with the case feature, like token.isCase(aCase),
token.caseMatch(aToken), etc.

Our system currently uses the main (large) Icelandic tagset. Functions
that query tags or individual features of tags are encapsulated in a sepa-
rate Java class, the Tag class. Making the system work for another tagset
(for Icelandic or any other language) is thus a matter of changing the Tag
class (and possibly adding new member functions to it) and recompile the
system. It can thus be argued that our local rule formalism is partly lang-
uage independent. Of course, a new morphological analyser (unknown word
guesser) would be needed in the system if it were going to be used for another
language.

In contrast, the heuristics used by our system are not language indepen-
dent. They are a collection of algorithmic procedures whose purpose is to
tag grammatical functions and prepositional phrases, and to force feature
agreement where appropriate. The procedures are very much dependent on
the word order in Icelandic and the specific feature agreement rules inside
phrases and between words. Tailoring the heuristics to work for another
language would thus be a significant task.

It is important to note the difference between our heuristics and what is
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called “heuristic disambiguation constraints” in CG. First, the latter is used
as “riskier constraints”, but are formulated just like ordinary constraints (see
(Karlsson et al. 1995) for a thorough description), whereas our heuristics
are totally different from ordinary (local) constraints. The heuristic dis-
ambiguation constraints are, however, as in our system, applied only when
the ordinary (local) constraints find no more applications. Secondly, heuristic
disambiguation constraints in CG work just on the small share of ambiguity
left after “safe” disambiguation, whereas our heuristics actually work on a
large share of the ambiguity left after the application of (relatively few) local
rules. The default heuristic in our system, which simply chooses the most
frequent tag from the remaining ones for each token, is a kind of a “riskier
constraint”, which is applied on the small amount of ambiguity left after
application of the local rules and the general heuristics'C.

108ych probabilistic heuristics can be implemented as an add-on in CG.




Chapter 6

The Parsing System

Our parsing system consists of a shallow annotation scheme and a shallow
parser, based on finite-state techniques, called IceParser, for parsing Icelandic
text!. The parser accepts POS-tagged text as input and returns as output
the same text syntactically annotated with brackets and labels, denoting
constituent structure and grammatical functions.

This chapter is organised as follows. In Section 6.1, we describe the
motivation for our work on the shallow parser. Section 6.2 describes our
parsing scheme and, in Section 6.3, we describe the implementation of the
parser.

6.1 Motivation

Our motivation for developing a finite-state parser for the Icelandic language
is the following. First, as we discussed in Section 2.4.7, there is a scarcity
of available parsers for the Icelandic language. One full parser has been de-
veloped that is not publicly available. This lack of parsing tools has become
a hindrance to further research and development work on NLP for the Ice-
landic language. The development of IceParser is a step towards the goal of
developing and making basic NLP units available for the research community.

Secondly, we have previously mentioned (see Section 2.4.2) that in many
NLP applications it can be sufficient to analyse sentence parts or phrases
instead of performing a full parse. Partial parsing is, for example, sufficient

!This research was funded in 2006 by the Icelandic Research Fund under contract
“Shallow parsing of Icelandic text”.
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in systems for information extraction, some form of grammar correction,
question-answering and shallow corpus annotation. Moreover, finite-state
parsers are robust and efficient.

Thirdly, no treebank exists for Icelandic, and, thus, using data-driven
parsing methods is currently not an option.

Fourth, despite the fact that Icelandic has a relatively free word order,
its rich case system should help during the parsing process. In particular,
the case feature should help when writing patterns for grouping words into
phrases and identifying syntactic functions.

Lastly, we hypothesise that the use of a finite-state parsing method
for a morphologically complex language, with a relatively free word
order, like Icelandic, is effective, and additionally, that an enormous
effort is not needed in the development of a finite-state parser for
the language in order to obtain good results.

6.2 A shallow parsing scheme

In this section, we propose a shallow annotation scheme for Icelandic text?.
By shallow annotation, we mean that syntactic structures are rather flat and
simple, i.e. the main emphasis is to annotate core phrases without showing
a complete parse tree.

With reference to the EAGLES guidelines (see Section 2.4.4.1), our scheme
consists of brackets and labels indicating constituent structure and func-
tional relations (syntactic functions). Our scheme, thus, follows the domi-
nant paradigm in treebank annotation, i.e. it “|is a| kind of theory-neutral
annotation of constituent structure with added functional tags” (Nivre 2002).

We assume that the text to be annotated has already been POS tagged
using the tagset described in Section 4.2. This tagset includes both word
class and morphological information.

At the end of the section, we describe a grammar definition corpus (GDC;
see Section 2.4.4) annotated using our scheme.

2This annotation scheme was designed in collaboration with Eirikur Rognvaldsson,
Professor of Icelandic Language, at the University of Iceland.
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6.2.1 Constituent structure

The EAGLES guidelines recommend annotation of the following constituent
categories: sentence, clause, noun phrase, verb phrase, adjective phrase, ad-
verb phrase and prepositional phrase. Since our annotation scheme puts
emphasis on core phrases, we neither include sentence nor clause categories.

We use brackets and labels to indicate constituents. Two labels are at-
tached to each marked constituent: the first one denotes the beginning of
the constituent, the second one denotes the end (e.g. [NP ...NP]).

The main labels are AdvP, AP, NP, PP and VP — the standard la-
bels used for syntactic annotation (denoting adverb, adjective, noun, prepo-
sitional and verb phrase, respectively). Additionally, we use the labels CP,
SCP, InjP, APs, NPs and MWE for marking coordinating conjunctions,
subordinating conjunctions, interjections, a sequence of adjective phrases, a
sequence of noun phrases, and multiword expressions, respectively. Hence,
in our scheme, every word is a part of some constituent structure.

In the following sections, we describe the structure of each constituent
in more detail. For each constituent, we show examples obtained from our
GDC. The English gloss (most often a word-by-word translation) appears in
parenthesis with most of the examples. For saving space, we leave out the
POS tag associated with each word in the examples.

6.2.1.1 Multiword expression phrases

A multiword expression (MWE) phrase comprises fixed multiword express-
ions which function as a single word. We distinguish between four kinds of
MWEs, i.e. expressions that function as i) a conjunction (MWE _CP), ii) an
adverb (MWE _AdvP), iii) an adjective (MWE_AP), and iv) a preposition
(MWE_PP).

Below we show 2-3 examples of each kind:

1. [IMWE_CP eins og MWE_CP] (as)
2. IMWE CP til a0 MWE _CP] (in order to)

o

. IMWE_CP 4 medan MWE CP]| (while)
4. IMWE_ AdvP hvers vegna MWE _AdvP| (why)

ot

. [MWE_AdvP allt i einu MWE_ AdvP] (suddenly)




6.2 A shallow parsing scheme 91

6. [MWE_ AdvP til deemis MWE _ AdvP] (for example)

7. IMWE AP alls konar MWE AP| (all kinds of)

8. IMWE_ AP hvers kyns MWE_ AP| (every kind of)

9. IMWE_PP fyrir framan MWE_PP] (in front of)
10. [MWE_PP 4t i MWE_PP] (out into)
11. [MWE_PP innan um MWE_PP] (among)

In example no. 9, the preposition (“fyrir”) precedes the adverb (“fra-

man”), but in examples no. 10 and 11 the adverbs (“4t”, “innan”) precede

(192 N1

the prepositions (“7”, “um”).
We have compiled a list of multiword expressions for each of the different
kinds of MWEs (see Appendix C.4).

6.2.1.2 Adverb phrases

An adverb phrase (JAdvP ...AdvP|) consists of a sequence of one or more
adverbs. The following are examples of adverb phrases:

1. [AdvP ekki AdvP] (not)
2. [AdvP svo AdvP| (so)
3. [AdvP bar AdvP]| (there)

B

. |[AdvP b6 AdvP]| (although)

5. [AdvP bar med AdvP]| (thereupon)
6. [AdvP i geer AdvP| (yesterday)

7. |[AdvP ba fyrst AdvP]| (then first)
8. [AdvP ekki sist AdvP] (not least)

Note that two (or more) adjacent adverbs are not necessarily part of the
same adverb phrase. For example, consider the sentence “skdlar byrja bradum
aftur” (schools start soon again). The correct annotation includes the two
separate adverb phrases [AdvP brdidum AdvP| and [AdvP aftur AdvP], but
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not the single adverb phrase [AdvP brddum aftur AdvP|. The reason is that
the former adverb can be moved around in the sentence (without having to
move the other adverb), e.g. resulting in a sentence like “brddum byrja skélar
aftur”.

6.2.1.3 Conjunction phrases

We distinguish between two types of conjunctions: coordinating conjunc-
tions [CP ...CP|) and subordinating conjunctions [SCP ...SCP]). Only the
following seven conjunctions are classified as coordinating conjunctions: “og”
(and), “en” (but), “eda” (or), “enda” (because), ‘heldur” (but), “ellegar” (or
else), “né” (nor).

A conjunction phrase consists of one conjunction. The following are
examples of conjunction phrases:

1. |CP og CP| (and)

2. |CP en CP] (but)

3. [SCP sem SCP| (that/who/which)
4. [SCP ad SCP] (that)

5. [SCP begar SCP| (when)

6.2.1.4 Interjection phrases

An interjection phrase (|InjP ...InjP]|) consists of one interjection. The
following are examples of interjection phrases:

1. |InjP hi InjP| (heh)

2. [InjP & InjP| (ouch)

3. [InjP takk InjP| (thanks)
4. [InjP ja InjP] (yes)
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6.2.1.5 Adjective phrases

An adjective phrase ([AP ...AP]) consists of an adjective, optionally pre-
ceded by a modifying adverb phrase. The following are examples of adjective
phrases:

1. [AP erfitt AP| (difficult)

2. |AP kalt AP| (cold)

3. |AP meira AP| (more)

4. [AP [AdvP mjog AdvP]| erfitt AP| (very difficult)

5. [AP [AdvP akaflega AdvP] fagaetur AP| (extremely rare)

The first three examples show adjective phrases consisting of a single
adjective, while examples no. 4-5 demonstrate adverb phrases embedded in
adjective phrases.

6.2.1.6 A sequence of adjective phrases

A sequence of adjective phrases (|[APs ... APs]|) consists of two or more con-
secutive adjective phrases (optionally separated by a CP or a comma) agree-
ing in gender, number and case. A sequence of such phrases typically denotes
an enumeration of some kind. The following are examples of such sequences:

1. [APs [AP lagreist AP| [AP svort AP| APs| (low-rise black)

2. [APs [AP brekinn AP] [CP og CP| [AP mikill AP| APs| (beefy and
large)

3. |APs [AP storar AP| [CP eda CP| [AP litlar AP| APs| (big or small)
4. [APs [AP gula AP|, [AP vedrada AP| APs]| (yellow, weatherworn)

5. [APs [AP vorpulegur AP| , [AP skarpleitur AP| [CP og CP| [AP svip-
sterkur AP| APs| (pretty, sharp-featured and strong-looked)

6. [APs [AP |AdvP jafnan AdvP]| gra AP| |CP eda CP| [AP skjoldott AP|
APs] (usually gray or multi-coloured)
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6.2.1.7 Noun phrases

The structure of a noun phrase ([NP ...NP]) is the most complicated of all
the phrases. In general, the unmarked word order in a noun phrase headed
by a noun is: indefinite pronoun, demonstrative pronoun/article, numeral,
adjective phrase, noun (and a possessive pronoun). This word order is rela-
tively fixed with some exceptions (see below). Noun phrases can also consist
of a single (personal, demonstrative, indefinite, or interrogative) pronoun.

Number, gender and case agreement holds between the words of a noun
phrase.

The list below shows some examples of noun phrases:

1. [NP ég NP] (1)

2. [NP sig NP| (himself/herself)

3. |NP allt NP| (all)

4. NP betta NP]| (this)

5. [NP hvad NP] (what)

6. [NP madur NP| (man)

7. [NP 1954 NP]

8. [NP Stefan NP

9. [NP Einar Porgilsson NP|

10. |NP sjalfan mig NP| (myself)

11. [NP brir fingur NP| (three fingers)
12. [NP arid 1982 NP (vear 1982)

13. [NP pabbi binn NP]| (father your)
14. |NP betta kvold NP] (this evening)
15. [NP [AP gomul AP] hasgogn NP| (old furniture)

16. NP [AP nykjorinn AP| forseti NP| (newly-elected president)
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17. NP [AP [AdvP lidlega AdvP] britugur AP| karlmadur NP] (a-little-
more-than thirty man)

18. [NP allt betta [AP bunga AP] vatn NP| (all this heavy water)

19. [NP enginn [AP venjulegur AP| madur NP]| (no ordinary man)

20. [NP hinn [AP gagnryni AP] efnafraedingur NP] (the critical chemist)
21. [NP bessu [AP fyrsta AP] t6lubladi NP| (this first issue)

22. [NP bessi [APs [AP brunu AP| , [AP saklausu AP| APs| augu NP|
(these brown, innocent eyes)

23. [NP [APs [AP gula AP| , [AP vedrada AP| APs| muirveggnum NP|
(vellow, weatherworn brick-wall)

24. [NP [APs [AP ungi AP| [CP og CP| [AP glaesilegi AP| APs| organistinn
NP| (young and elegant organist)

25. [NP bess [APs [AP bridja AP] [AP steersta AP| APs| NP] (the third
biggest)

Examples no. 1-8 show noun phrases consisting of a single word. The first
two include a personal pronoun, the third an indefinite pronoun, the fourth
a demonstrative pronoun, the fifth an interrogative pronoun, the sixth a
common noun, the seventh a numeral and the eighth a proper noun.

Examples no. 9-14 demonstrate noun phrases comprising two words and
examples no. 15-25 show adjective phrases included in noun phrases.

Some exceptions to the main word order need to be accounted for. Below
we present two examples of these exceptions:

1. [NP madur einn NP| (man one)
2. [NP sinn [AP sterkasta AP| bakhjarl NP] (his strongest sponsor)
In the first example, the indefinite pronoun follows the noun (instead of

preceding it), and in the second sentence the possessive pronoun precedes
the adjective/noun (instead of following it).
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6.2.1.8 A sequence of noun phrases

A sequence of noun phrases (|[NPs ...NPs]|) consists of two or more consecu-
tive noun phrases (optionally separated by a CP and/or a comma) agreeing
in case. Moreover, a sequence of noun phrases can include a qualifier noun
phrase which follows (or precedes) another noun phrase. A sequence of noun
phrases, typically, denote an enumeration of some kind. The following are
examples of noun phrase sequences:

1. [NPs [NP prumur NP] [CP og CP| [NP eldingar NP| NPs| (thunder
and lightning)

2. [NPs [NP beim hugleidingum NP| [CP og CP] [NP bvi starfi NP| NPs]
(those speculations and that job)

3. [NPs [NP [AP gomul AP| husgogn NP| , [NP [AP latneskar AP| backur
NP] [CP og CP| [NP smyrolinga NP| NPs]

4. [NPs NP fiskum NP| , [NP liddyrum NP| [CP og CP] [NP spendyrum
NP| NPs| (fish, arthropods and mammals)

5. [NPs [NP bérn NP| [NP hans NP| [CP og CP| [NP nidjar NP| NPs]
(children his and descendants)

6. [PP vid [NPs [NP Lyme NP] [NP fléa NP| NPs| PP] (at Lyme bay)

The first two examples demonstrate two noun phrases separated by a
coordinating conjunction phrase. The third and fourth examples show three
noun phrases separated by a comma and a coordinating conjunction phrase.
In the fifth example, the [NP hans NP| phrase is a genitive qualifier modifying
the [NP born NP| phrase.

The last example demonstrates a sequence of noun phrases which does
not stand for an enumeration.

6.2.1.9 Verb phrases

Our annotation scheme subclassifies verb phrases®. A finite verb phrase is
labeled as [VP ... VP| and consists of a finite verb optionally followed by a

3We use the term verb phrases even though our verb phrases are more like verb clusters
because they can include adverb phrases and more than one verb.
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sequence of adverb phrases and supine verbs. Other types of verb phrases
are labeled as [VPx ... VPx| where x can have the following values:

e i: denoting an infinitive verb phrase

b: denoting a verb phrase which demands a predicate nominative, i.e
primarily a verb phrase consisting of the verb “vera” (be).

s: denoting a supine verb phrase

p: denoting a past participle verb phrase

g: denoting a present participle verb phrase

The following are examples of verb phrases:

1. [VP hafdi VP| (had)

2. [VP hafoi [AdvP stundum AdvP] spjallad VP| (had sometimes talked)

3. [VP hefdi [AdvP samstundis AdvP]| getad imyndad VP| (have immedi-
ately could imagined)

4. [VPi a0 halda VPi| (to hold)

5. [VPi a0 hafa VPi| (to have)

6. |[VPb var VPb| (was)

7. [VPb hefur verid VPb| (has been)

8. [VPb reyndist VPb| (turned out to be)
9. |VPs stadio VPs| (stood)
10. [VPs sest VPs] (sit)
11. [VPp ordin VPp| (become)
12. |[VPp kominn VPp| (arrived)
13. |[VPg @xpandi VPg| (screaming)

14. [VPg bélvandi VPg| (cursing)
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The first example shows a finite verb phrase consisting of a single finite
verb. The second and third examples demonstrate finite verbs followed by
an adverb phrase and one or two supine verbs.

Examples no. 4-5 show infinitive verb phrases. Examples no. 6-7 present
verb phrases consisting of the verb “be”, and example no. 8 includes another
verb which demands a nominative complement.

Supine verb phrases are shown in examples no. 9-10. Finally, past and
present participle verb phrases are demonstrated in examples no. 11-12 and
no. 13-14, respectively.

6.2.1.10 Prepositional phrases

In general, a prepositional phrase [PP ...PP] consists of a preposition (or a
MWE phrase which functions as a preposition (MWE _PP)) followed by a
sequence of (one or more) noun phrases.

Case government needs to hold between the preposition and the sequence
of noun phrases with the exception of an optional sequence of genitive quali-
fier phrases following or preceding the main noun phrases (see examples be-
low). Furthermore, a prepositional phrase can contain an infinitive verb
phrase.

Below we show examples of prepositional phrases:

1. |PP { [NP sogunni NP| PP| (in story)
2. |[PP i [NP [AP skuggsalu AP| hisi NP| PP| (in shadowy house)

3. |[PP & [NP [APs [AP gula AP| , [AP vedrada AP| APs| muirveggnum
NP] PP] (on yellow, weatherworn brick-wall)

4. |PP i NP sogu NP| NP fjolskyldunnar NP| PP| (in story family’s)
5. [PP [MWE_PP tti vid MWE_PP| [NP sjsinn NP| PP| (out by sea)

6. |[PP i [NPs NP haustmyrkri NP| [CP og CP| [NP vetrargnaudi NP|
NPs| PP| (in autumn-darkness and winter-hiss)

7. [PP [MWE_PP innan um MWE_PP] [NPs [NP [AP gomul AP hus-
gogn NP], [NP [AP latneskar AP| baekur NP] [CP og CP| [NP smyrolinga
NP| NPs| PP

8. |[AP leid AP] [PP & [VPi ad sitja VPi| PP| (bored on to sit)
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In the first three examples, the prepositional phrases contain a single
noun phrase. In the fourth example, a genitive qualifier phrase follows the
main noun phrase.

A multiword expression (functioning as a preposition) precedes the noun
phrase in example no. 5. Examples no. 6-7 demonstrate a preposition and a
multiword expression, respectively, followed by a sequence of noun phrases.
The last example shows an infinitive verb phrase following the preposition.

6.2.2 Syntactic functions

Since our constituent structure is flat, functional relations cannot be inferred
from hierarchical levels. “Hence, in order to specify, for each relevant phrasal
constituent, the function played within the sentence flat structures need to
be augmented with explicit functional annotations” (Carroll et al. 1997).

We annotate four different types of syntactic functions: genitive quali-
fiers, subjects, objects/complements and temporal expressions. We use curly
brackets for denoting the beginning and the end of a syntactic function (as
carried out, for example, in (Megyesi and Rydin 1999)) and special function
tags for labels (*QUAL, *SUBJ, *OBJ/*OBJAP /*OBJNOM /*IOBJ /*COMP,
*TIMEX).

6.2.2.1 Genitive qualifiers

A genitive qualifier is a (sequence of) noun phrase(s), marked by the genitive

case, which modifies another (usually preceding) noun phrase. The genitive
qualifier is marked by {*QUAL ...*QUAL}.
Below, we show examples of such noun phrases:

1. [NP systir NP| {*QUAL |[NP hennar NP| *QUAL} (sister hers)
2. NP bérn NP| {*QUAL [NP hans NP| *QUAL} (children his)

3. [NP nidurstéour NP|] {*QUAL [NP bessara rannsokna NP| *QUAL}
(results this research’s)

4. INP |AP nykjorinn AP| forseti NP| {*QUAL |[NP lyoveldisins NP|
*QUAL} (newly-elected president republic’s)

5. [PP i[NP sogu NP] {*QUAL |NP fjolskyldunnar NP| *QUAL} PP] (in
story family’s)
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6. [PP 4 [NP timum NP] {*QUAL [NPs [NP ritubila NP] [CP og CP]
[NP [AP mikilla AP] mannflutninga NP| NPs| *QUAL} PP]

7. {*QUAL |NP hennar NP| *QUAL} [NP lif NP] (her life)

8. |[PP um {*QUAL |[NP nokkurra ara NP|] *QUAL} [NP skeid NP| PP|
(over few year’s period)

The first five examples demonstrate a single genitive qualifier noun phrase
which modifies a preceding noun phrase. In the sixth example, a sequence of
noun phrases functions as the qualifier. The last two examples show qualifier
noun phrases preceding the noun phrases that they modify.

6.2.2.2 Subjects

Subjects in Icelandic text are (sequences of ) noun phrase(s) appearing, gener-
ally, in the nominative case. Exceptions to this rule are noun phrases ap-
pearing with special finite verbs which demand subjects in the accusative or
dative case. We have compiled a list of these special verbs?.

Three possible function markers are used for subjects: {*SUBJ> ... *SUB.J >},
{*SUBJ< ... *SUBJ<} or {*SUBJ ... *SUBJ}. The first two tags give infor-
mation about the relative position of the finite verb. *SUBJ> means that
the verb is positioned to the right of the subject, while *SUBJ< denotes
that the verb is positioned to the left of the subject. Such a relative posi-
tion indicator is, for example, used in the Constraint Grammar Framework
(Karlsson et al. 1995). The last tag is used when it is not clear where the
accompanying verb is positioned or when the verb is missing.

Below, we show examples of subject annotations:

1. {*SUBJ> [NP ég NP| *SUBJ>} [VPb var VPb] ... (I was)

2. {*SUBJ> NP allar ovaettir NP] *SUBJ >} [SCP sem SCP| [VP bjuggu
VP| ... (all ogresses which)

3. {*SUBJ> NP systir NP| {*QUAL |[NP hennar NP| *QUAL} *SUBJ>}
[VPb var VPb] ... (sister hers was)

4. [VPb var VPb| {*SUBJ< |NP ég NP| *SUBJ<} ... (was I)

4Thanks to Dr. Jéhannes Gisli Jonsson, University of Iceland, for supplying the original
list.
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5. [VP kom VP| {*SUBJ< [NP [AP nykjorinn AP] forseti NP| {*QUAL
[NP lyoveldisins NP| *QUAL} *SUBJ<} ... (came newly-elected pres-
ident republic’s)

6. [VP kusu VP| {*SUBJ< [NPs [NP bérn NP| {*QUAL [NP hans NP|
*QUAL} [CP og CP| [NP nidjar NP] NPs| *SUBJ<} ... (chose children
his and descendants)

7. [VP finnst VP| {*SUBJ< [NP bér NP| *SUBJ<} ... (feel-that-way you)

8. {*SUBJ NP hauststemmning NP|] *SUBJ} [PP 1 [NP Reykjavik NP]
PP| (autumn-mood in Reykjavik)

The first three examples show a nominative case subject with the finite
verb appearing to the right of it. Examples no. 4-6 demonstrate subjects for
which the finite verb is positioned to the left.

Example no. 7 demonstrates a subject in the dative case — the verb
“finnast” demands a dative case subject.

Finally, the last example does not have a finite verb, and thus the subject
tag does not indicate relative position of the verb.

6.2.2.3 Objects

Our annotation scheme distinguishes between five kinds of verb complements:
predicative complements ({*COMP ...*COMP}), direct objects ({*OBJ
... *OBJ}), indirect objects ({ *IOBJ . .. *IOBJ}), objects of adjectives ({ *OB-
JAP ... *OBJAP}), and nominative objects ({ *OBJNOM ... *OBJNOM}).
Moreover, as is the case for subjects, “<” and “>” are used for showing the
relative position of the verb.

Predicative complements are complements of verbs which demand a predi-
cate nominative, i.e. primarily the verb “vera” (be), and thus appear in the
nominative case. Predicative complements can be noun phrases, adjective
phrases or past participle verb phrases. Predicative complements can them-
selves have both objects and predicative complements (see examples below).

Transitive verbs demand direct objects which can appear in any of the
oblique cases. Di-transitive verbs demand both direct and indirect objects,
for which, typically, the direct object is marked by the accusative case, while
the indirect object is marked by the dative case (other case patterns, for direct
and indirect objects, are indeed possible, e.g. dative-accusative, accusative-
accusative, dative-dative and some patterns with the genitive case).
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In some cases, an adjective (phrase) demands an object (see examples
below).

The last type of an object, covered by our annotation scheme, is a nomina-
tive object of a verb which demands dative case subjects (see examples be-
low).

We assume that parsers using our annotation scheme (e.g. finite-state
parsers) do not resolve PP-attachment ambiguities and, thus, our scheme
does not extend object noun phrases to include prepositional phrases.

Below, we show examples of object/complement annotation.

1. {*SUBJ> |[NP ég NP| *SUBJ=} [VPb var VPb] {*COMP~= [AP litill
AP] *COMP<} (I was small)

2. [VPb er VPb| {*SUBJ< |NP ég NP| *SUBJ<} {*COMP~ [VPp faedd
VPp| [CP og CP] [VPp uppalin VPp| *COMP<} ...(am I born and
raised)

3. {*COMP> [AP havaxinn AP| *COMP=>} [VPb er VPb| {*SUBJ<
[NP hann NP| *SUBJ<} , {*COMP< [APs [AP vorpulegur AP, [AP
skarpleitur AP] [CP og CP] [AP svipsterkur AP| APs| *COMP<} (tall
is he, pretty, sharp-featured and strong-looked)

4. {*SUBJ> NP Alis NP| *SUBJ>} [VPb var VPb| {*COMP< [VPp
ordin VPp| *COMP<} {*COMP< [AP leid AP| *COMP<} (Alis had
become bored)

5. {*SUBJ> NP vagustjorinn NP| *SUBJ~} [VP si VP] {*OBJ< [NP
mig NP| *OBJ<} (driver saw me)

6. ...[SCP sem SCP| |[VP upplysti VP| {*OBJ< {*QUAL |NP hennar
NP] *QUAL} [NP lif NP| *OBJ<} (which enlightened her life)

7. ...[SCP hvorki SCP| [VPi a0 finna VPi] {*OBJ< [NPs [NP neinar
myndir NP] [CP né CP| [NP samtol NP| NPs| *OBJ<} (neither find

any pictures nor conversations)

8. ... [*SUBJ> [NP fadmur NP| {*QUAL [NP hans NP] *QUAL} *SUBJ -}
[VP umlykur VP] {*OBJ< |[NP [APs [AP lagreist AP| [AP svort AP
APs]| husin NP| *OBJ<}
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9. {*OBJ> [NP slika gagnryni NP] *OBJ >} [VP Lzt VP| {*SUBJ< [NP
ég NP| *SUBJ<} ... (such criticism let I)

10. {*SUBJ> [NP grundin NP] *SUBJ >} [VPb var VPb] {*COMP= [VPp
bakin VPp| *COMP <} {*OBJ< |NP |AP svalri AP| dbreiou NP| *OBJ<}

11. ...[VPi a0 segja VPi| {*IOBJ< |[NP bér NP| *IOBJ<} {*OBJ< [NP
bad NP| *OBJ<} (to tell you it)

12. ...[VP hefoi [AdvP samstundis AdvP| getad imyndad VP| {*IOBJ<
INP sér NP] *IOBJ<} {*OBJ< [NPs [NP eitt NP| [CP og CP| [NP
annad NP| NPs| *OBJ<}

13. {*SUBJ> |NP ég NP| *SUBJ =} [VPb er VPb| {*COMP~ [AP bundin
AP| *COMP<} {*OBJAP< |NP Reykjavik NP| *OBJAP<} [NP [AP
orjufanlegum AP| béndum NP| (I am bound Reykjavik ...)

14. {*SUBJ> [NP honum NP| *SUBJ>} [VP fannst VP| {*OBJNOM <
[NP hann NP] *OBJNOM<} [VPi sogast VPi| [PP inni PP| (He felt
he suck into)

Examples no. 1-4 demonstrate predicative complements, either as ad-
jective phrases or part participle verb phrases. The normal word order is
shown in example no. 1, but variants of it are shown in examples no. 2-3. A
complement of a complement is shown is example no. 4.

Examples no. 5-8 exhibit objects appearing to the right of the verb (nor-
mal word order), whereas example no. 9 shows the object appearing to the
left of the verb. Example no. 10, shows a predicative complement which
demands a dative object.

Examples no. 11-12 show an annotation for the objects of di-transitive
verbs, i.e. indirect and direct objects appearing to the right of a verb phrase.

Finally, examples no. 13-14 show an annotation for an object of an ad-
jective phrase, and for a nominative object of a verb which demands a dative
case subject, respectively.

6.2.2.4 Temporal expressions

Temporal expressions in text indicate when something happened, or how
long something lasted, or how often something occurs. We use {*TIMEX
... *TIMEX} for marking such expressions.

Below, we show examples of temporal expressions.
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—_

. {*TIMEX [NP &tta NP] *TIMEX} (eight)

[\

. {*TIMEX [NP &rid 1982 NP] *TIMEX} (year 1982)

w

. {*TIMEX [NP betta kvéld NP] *TIMEX} (this evening)

B

. {*TIMEX |NP dag einn NP| *TIMEX} (one day)

6.2.3 The grammar definition corpus

We have constructed a GDC, a corpus consisting of 214 sentences (3738
tokens), whose purpose is to represent the major syntactic constructions in
Icelandic, in the following manner. First, we carefully selected the POS
tagged sentences from the IFD corpus. Then, we used a preliminary version
of our finite-state parser to automatically annotate these sentences. Finally,
we checked the annotated sentences with regard to our annotation scheme
and hand-corrected all the errors. Tables 6.1 shows the frequency of the
various labels for phrases and grammatical functions in our GDC.

The resulting corpus should, along with the annotation scheme itself,
provide answers to questions how to analyse a given sentence in Icelandic.
Furthermore, this corpus has been used to improve our parser, since we want
it to be able to annotate the GDC with high accuracy.

6.3 IceParser

IceParser is an incremental finite-state parser based on the constructive
approach (see Section 2.4.2.1). The parser comprises a sequence of finite-
state transducers, each of which uses a collection of regular expressions to
specify which syntactic patterns are to be recognised. The purpose of each
transducer is to add syntactic information into the recognised substrings of
the input text.

The input to the parser is POS-tagged sentences. The tags are assumed
to be part of the tagset used in the IFD corpus, i.e. the tagset used by
IceTagger®. Furthermore, it is assumed that the input file has one sentence

5During the development of our parser, we have noticed that the transducers only need
to use a part of the features of many of the tags. For example, the following features are
not used at all: Gender and number of nominals, declension and degree for adjectives, and
voice, person, number and tense for verbs. This fact is a rationale for developing a smaller
tagset (as discussed in Section 7.2.6) for the purpose of shallow parsing.
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Phrase Frequency % | Function Frequency %
NP 1308  38.1% | *SUBJ> 260  29.9%
PP 476  13.9% | *OBJ< 151 17.4%
AP 291 8.5% | *COMP< 140 16.1%
VP 280 8.2% | *QUAL 103 11.9%
AdvP 231 6.7% | *SUBJ< 100  11.5%
Cp 183 5.3% | *SUBJ 37 4.3%
VPb 178 5.2% | *TIMEX 24 2.8%
SCP 113 3.3% | *COMP > 16 1.8%
VPi 103 3.0% | *COMP 11 1.3%
NPs 69 2.0% | *IOBJ< 8 0.9%
VPp 58 1.7% | *OBJ> 7 08%
MWE_ CP 43 1.3% | *OBJAP> ) 0.6%
MWE PP 35 1.0% | *OBJAP< 5) 0.6%
APs 24 0.7% | *OBJNOM < 2 0.2%
MWE AdvP 21 0.6%

VPs 9 0.3%

InjP 5 0.1%

VPg 2 0.1%

MWE_ AP 1 0.0%

Total: 3430 100.0% 869 100.0%

Table 6.1: The frequency of the various labels in the GDC

in each line. The output of the parser thus consists of the POS-tagged
sentences with added syntactic information.

IceParser is designed to produce annotations according to the annotation
scheme described in Section 6.2. The parser consists of two main com-
ponents: the phrase structure module and the syntactic functions module.
“The thought behind the modular architecture is to facilitate the work during
development, to allow different uses of the parser and to reflect the different
linguistic knowledge that is built into the parser” (Megyesi and Rydin 1999).
In total, IceParser consists of 22 finite-state transducers.

The purpose of the phrase structure module is to add brackets and labels
to input sentences to indicate phrase structure and linguistic information.
The output of one transducer serves as the input to the following transduc-
ers in the sequence. The syntactic annotation is performed in a bottom-up
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fashion, i.e. deepest constituents are analysed first. For example, adverb
phrases are marked before adjective phrases, which are in turn marked be-
fore noun phrases.

Both simple phrase structures and complex structures are recognised.
Since the parser is based on finite-state machines, each phrase structure does
not contain a structure of the same type. Complex structures contain other
structures, whereas simple structures do not.

The purpose of the syntactic functions module is to add functional tags
to denote grammatical functions. The input to the first transducer in this
module is the output of the last transducer in the phrase structure module,
i.e. it is assumed that the syntactic functions module receives text that
has been annotated with constituent structure. As in the phrase structure
module, the output of one transducer serves as the input to the following
transducers in the sequence.

As discussed in Chapter 3, feature agreement (in gender, number and
case) in Icelandic, between a noun and its modifiers, indicates which words
belong together and form constituents. Nevertheless, our parser makes min-
imal use of feature agreement when annotating constituents. Instead, it em-
ploys mainly word class and word order information when forming phrases.
The case feature is, however, used extensively when assigning grammatical
functions.

The reason for this is that we want our parser to be utilised as a grammar
correction tool, among other things. If the parser uses feature agreement to
a great extent to mark phrases then it will not be possible for a grammar
correction tool to point out feature agreement errors inside phrases. This
is because the corresponding words would not have been recognised as one
phrase by the parser, due to the lack of feature agreement! Indeed, evalua-
tion shows (see Chapter 8) that by using mainly word class and word order
information, the accuracy of our parser is remarkably good.

6.3.1 Implementation

The parser is implemented in Java and the lexical analyser generator tool
JFlex (http://jflex.de/). Each transducer is written in a separate file, which
is compiled into Java code using JFlex. The resulting Java code is a de-
terministic finite-state automaton (DFA), along with actions to execute for
each recognised pattern. The reason for not using a tool like the XFST for
implementation is that IceParser is part of the Ice NLP toolkit, all of which
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is implemented in Java. Writing the parser in Java has enabled us to easily
integrate the parser with the other Java components of the IceNLP tool, e.g.
IceTagger. Furthermore, by having full control of the source, we have been
able to build an optimised version of IceParser (as discussed in Section 8.2).

The architecture of IceParser, along with the name of each transducer,
is shown in Figure 6.1. The first transducer in the phrase structure mod-
ule is called Phrase. MWE. 1t reads an input file consisting of POS tagged
sentences and marks MWEs by using patterns written as regular expressions
(see Section 6.3.2). The next transducers in the sequence, Phrase MWEP1,
takes as input the output generated from the previous transducer and pro-
duces output ready to be read by the next transducer in the sequence.

The architecture of the syntactic functions module is similar. The first
transducer, Func TIMEX, recognises temporal expressions. It reads an in-
put file which has been annotated with constituent structure, i.e. the output
file generated by the last transducer in the phrase structure module (Clean? ).
The output of the Func_ TIMEX transducer is then read by the next trans-
ducer, Func_ QUAL, in the sequence, etc.

Table 6.2 very briefly describes the purpose of each transducer — please
refer to Appendix C for a thorough description of all the transducers of the
parser.

Name Purpose

Phrase_ MWE Marks MWEs consisting of common bigrams and trigrams.

Phrase MWEP1 Marks MWEs consisting of specific <preposition, adverb> pairs.
Phrase MWEP2 Marks MWEs consisting of specific <adverb, preposition> pairs.
Phrase AdvP Marks adverb phrases, conjunction phrases and interjection phrases.

Phrase AP Marks adjective phrases.

Case_ AP Adds case information to adjective phrases.

Phrase APs Groups together a sequence of adjective phrases.
Phrase_ NP Marks noun phrases.

Phrase VP Marks verb phrases.

Case_ NP Adds case information to noun phrases.

Phrase NPs Groups together a sequence of noun phrases.

Phrase_ PP Marks prepositional phrases.

Cleanl Corrects annotation errors.

Func  TIMEX Marks temporal expressions.

Func QUAL Marks genitive qualifiers.

Func_SUBJ Marks subjects.

Func_ COMP Marks complements.

Func_OBJ Marks direct objects.

Func OBJ2 Marks indirect objects and other special types of objects.
Func_OBJ3 Marks dative objects of complement adjective phrases.
Func_ SUBJ2 Marks “stand-alone” nominative noun phrases.

Clean2 Clean up.

Table 6.2: A brief description of all the transducers.
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The Phrase Structure Module
]Icir:gm » Phrase MWE » Phrase MWEP1 —»
Phrase MWEP2 » Phrase AdvP » Phrase AP —>
Case_AF » Phrase APs » Phrase NP —>
Phrase_VFP » Case_NF » Phrase_NPs —>
Phrase_FP Cleanl > Output

file

The Syntactic Functions Module
I nput
file » Func_TIMEX » Func_QUAL —»
Func_SUBJ » Func_COMPF » Func_OBJ —>
Func_OBJ2 » Func_OBJ3 » Func_SUBJ2 —>
Clean2 > Output

file

Figure 6.1: The architecture of IceParser
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6.3.2 Rules and actions

The patterns recognised by each transducer are written using the regular
expressions language of JFlex. Table 6.3 shows the main regular expression
operators supported by JFlex (borrowed from (Klein 2005)).

Operator Usage Descripton

Union alb Matches all input matched by a or by b.

Concatenation  ab Matches all input matched by a followed by the input matched by b.

Kleene closure a* Matches zero or more repetitions of the input matched by a.

Iteration at Matches one or more repetitions of the input matched by a.

Option a? Matches the empty input or the input matched by a.

Upto ~a Matches everything up to (and including) the first occurrence of
the input matched by a.

Repeat a{n} Equivalent to n times the concatenation of a.

Table 6.3: The main regular expression operators supported by JFlex.

The rules section of a JFlex specification contains regular expressions and
actions (Java code) that are executed when the tool matches the associated
regular expression. As an example of the rule (and action) format, consider
the following example, taken from the Phrase  MWEPI transducer which
recognises specific MWEs consisting of the preposition “fyrir” followed by
specific adverbs:

hi
String Open=" [MWE_PP ";
String Close=" MWE_PP] ";
h}

AdverbPart = {WS}+{AdverbTag}
PrepPart = {WS}+{PrepTag}

Pair = [fFlyrir{PrepPart}(aftan|austan|framan|nedan|nordan|
ofan|sunnan|utan|vestan){AdverbPart}

/YA
{Pair} { System.out.print(Opent+yytext()+Close);}

The code included in %{ and %} is copied directly into the generated
Java source code.
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Two regular definitions®, AdverbPart and PrepPart, define the adverb
part and the preposition part of the <preposition, adverb> pair, respectively.
For example, the adverb part consists of one or more white spaces ({WS}+)
followed by an AdverbTag. The AdverbTag is a name defined in a separate
file phraseDef.txt, which is included by most of the transducers (PrepPart is
defined similarly):

AdverbTag = aal[me]?{WS}+

i.e. the letters aa optionally followed by the letters m or e (see the description
of the Icelandic tagset in Appendix B) and postfixed with one or more white
spaces.

The name Pair is defined as the preposition “fyrir” followed by specific
adverbs.

Actions are included inside curly brackets. Thus, when the generated
lexical analyser recognises the pattern Pair the action is simply to put the
appropriate brackets and labels around it (yytext()), e.g. [MWE PP fyrir
ao aftan aa MWE _PP| (a0 and aa are the POS tags denoting preposition
and adverb, respectively).

The above code is a simple illustration of the format of the rules and
actions in the source files for the transducers. Please refer to Appendix C for
a thorough description of the rules and actions used by IceParser.

6.3.3 An illustrative example

In this section, we demonstrate the output of the various transducers of
IceParser when parsing the following sentence from our GDC (shown with
POS tags):

vid fplfn mazttumst sfmifp & ap gangstéttinni nvebpg , ,
we met on pavement-the ,

heilsudumst sfmlfp og c toékum sfglfp
greeted (each other) and took

tal nheo saman aa eins aa og ¢ gamlir lkfnsf kunningjar nkfn .
talk together like old pals

6Regular definitions are a sequence of definitions of the form: d; -> 7;, where each d;
is a distinct name and each 7; is a regular expression.
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The first transducer in the phrase structure module, Phrase. MWE, an-
notates the bigram eins aa og ¢ as a MWE functioning as a conjunction
(because the transducer includes a pattern matching this exact MWE). The
resulting output is:

vid fplfn meettumst sfmlfp a ap gangstéttinni nvepg , , heilsudumst sfm1fp
og ¢ tokum sfglfp tal nheo saman aa [MWE CP eins aa og ¢ MWE CPJ
gamlir lkfnsf kunningjar nkfn . .

The next transducer which adds information into the text is Phrase_ AdvP.
It annotates og ¢ as a conjunction phrase and saman aa as an adverb phrase,
resulting in:

vi0 fplfn meettumst sfmlifp d ap gangstéttinni nvepg , , heilsudumst sfm1fp
[CP og ¢ CP| tokum sfqlfp tal nheo [AdvP saman aa AdvP| [MWE _CP eins
aa og ¢ MWE _CP] gamlir lkfnsf kunningjar nkfn . .

The Phrase_ AP transducer marks the adjective gamlir lkfnsf, resulting
in:

vi0 fplfn meettumst sfml1fp d ap gangstéttinni nvepg , , heilsudumst sfmi1fp
[CP og ¢ CP] tékum sfglfp tal nheo [AdvP saman aa AdvP| [MWE CP eins
aa og ¢ MWE _CP] [AP gamlir lkfnsf AP| kunningjar nkfn . .

The Case_ AP transducer adds case information to the adjective phrases
(appending the letter n denoting nominative case to the opening label of the
phrase), resulting in:

vid fplfn meettumst sfml1fp d ap gangstéttinni nvepg , , heilsudumst sfm1fp
[CP og ¢ CP| tokum sfglfp tal nheo [AdvP saman aa AdvP| [MWE _CP eins
aa og ¢ MWE _CP] [APn gamlir lkfnsf AP] kunningjar nkfn . .

This illustrative example does not include a sequence of adjective phrases
and therefore the application of the Phrase_ A Ps transducer does not change
the string. The next transducer, Phrase NP, marks the noun phrases vid
fplfn, gangstéttinni nvepg, tal nheo, and [APn gamlir lkfnsf AP| kunningjar
nkfn, resulting in:
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[NP vid fplfn NP| meettumst sfmifp d ap [NP gangstéttinni nvepg NP|
., heilsudumst sfmifp [CP og ¢ CP] tokum sfglfp [NP tal nheo NP] [AdvP
saman aa AdvP] [MWE _CP eins aa og c MWE _CP] [NP [APn gamlir lkfnsf
AP| kunningjar nkfn NP| . .

The Phrase VP transducer annotates the verbs mettumst sfmi1fp, heil-
sudumst sfm1fp and tokum sfqlfp, resulting in:

[NP vid fplfn NP| [VP mettumst sfmifp VP[] d@ ap [NP gangstéttinni
nvepg NP| , , [VP heilsudumst sfmifp VP| [CP og ¢ CP| [VP tékum sfglfp
VP| [NP tal nheo NP| [AdvP saman aa AdvP] [MWE CP eins aa og c
MWE_CP] [NP [APn gamlir lkfnsf AP| kunningjar nkfn NP[ . .

The Case_ NP transducer adds case information to the noun phrases (n
for nominative, a for accusative), resulting in:

[NPn vid fplfn NP] [VP mettumst sfmifp VP| d ap [NPd gangstéttinni
nvepg NP| , , [VP heilsudumst sfmifp VP] [CP og ¢ CP| [VP tékum sfglfp
VP| [NPa tal nheo NP| [AdvP saman aa AdvP| [MWE _CP eins aa og c
MWE_CP| [NPn [APn gamlir lkfnsf AP| kunningjar nkfn NPJ . .

This illustrative example does not include a sequence of noun phrases and
therefore the application of the Phrase NPs transducer does not change the
string. The next transducer, Phrase PP, marks the prepositional phrase d
ap [NPd gangstéttinni nvepg NP/, resulting in:

[NPn vid fplfn NP| [VP mettumst sfm1fp VP] [PP d ap [NPd gangstét-
tinni nvepg NP| PP, , [VP heilsuoumst sfm1fp VP] [CP og ¢ CP] [VP tékum
sfglfp VP] [NPa tal nheo NP| [AdvP saman aa AdvP] [MWE_CP eins aa
og c MWE _CP| [NPn [APn gamlir lkfnsf AP| kunningjar nkfn NPJ . .

Finally, the application of the Cleani transducer does not affect the final
output string generated by the phrase structure module.

The Func_SUBJ transducer is the first transducer in the syntactic func-
tions module which adds new information to the input string. It recognises
that the noun phrase [NPn vid fplfn NP/ is a subject (because one of the
patterns of the transducer matches an nominative noun phrase preceding a
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verb phrase), resulting in:

{*SUBJ> [NPn vid fplfn NP] *SUBJ>} [VP mettumst sfm1fp VP] [PP
d ap [NPd gangstéttinni nvepg NP| PP| , , [VP heilsudumst sfm1fp VP| [CP
og ¢ CP| [VP tokum sfglfp VP| [NPa tal nheo NP| [AdvP saman aa AdvP]
[MWE_CP eins aa og ¢ MWE _CP| [NPn [APn gamlir lkfnsf AP kunning-
jar nkfn NPJ . .

The input sentence does not have a verb complement and therefore the
Func_ COMP transducer does not add any new information. The Func_ OBJ
transducer does, however, recognise the noun phrase [NPa tal nheo NP] as
an object (because the noun phrase is in the accusative case and follows a
verb phrase). The resulting output is:

{*SUBJ> [NPn vid fpifn NP] *SUBJ>} [VP mettumst sfmifp VP| [PP
d ap [NPd gangstéttinni nvepg NP] PP] , , [VP heilsudumst sfm1fp VP| [CP
og ¢ CP| [VP tokum sfg1fp VP] {*OBJ< [NPa tal nheo NP] *OBJ<} [AdvP
saman aa AdvP] [MWE_CP eins aa og ¢ MWE _CP] [NPn [APn gamlir
lkfnsf AP| kunningjar nkfn NP/ . .

Func_SUBJ2 is the next transducer in the sequence which adds new
information to the string. It recognises the noun phrase [NPn [APn gamlir
lkfnsf AP| kunningjar nkfn NP] as a subject (because it is in the nominative
case and has not yet been marked with a syntactic function).

The resulting output is:

{*SUBJ> [NPn vid fplfn NP] *SUBJ>} [VP mettumst sfm1fp VP| [PP
d ap [NPd gangstéttinni nvepg NP| PP| , , [VP heilsudumst sfm1fp VP] [CP
og ¢ CP| [VP tékum sfglfp VP] {*OBJ< [NPa tal nheo NP] *OBJ<} [AdvP
saman aa AdvP| [MWE _CP eins aa og c MWE CP| {*SUBJ [NPn [APn
gamlir lkfnsf AP| kunningjar nkfn NP] *SUBJ} . .

Note that for this last subject there is no accompanying verb and there-
fore no relative position marker (“<” or “>”) is used. Finally, the Clean2
transducer “cleans up” the string, e.g. removes the case information attached
to NP and AP labels, and removes unnecessary extra spaces. The final out-
put is thus:
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{*SUBJ> [NP vio fplfn NP] *SUBJ>} [VP mettumst sfm1fp VP] [PP
d ap [NP gangstéttinni nvepg NP| PP], , [VP heilsudumst sfm1fp VP] [CP
og ¢ CP] [VP tékum sfglfp VP] {*OBJ< [NP tal nheo NP] *OBJ<} [AdvP
saman aa AdvP| [MWE _CP eins aa og c MWE _CP[ {*SUBJ [NP [AP gam-
lir lkfnsf AP| kunningjar nkfn NP] *SUBJ} . .
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Chapter 7

Tagging Icelandic Text

7.1 Introduction

7.1.1 Previous work

The earliest tagging results for Icelandic text were published by Briem (1989).
The tagger used was a mixture of a linguistic rule-based tagger and a proba-
bilistic tagger. Each linguistic rule had points associated with it and the
points were allocated to a rule on the basis of frequency information, derived
from a hand-tagged corpus of 54,000 tokens. For each possible tag sequence
the program calculated the total number of points given by the rules when
they were satisfied. The tag sequence with the highest number of points was
chosen as “the best sequence”. In order to prevent an enormous amount of
possible tag sequences the tagger worked with only a part of each sentence
at a time.

The accuracy of the tagger was reported as 70% but 15% of the tokens
were not analysed. The author later improved the program, by using freq-
uency information from the whole IFD corpus (described in Section 4.1.1)
and obtained an accuracy of a little less than 90% (personal communication).

In 2002-2004, the Institute of Lexicography (IL) at The University of
Iceland performed an Icelandic tagging experiment (ITE) (Helgadottir 2004)
using three state-of-the-art data-driven taggers: fnTBL (Ngai and Florian
2001), MXPOST (Ratnaparkhi 1996) and 7nT (Brants 2000). As discussed
in Section 2.3.4, the fnTBL tagger is a fast implementation of transformation-
based error-driven learning, the MXPOST tagger uses a maximum entropy
method and the TnT tagger is a statistical tagger based on a second order
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Markov model.

The IFD corpus was utilised for training and testing in the ITE, and
ten-fold cross validation was used. Each test corpus has 59,030 tokens (3,691
sentences), on average, and the average unknown word ratio is 6.84%. The
highest accuracy, 90.36%, was obtained by the ThT tagger — the average
results for the three taggers can be seen in Table 7.1.

By using a weighted voting scheme, in which each tagger was weighted
with its accuracy (this is equivalent to simple voting when using three tagg-
ers), the total accuracy increased to 91.54%. When using backup dictionaries
for TnT and fnTBL (to decrease the ratio of unknown words), simple vot-
ing on a simplified tagset and applying linguistically motivated rules in the
combination of the taggers, the accuracy increased to 93.65%.

7.1.1.1 Discussion

The tagging accuracy of 90.36% in the ITE, obtained by the best performing
single tagger, is considerably lower than the one achieved for related lang-
uages, e.g. Swedish where 93.55% accuracy was obtained in an experiment
using the same taggers (see Table 7.2), a tagset consisting of 139 tags, and
a training corpus of only 100k tokens (Megyesi 2002). This difference in
accuracy can be explained by the large Icelandic tagset!, as well as by the
fact that Icelandic is morphologically considerably more complicated than
Swedish.

We have previously shown (see Table 4.1) that the ambiguity rate of
Icelandic text, computed using the IFD corpus is 2.74, compared to, for
example, 2.05 for Swedish text as determined by a dictionary used in a CG
Framework (Birn 1998). The ambiguity rate seems, however, to be similar to
ambiguity rate of English text (2.82) using the Lancaster-Oslo/Bergen corpus
(170 tags) (van Halteren et al. 2001). On the other hand, using another
frequently used criterion for ambiguity of a language, the ratio of ambiguous
tokens in text to the total number of tokens, we found 59.7% of the tokens in
the IFD corpus (again see Table 4.1) to be ambiguous. Compared to English,

ntuitively, a larger tagset should result in lower tagging accuracy, since, for a larger
tagset, the tagger simply has more tags to choose from for each word. In a tagging
experiment on Dutch text, using a tagset of 341 tags, 92.06% accuracy was achieved by
the TnT tagger (van Halteren et al. 2001). In an experiment on tagging Czech text, using
a very large tagset of 1,171 tags and a trigram tagger, an accuracy of only 81.1% was
obtained (Haji¢ and Hladka 1998).
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Accuracy /Tagger fnTBL MXPOST TnT

Unknown word accuracy 54.03% 62.50% 71.60%
Known word accuracy 91.36% 91.04% 91.74%
Total accuracy 88.80% 89.08% 90.36%

Table 7.1: Average tagging accuracy in the Icelandic Tagging Experiment
(ITE)

this is a much higher ratio where, for example, 35% of the word tokens in
the Brown corpus were found to be ambiguous (Kupiec 1992).

An apparent difference between the Swedish experiment cited above and
the ITE is a considerable difference in the tagging accuracy of unknown
words (compare tables 7.1 and 7.2). This difference seems to indicate that it
is more difficult to guess tags for unknown words in Icelandic compared to
Swedish, and indeed, as previously mentioned, Icelandic is morphologically
more complex than Swedish.

It is worth mentioning that two standard reported measures of ambiguity,
the ratio of ambiguous tokens and the average number of tags assigned to
tokens (i.e. ambiguity rate), can not always been used as an indication of
how hard the task for a tagger actually is. This is, for example, pointed out
by Oravecz and Dienes (2002) who show that even though the two measures
for Hungarian are considerable lower than for English, the former language
is actually more difficult to tag. This is due to the inflectional nature of
Hungarian which results in a much larger number of word types (more than
twice) in a Hungarian corpus when compared to an English corpus of similar
size. Consequently, for lexicalised taggers like trigram taggers, Hungarian is
more difficult to tag.

For the case of Icelandic vs. Swedish, the ratio of word types to word
tokens is about the same (see Table 4.1 and (Megyesi 2002)), and hence
the difference in tagging accuracy must be explained with other factors like
the difference in tagset size, ambiguity rate, ratio of ambiguous tokens (and
different corpora used for training and testing).

The difference in tagging accuracy of Icelandic text between the three
data-driven taggers can by and large be attributed to the difference in accuracy
when tagging unknown words. The tagging accuracy of fnTBL for unknown
words is relatively poor, about 25% less than the corresponding accuracy
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Accuracy /Tagger fnTBL MXPOST TnT

Unknown word accuracy 58.52% 78.85% 82.29%
Known word accuracy 94.35% 93.34% 95.50%
Total accuracy 89.06% 91.20% 93.55%

Table 7.2: Average tagging accuracy in a Swedish tagging experiment
(Megyesi 2002)

of TnT. On the other hand, since fnTBL achieves relatively high accuracy
on known words, one can assume that with a better unknown word guessing
module the total accuracy of fnTBL can be improved. Indeed, in Section 7.3,
we will show how to substantially improve fnTBL’s unknown word tagging
accuracy, resulting in total accuracy of 90.15%.

The relatively poor tagging accuracy for unknown words in fnTBL can
probably be explained by the following. Recall that the most frequent tag
for each word is used for initial tagging. When tagging English text, a
transformation-based tagger typically uses a singular proper noun tag for
capitalised words, and a singular common noun tag for other words, for ini-
tial tagging of unknown words. This works well since only one tag in an
English tagset is needed for singular proper nouns and singular common
nouns, respectively, and, thus, it is to be expected that this initial assign-
ment produces the most likely tag for each unknown word. In Icelandic,
however, due to gender and case, there is more than one possible tag for the
singular common nouns and proper nouns. Hence, by choosing one particular
common noun tag and one particular proper noun tag for initial tagging of
all unknown words, it is highly probable that most of the time the chosen
initial tag will not be the most likely tag for a given unknown word.

7.2 Evaluation of IceTagger

In this section, we evaluate the tagging accuracy of IceTagger. First, we
evaluate the unknown word guesser, IceMorphy. Then, we evaluate the per-
formance of the heuristics used by IceTagger, and, finally, we present tagging
accuracy results for the tagger as a whole.
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7.2.1 The unknown word guesser

For the purpose of evaluating the performance of our unknown word guesser,
IceMorphy, we hand-tagged 400 unknown words (i.e., we generated the true
tag profile for these words), randomly extracted from the first test corpus
of the IFD corpus. The number of relevant (correct) tags was 1194, but
IceMorphy generated 1554 tags, which divided in the following manner: 555
(35.71%) common noun tags, 266 (17.12%) proper noun tags, 553 (35.59%)
adjective tags, 170 (10.94%) verb tags, and 10 (0.64%) tags belonging to
other word classes.

Table 7.3 shows precision, recall and F-measure for the main word classes
and for all tags as a group. Precision, recall and F-measure are defined in
the following manner:

. # of relevant generated tags (7.1)
Tecision = .
b # of generated tags

# of relevant generated tags

recall =

2
# of relevant tags (7.2)

2 % precision * recall

F-measure = (7.3)

precision + recall

For the purpose of tagging, high recall is more important than high pre-
cision. It is imperative that an unknown word guesser produces as many
relevant tags as possible for a tagger to disambiguate. If a relevant tag is
missing, a tagger may not be able to disambiguate correctly.

Common Proper Adjectives Verbs  All words

nouns nouns
Precision  64.32% 18.80% 72.73% 52.35% 58.17%
Recall 83.80% 58.14% 71.43% 82.41% 75.71%

F-measure 72.78% 28.41% 71.88% 64.03% 65.79%

Table 7.3: Accuracy for the given word classes when using IceMorphy to
guess tags for 400 randomly selected words

Let us assume that the figures in Table 7.3 represent the precision and
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Morphological Compound Ending Default

analysis analysis analysis analysis
Precision  60.84% 86.22% 21.00%  53.85%
Recall 78.36% 79.89% 52.76%  46.67%
F-measure 68.50% 82.93% 30.04%  50.00%

Table 7.4: Accuracy for the different modules of IceMorphy when guessing
tags for 400 randomly selected words

recall figures for the whole population of unknown words analysed by Ice-
Morphy. Based on this assumption, one might reason that the recall figures
place an approximate upper bound on the tagging accuracy obtainable by
IceTagger for unknown words. However, this is not true because even though
a tag profile may be incomplete for a particular word it may have little impact
on the tagging accuracy if the omitted tags are very rare.

The low precision and recall for proper nouns can be explained by the
following. The last character of the tag for proper nouns denotes named
entity information, i.e. a person name, place name or any other name. Since
IceMorphy does not include a named entity recogniser, it has difficulty guess-
ing the correct tag for proper names. When the last character of proper
nouns is ignored, precision and recall for proper nouns increases to 31.20%
and 96.51%, respectively.

Table 7.4 shows precision, recall and F-measure for the different mod-
ules of IceMorphy (see Section 5.2). The figures in this table show that
morphological analysis and compound analysis are more accurate than end-
ing analysis (as discussed in Section 2.3.6.1). On the other hand, note that
ending analysis is only carried out if morphological /compound analysis is
unsuccessful.

No morphological analyser for the Icelandic language has previously been
published and, thus, we can not compare our figures to results published
for Icelandic.? Additionally, it is difficult to do comparison across languages
because of different levels of morphological complexity and, hence, different
tagsets. For the sake of doing one comparison, the morphological classifier of

2The morphological analyser “Puki” is a spelling and grammar tool developed by a
private Icelandic software company. The software is proprietary, intended to be used with
Microsoft Office 2003, and accuracy figures for the analyser have not been published.
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unknown German nouns described by Nakov et al. (2003) achieved 82%-89%
recall (depending on the test corpora). The purpose of the German analyser
was to guess morphological classes using a comprehensive stem dictionary, as
opposed to predicting individual tags using a dictionary derived from a tagged
corpus, as is the case for IceMorphy. Since using a more comprehensive
dictionary will most certainly increase IceMorphy’s accuracy, we believe our
guesser obtains good results.

7.2.2 The heuristics

In Section 7.2.3, we will show that the heuristics have a large impact on the
overall tagging accuracy of IceTagger. In this section, however, we evalu-
ate the heuristics per se, i.e. the accuracy of the syntactic and functional
(SynFunc) tagging, which the heuristics base their disambiguation process
on.

We built a gold standard by randomly selecting 150 sentences from the
first test corpus of the IFD corpus and hand-tagged these sentences with
SynFun tags, i.e. PP tags and SUBJ, VERB and OBJ tags. The sentences
contain a total of 2,868 tokens, i.e. 19.1 tokens per sentence, on the average.
During hand-tagging, 1,691 (59%) tokens received a SynFun tag.

We then ran IceTagger on the 150 sentences and computed precision
and recall for the SynFun tags generated by the tagger. The POS tagg-
ing accuracy of IceTagger for these sentences was 92.29%, and the ratio of
unknown words was 8.26%.

Table 7.5 shows how the 1,691 tokens divide between the four SynFun
tags, both in the gold standard and in IceTagger. Not surprisingly, the
number of PP tags is highest because each word in a PP (with the exception
of an adverb) is tagged. Furthermore, VERB tags outnumber SUBJ and
OBJ tags because a verb(s) occurs in almost every sentence. More SUBJ
tags than OBJ tags are found which can be explained by the fact that not
all verbs are transitive (i.e. not all verbs need an object), but a subject is,
generally, needed.

Table 7.6 shows precision, recall, and F-measure for the different tag
types, guessed by the heuristics. The table shows much higher F-measure
for VERB and PP tags compared to SUBJ and OBJ tags. This is to be
expected because guessing the former is much easier than guessing the latter.
As explained in Section 5.3.5.2, a token receives a VERB functional tag if the
first POS tag, in its (locally disambiguated) tag list, is a verb tag. Similarly,
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Tag Gold Generated
standard by IceTagger
SUBJ 265 (15.7%) 254 (15.4%)
VERB 425 (25.1%) 423 (25.6%)
OBJ 216 (12.8%) 219 (13.3%)
PP 785 (46.4%) 754 (45.7%)
Total 1,691 (100%) 1,650 (100%)

Table 7.5: Partion of SynFun tag types

Tag Precision Recall F-measure
SUBJ  85.43% 81.89% 83.62%
VERB 94.56% 94.12% 94.34%
OBJ 72.60% 73.61% 73.10%
PP 97.61% 93.76% 95.65%

Table 7.6: Precision, recall and F-measure for SynFun tag types, guessed by
the heuristics

Tag Precision Recall F-measure
SUBJ  86.10% 84.15% 85.11%
VERB 94.84% 95.06% 94.95%
OBJ 75.12% 74.07%  74.59%
PP 97.24% 94.27% 95.73%

Table 7.7: Precision, recall and F-measure for SynFun tag types, guessed by
the heuristics, when using a closed vocabulary
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a preposition candidate is easy too guess and the accompanying PP words
are just those nominals having the same case as the preposition. Guessing
the functional SUBJ and OBJ tags is, however, more difficult because the
correct guess is not only dependent on the word class, but also on word order
and verb subcategorisation information.

Recall that 8.26% of the tokens, behind the figures in Table 7.6, were
unknown to the tagger. As expected, the accuracy improves by including
the unknown words in the dictionary (i.e. using a closed vocabulary), as can
been seen by comparing tables 7.6 and 7.7 (the POS tagging accuracy using
a closed vocabulary is 94.25%).

7.2.2.1 Discussion

There are various different causes for errors in the SUBJ and OBJ tagg-
ing. One source of error is the lack of verb subcategorisation information in
IceTagger. For example, in the sentence “parna svelgdist ykkur d bjornum”
(there quaff you on beer) the verb “svelgdist” demands a dative subject (but
not the usual nominative subject) and, hence, the pronoun “ykkur” should
be tagged with a SUBJ tag, but not an OBJ tag.

Another problematic situation occurs when an (implicit) subject is miss-
ing from a clause, like “en verda varir ...” (but become aware . ..). Since the
subject “peir” (they) is missing, the adjective “varir” is incorrectly tagged as
a subject instead of a verb complement.

Table 7.6 shows substantially higher F-measure for SUBJ vs. OBJ. We
have noticed that PPs are responsible for many of the OBJ errors (and,
indeed, some of the SUBJ errors as well). In the sentence “hann heyrdi med
doru eyranu hljodin” (he heard with one ear sounds), the noun “hljédin” is a
direct object of the verb “heyrdi”, but the PP “med d0ru eyranu” lies between
the verb and the object. The heuristic described in Section 5.3.5.5 does not
handle such intervening PPs. Furthermore, in some cases, IceTagger tags
OBJs as VERBs, due to lack of an appropriate local disambiguation rule.

Our error analysis implies that the accuracy of SUBJ/OBJ tagging may
be improved by the following. First, by adding more thorough verb subcat-
egorisation information to IceTagger. Secondly, by “stepping over” interven-
ing PPs, between the verb and the corresponding SUBJ or/and OBJ, when
searching for subjects and objects. Lastly, by writing more local rules, thus
eliminating more inappropriate tags before the heuristics are applied. Con-
sequently, improving the accuracy of SUBJ/OBJ tagging will most probably
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increase the POS tagging accuracy of IceTagger.

It would be interesting to compare the figures for the functional SUBJ
and OBJ tags with corresponding evaluation figures produced by a parser for
Icelandic text. Unfortunately, no such figures are available3. Several results
on tagging grammatical functions have, however, been published for related
languages.

A recent study on grammatical function assignment for German (using
memory-based learning from a corpus annotated with grammatical functions
tags), showed F-measure as 87.23%, 78.60% and 75.32%, for subjects, accusa-
tive objects and verb complements, respectively (Kouchnir 2004) (recall that
our figures for OBJ tags include both direct objects and verb complements).
In another German study (using finite-state cascades to annotate grammat-
ical functions on top of a shallow constituent structure), the corresponding
F-measures were 90.77%, 81.86% and 79.61%, respectively (Miiller 2004).

Since both these methods are based on parsing, higher scores are to be
expected in comparison to our (non-parsing) heuristics. Note as well, that
the above methods perform grammatical tagging using fully disambiguated
POS tags, whereas our grammatical tagging component is used to facilitate
the POS tag disambiguation. In our opinion, this comparison shows that the
accuracy of our heuristics for tagging subjects and objects of verbs is rela-
tively high. Moreover, improving the accuracy of these heuristics is possible,
as discussed above.

7.2.3 Accuracy of IceTagger

In order to make a fair comparison between IceTagger and the data-driven
taggers, we used exactly the same training and test corpora as were used
in the ITE. Recall that the available hand-tagged corpus is the IF'D corpus
consisting of about 590,000 tokens. Pairs of 10 training corpora (each con-
taining 90% of the IFD corpus) and 10 test corpora (each containing 10% of
the IFD corpus) were constructed in the ITE. We used the first nine of these
test corpora for evaluation — the tenth test corpus was set aside and used
as the development corpus.

For each test corpus the corresponding training corpus was used to deduce
part of the dictionaries used by Ice Tagger — the main dictionary stating word

3Indeed, only one parser for the Icelandic language currently exists. It is a parser
based on HPSG, developed by a private Icelandic software company. (Note that our
parser, IceParser, was developed after the evaluation of the heuristics was carried out.)
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forms and allowable tags (55,600 word forms, on the average), the dictionary
for phrasal verb recognition, the dictionary for verb-preposition pairs and the
dictionary for verb-object case governance. The same holds for IceMorphy,
i.e. a part of its dictionaries (the main dictionary and list of endings) were
also deduced from the corresponding training corpus. Thus, unknown words
in tests of the TnT tagger are also unknown in tests of IceTagger, with one
exception.

IceTagger uses an additional base dictionary which includes words of
the closed word classes: pronouns, prepositions, conjunctions and about 120
irregular verbs. Since these words are, indeed, very common and are therefore
in most cases already in the dictionary derived from a training corpus, the
ratio of unknown words, when testing IceTagger, is only a fraction lower than
the corresponding ratio in the ITE (6.79% vs. 6.84% on the average). Table
7.8 shows statistics for the nine test corpora used in our experiment.

Before we present the results, let us first discuss baseline accuracy figures
for tagging Icelandic text using the given tagset. By baseline accuracy, we
mean the lower bound on the accuracy that our tagger should achieve. A
naive baseline tagger can be constructed by always assigning each known
word its most frequent tag, and selecting the most frequently occurring tag
for unknown common nouns and unknown proper nouns, respectively. The
average baseline tagging accuracy for the nine test corpora using this method
is 76.27%. This figure is considerably lower than the baseline accuracy of
80.75% for Swedish (Megyesi 2002). Using similar methods for known words
and assigning unknown words the tag most common for words ending in
the same three letters, a baseline tagging accuracy of around 92% has been
reported for English (Brill 1992).

The tagging accuracy of IceTagger for the nine test corpora can be seen
in Table 7.9. The average accuracy for unknown words, known words and
all words is 75.09%, 92.74% and 91.54%, respectively?. As mentioned above,

4Recall (from Section 5.3.4) that the tags in the tag profile for the each word are checked
in decreasing order of frequency, during the application of local rules. When this thesis
was revised, we evaluated IceTagger by processing the tags for each word in ascending
order of frequency. In that case, the average accuracy for unknown words, known words
and all words is 75.15%, 92.79% and 91.60%, respectively. Higher accuracy was obtained
for each test corpus, and for seven out of the nine test corpora the difference is statistically
significant (o < 0.05, using McNemar’s chi-squared goodness-of-fit test as described by
Dietterich (1998)). A probable explanation for a slightly higher accuracy when processing
the tags in the ascending order of frequency is the following. In some cases, a local rule in
IceTagger removes a legitimate (and at the same time a frequent) tag ¢ for a given word
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Baseline accuracy

Test # of  # of unkn. ambig. ambig. | unkn. known all
corpus tokens sentences ratio  words rate words words  words
01 59,169 3,503 7.54% 60.56% 2.79 4.77% 81.46% 75.43%
02 58,967 3,601 6.74% 60.30% 2.79 3.63% 81.60% 76.06%
03 59,077 3,541 6.81% 60.45% 2.78 4.27% 81.91% 76.35%
04 59,067 3,776 6.64% 60.31% 2.76 4.62% 82.34% 76.85%
05 59,076 3,861 6.46% 60.37% 2.74 4.53% 82.14% 76.83%
06 59,136 3,748 6.68% 60.20% 2.74 3.99% 81.82% 76.28%
07 59,109 3,688 6.65% 60.54% 2.76 4.38% 82.23% 76.72%
08 58,981 3,698 6.90% 60.41% 2.74 3.79% 81.48% 75.82%
09 59,143 3,743 6.71% 60.69% 2.77 5.53% 81.56% 76.13%
Ave: 59,081 3,684 6.79% 60.43% 2.76 4.39% 81.84% 76.27%

Table 7.8: Statistics for the nine test corpora used for evaluation

the tenth test corpora was used for development of IceTagger and IceMorphy.
The tagging accuracy for unknown words, known words and all words, for
the tenth corpus, which we do not include in the average accuracy tagging
figures, is 80.52%, 93.51% and 92.63%, respectively.

In an evaluation of tagging accuracy it is common to present figures for the
somewhat unrealistic case of a closed vocabulary, i.e. assuming no existence
of unknown words. When we evaluated IceTagger under this assumption the
average accuracy was 93.84%.

As discussed in Section 7.2.1, named entity information is included in
the tags for proper nouns in the Icelandic tagset. This is unusual and is
normally not part of other tagsets, probably because this feature is not of
syntactic nature. Table 7.10 shows the tagging accuracy of IceTagger when
this feature is ignored. By comparing Tables 7.9 and 7.10, it can be seen
that the overall tagging accuracy gain of 0.08% is mostly attributed to an
increase in tagging accuracy of unknown words. This was to be expected,
because guessing named entity information for unknown words is difficult,
and indeed not a part of IceMorphy (a known proper noun is usually not

w assuming that t is not the only tag left for w. When tags are checked in the ascending
order of frequency, a frequent tag, which might indeed be the correct tag, has a better
chance of “surviving”, because more infrequent tags are eliminated first.
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Test unknown known all closed
corpus words words  words | vocabulary
01 74.77% 92.72% 91.36% | 93.82%
02 74.94% 92.57% 91.38% | 93.76%
03 73.48% 92.81% 91.49% | 93.80%
04 75.70% 92.73% 91.60% | 93.83%
05 76.67% 92.98% 91.93% | 94.08%
06 75.81% 92.79% 91.66% | 93.94%
07 73.99% 92.88% 91.62% | 93.95%
08 74.82% 92.63% 91.40% | 93.77%
09 75.61% 92.51% 91.38% | 93.64%
Ave: 75.09% 92.74% 91.54% | 93.84%

Table 7.9: Tagging accuracy of IceTagger for the nine test corpora used for
evaluation

ambiguous with respect to the named entity feature).

In Section 7.2.2, we stated that the heuristics of IceTagger have a large
impact on the overall tagging accuracy. This can be seen by comparing
Tables 7.9 (accuracy numbers obtained using both the local rules and the
heuristics) and 7.11 (accuracy numbers obtained using only the local rules).

Recall that, for words that have still not yet been fully disambiguated,
the default heuristic of IceTagger is simply to choose the most frequent tag.
Table 7.12 shows the ambiguity rate, precision and recall for each test corpus
when allowing IceTagger to generate ambiguous output, instead of simply
selecting the most frequent tag when further disambiguation is not poss-
ible. Ambiguity rate is the average number of tags per word, and we define
precision and recall in the following manner:

# of correct proposed tags

precision = (7.4)

# of proposed tags

# of correct proposed tags
# of tokens

(7.5)

recall =

According to Table 7.12, the average recall is 93.77% compared to the
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Test unknown known all
corpus words words  words
01 75.67% 92.75% 91.46%
02 75.99% 92.59% 91.47%
03 74.13% 92.82% 91.55%
04 76.70% 92.75% 91.68%
05 77.77% 92.99% 92.01%
06 76.62% 92.81% 91.73%
07 75.13% 92.89% 91.71%
08 75.70% 92.65% 91.48%
09 76.57% 92.53% 91.45%

Ave: 76.03% 92.75% 91.62%

Table 7.10: Tagging accuracy of IceTagger for the nine test corpora when
ignoring named entity information

average accuracy® of 91.54%, when applying the default heuristic (see Table
7.9). On the other hand, average precision drops dramatically, i.e. from
91.54% to only 72.62%.

The low precision can be explained by the relatively high average ambi-
guity rate of 1.29. Voutilainen (1995), for example, reports an ambiguity
rate of 1.04-1.08 (and 99.7% recall) for the EngCG parser. The precision of
IceTagger could be increased by writing more local rules, but achieving com-
parable figures to the EngCG parser would of course demand considerable
effort.

Table 7.13 shows the average tagging accuracy of IceTagger for different
word classes of unknown words. Highest accuracy is obtained for unknown
common nouns, for which IceMorphy is indeed able to achieve highest recall
(see Table 7.3).

We have previously stated that morphological analysis is more accurate
than ending analysis. This fact is reflected in the accuracy of unknown words
in IceTagger using different components of IceMorphy; see Table 7.14. On the
average, the morphological analyser produces results for 40.22% of unknown
words and the average tagging accuracy for morphologically analysed words
is 84.74%. In contrast, the ending analyser produces analysis for 26.29% of

5Note that accuracy—recall=precision when full disambiguation is carried out.
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Test unknown known all
corpus words words  words
01 63.31% 86.68% 84.92%
02 64.87% 86.71% 85.24%
03 63.42% 87.04% 85.43%
04 66.11% 87.32% 85.91%
05 65.82% 87.35% 85.96%
06 65.91% 86.77% 85.38%
07 63.07% 87.44% 85.82%
08 64.47% 87.01% 85.45%
09 65.48% 86.66% 85.23%
Ave: 64.72% 87.00% 85.48%

Table 7.11: Tagging accuracy of IceTagger for the nine test corpora when
not using the heuristics

Precision Recall

Test Ambig. | unknown known all unknown known all
corpus rate words words  words | words words  words
01 1.29 50.24% 74.72%  72.42% | 81.07% 94.72%  93.69%
02 1.29 50.86% 74.70% 72.72% | 80.72% 94.60% 93.67%
03 1.29 47.91% 74.80% 72.47% | 78.78% 94.72%  93.63%
04 1.29 51.25% 74.55% 72.66% | 80.70% 94.66% 93.73%
05 1.28 51.39% 75.28%  73.35% | 82.04% 94.88%  94.05%
06 1.29 51.99% 74.80% 72.96% | 80.98% 94.75% 93.83%
07 1.30 48.72% 74.57% 72.38% | 80.55% 94.82% 93.87%
08 1.29 51.17% 74.39% 72.43% | 80.96% 94.69% 93.74%
09 1.30 53.80% 73.73% 72.18% | 81.28% 94.60% 93.71%
Ave: 1.29 50.81% 74.62% 72.62% | 80.79% 94.72%  93.77%

Table 7.12: Ambiguity rate, precision and recall of IceTagger for the nine
test corpora used for evaluation when allowing ambiguous output
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Common Proper Adjectives Verbs All words
nouns nouns

81.13% 56.75%  75.73% 69.90%  75.09%
(57.79%) (10.87%) (18.26%)  (9.03%)

Table 7.13: Average tagging accuracy of IceTagger for different word classes
of unknown words. The figures in parenthesis show how often each class
occurs

Morphological Compound Ending | Morphological Compound Ending
analysis analysis analysis | accuracy accuracy accuracy
40.22% 31.10% 26.29% | 84.74% 78.57% 57.09%

Table 7.14: Ratio of unknown words that are successfully analysed by com-
ponents of IceMorphy and the corresponding tagging accuracy of IceTagger
for these words

unknown words resulting in only 57.09% average tagging accuracy. Bear in
mind, that the ending analyser is only applied if morphological /compound
analysis fails, and therefore, to some extent, the ending analyser handles the
more difficult cases.

Earlier, we explained the large difference in tagging accuracy when tagg-
ing Icelandic text vs. English text by the size of the Icelandic tagset used.
Accordingly, one would expect the tagging accuracy of Icelandic to get closer
to the accuracy published for English when condensing the Icelandic tagset.
We tested this by ignoring the case and gender features as well as the named
entity feature of proper nouns in the tags when calculating the accuracy,
effectively resulting in a set of 99 tags. Indeed, Table 7.15 shows that when
using a much smaller tagset, the tagging accuracy falls in the 95-97% range
as reported for English. Note, however, that the case feature plays an im-
portant role in Icelandic and, therefore, valuable information is lost if this
feature is ignored.




132 7. Tagging Icelandic Text

Words Accuracy
Unknown words 86.51%
Known words 96.25%
All words 95.59%

Closed vocabulary assumption 96.86%

Table 7.15: Average tagging accuracy of IceTagger using a condensed tagset
of 99 tags

7.2.3.1 Distribution of tagging errors

In what follows, we use the following definitions: A tag type error A>B
occurs when tag A is proposed by the tagger, but tag B is the correct tag. A
word error occurs when a word is incorrectly tagged by the combined tagger.

We have previously pointed out (in Section 5.3.1) that the most frequent
ambiguous word forms are responsible for a large amount of the total ambi-
guity. Table 7.16 shows the distribution of the most frequent errors made by
IceTagger for all of the 9 test corpora. The table shows both proposed tags
by IceTagger vs. correct tags (i.e. a tag type error), as well as individual
words responsible for most errors. The table shows that the 25 most frequent
tag type errors (of 5010 different tag errors made) are responsible for 21.87%
of the total errors, and the 25 words that are responsible for 22.62% of the
total errors. It is notable that the 158 most frequent tag type errors account
for 50% of the total errors and only 198 words are responsible for 40% of the
total errors (not shown in table).

Six out of the seven most frequent tag type errors have to do with prepo-
sitions. Either IceTagger proposes the wrong case for a preposition (e.g.
ap>ao), proposes an adverb instead of a preposition (e.g. aa>ao) or pro-
poses a preposition instead of an adverb (ao>aa). Additionally, a part of the
fourth most frequent tag error (nvep>nveo) can be attributed to a previous
wrongly selected preposition.

Not surprisingly, the words responsible for the most frequent tag errors are
function words like prepositions and conjunctions (“d”, “7”, “ad”, “sem”, “vid”,
“med”), but also pronouns belonging to more than one pronoun category, like
“pad”; “peim”, “ pvi”, and “ peirra” (all of which can be either a personal or a
demonstrative pronoun).

The information in Table 7.16 is valuable because it can be used to build




7.2 Evaluation of IceTagger 133

more relevant local or global rules. Nevertheless, in many cases, world know-
ledge or semantic knowledge is needed to correct these errors.

For example, consider the sentence “ég hafoi lofad ad koma med hafurtask
mitt d heimili hjonanna” (I had promised to bring my stuff to the couple’s
home). In this context, the word “d” can be a preposition governing the
accusative or the dative case. IceTagger tries to disambiguate prepositions
by considering the cases of the following words. Unfortunately, the very
common problem here is that the following neuter noun “heimili” (home) has
identical forms in the accusative and dative cases. The correct preposition,
in this instance, is the accusative. However, in the quite similar sentence “ég
hafdi lofad a0 koma med hafurtask mitt @ hesti hjonanna” (I had promised
to bring my stuff on the couple’s horse) the correct case is dative because
the stuff was brought ON a horse in contrast to bringing the stuff TO the
couple’s home in the former sentence.

7.2.4 Comparison with data-driven taggers

In this section, we compare the results achieved by IceTagger with the results
obtained by the DDTs described in chapter 2.3.4: fnTBL (Ngai and Florian
2001), MXPOST (Ratnaparkhi 1996), MBT (Daelemans et al. 1996), TnT
(Brants 2000) and TriTagger (our re-implementation of ThT). Let us, first,
briefly recollect the description of the individual taggers.

The fnTBL tagger is a fast implementation (in C and Perl) of trans-
formation-based error-driven learning (TBL). In TBL, the training phase
consists of, first, assigning each word its most likely tag without regard to
context, and, second, learning a set of ordered rules which transform a tag
X to a tag Y, with regard to context. New text is then tagged by applying
the rules in the correct order.

The MXPOST tagger (implemented in Java) uses a binary feature repre-
sentation to model tagging decisions, where each feature encodes any infor-
mation that can be used to predict the tag for a particular word. The goal
of the model is to maximise the entropy of a distribution, subject to certain
feature constraints.

A memory-based model is used in the MBT tagger (implemented in
C+-+). During training, a feature representation of an instance (word and its
context) along with its correct tag (target class) is simply stored in memory.
New instances are then tagged by retrieving the tag from the most similar
instances in memory.
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Proposed tag > Error Cumulative | Word  English Error Cumulative
correct tag rate rate error translation® rate rate
ap>ao 2.58% 2.58% A on 2.51% 2.51%
ao>ap 1.62% 4.21% i in 2.29% 4.80%
aa>ao 1.54% 5.74% ad to 1.73% 6.52%
nvep>nveo 1.41% 7.15% sem that 1.44% 7.97%
aa>ap 1.32% 8.47% pad it 1.32% 9.29%
a0>aa 0.96% 9.43% vid at 1.16% 10.45%
sfg3fn>sng 0.94% 10.37% sér himself 1.14% 11.59%
ctc 0.93% 11.29% beim  they 1.10% 12.68%
nveo>nvebp 0.84% 12.13% pvi it 0.89% 13.57%
nhen>nheo 0.79% 12.92% med  with 0.83% 14.40%
nkep>nkeo 0.76% 13.67% ba then 0.80% 15.20%
nheo>nhen 0.69% 14.36% hvad  what 0.74% 15.93%
c>aa 0.67% 15.04% peirra  theirs 0.69% 16.63%
aa>lhensf 0.66% 15.70% til to 0.67% 17.29%
sng>sfg3fn 0.64% 16.34% fyrir  for 0.65% 17.95%
lhensf>aa 0.61% 16.95% eftir  after 0.62% 18.57%
nkeo>nkep 0.61% 17.55% er is 0.61% 19.18%
ap>c 0.61% 18.16% um about 0.58% 19.76%
foheo>fohen 0.59% 18.75% hann  he 0.50% 20.26%
ap>aa 0.54% 19.29% sig himself 0.47% 20.73%
ssg>spghen 0.54% 19.83% einn  one 0.43% 21.16%
fohen >foheo 0.54% 20.36% mikid much 0.42% 21.57%
sfgdep>svgdep  0.51% 20.88% eitt one 0.38% 21.95%
nvfn>nvfo 0.50% 21.38% heldur but 0.35% 22.30%
fphfp>fpkfp 0.49% 21.87% einu one 0.31% 22.62%

Table 7.16: The 25 most frequent errors made by IceTagger

*Corresponding to the most frequent tag.
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The TnT tagger (a very fast C implementation) uses a second order (tri-
gram) probabilistic Hidden Markov Model (HMM). The probabilities of the
model are estimated from a training corpus using maximum likelihood esti-
mation. New assignments of POS to words is found by optimising the product
of lexical probabilities (p(w;|t;)) and contextual probabilities (p(t;|ti—1,ti—2))
(where w; and t; are word ¢ and tag i, respectively).

TriTagger is our re-implementation (in Java and Perl) of the functionality
of the TnT tagger. The difference between these two taggers is that Tri uses
the same list of idioms as IceTagger and the special dictionary described in
Section 7.2.3, as a backup dictionary. We use this tagger for integration with
IceTagger (see Section 7.3).

All the DDTs use some kind of a suffix analysis to guess the tag profile
for unknown words. IceTagger, however, uses the integrated morphological
analyser, IceMorphy, to obtain the tag profile for unknown words.

The DDTs were trained and tested (with their default options) on the
IFD corpus. We used the same training and test corpora pairs, compiled
for use in ten-fold cross-validation, as described in Section 4.1.1. In order to
facilitate fair comparison with IceTagger, we only present accuracy figures
computed using the first nine test corpora (recall that the tenth test corpus
was used for development of IceTagger).

In what follows (especially in the tables) we use MXP for MXPOST, TBL
for fnTBL, Tri for TriTagger, and Ice for IceTagger.

The tagging results are shown in Table 7.17 — here, we summarise the
main results:

e JceTagger achieves highest average accuracy figures for unknown words,
known words and all words. Three out of every four unknown words
receive the correct analysis by IceTagger.

e The average overall tagging accuracy of IceTagger is 91.54% compared
to 90.44% for the TnT tagger. Overall, according to our results, Ice-
Tagger makes 11.5% less errors than the TnT tagger.

e The accuracy of the TnT (or Tri) tagger for unknown words is remark-
ably good. The TnT tagger is a language independent tagger and has,
thus, no knowledge of Icelandic morphology. TnT bases its assignment
of tags to unknown words solely on suffix distribution (i.e. lexical prob-
abilities) derived from a training corpus, and how well a given tag “fits
in” with neighbouring tags (i.e. contextual probabilities).
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Words/Tagger Base®  MXP MBT TBL TnT Tri Ice
Unknown 4.39%  62.29% 59.40% 55.51% 71.68% 71.04% 75.09%
Known 81.84% 91.00% 91.47% 91.82% 91.82% 91.87% 92.74%
All® 76.27% 89.03% 89.28% 89.33% 90.44% 90.46% 91.54%
Ag© 53.77% 54.83% 55.04% 59.71% 59.80% 64.35%
Training time? 16,200 350 8,100 3 23

Testing time 260 1,590 135 3 71 30

Table 7.17: The average tagging accuracy of Icelandic text using various
taggers

?A baseline tagger which assigns each known word its most frequent tag, and the most
frequent noun tag/proper noun tag to lower case/upper case unknown words.

bOur results for the MXP, TBL and TnT taggers are slightly different from the results
in (Helgadottir 2004), which can probably be explained by different parameter settings.

“Error reduction with regard to the errors made by the baseline tagger.

ITraining and testing time is measured in seconds (on an Intel Pentium 1.6Ghz, with
512MB of RAM) for the first training (531k) and test corpora (59k) pair of the IFD corpus.
IceTagger (Ice) does not need a training phase.

e The fnTBL obtains the same accuracy for known words as the TnT
tagger, but is the least effective of all the taggers for unknown words.

e The ThnT tagger is by far the fastest tagger, both for training and
testing. To some extent, this is due to the implementation language,
i.e. the tagger is written in C, whereas, for example, IceTagger is
written in Java.

e For each test corpus, the difference between IceTagger and the clos-
est competitor (TnT)® is statistically significant (o < 0.005, using
McNemar’s chi-squared goodness-of-fit test as described by Dietterich
(1998)).

7.2.5 Using other corpora

When evaluating tagging accuracy it is important, if at all possible, to test
taggers on text types that the taggers have not been trained on (in the case

6Since the Tri tagger is a re-implementation of the TnT tagger, we consider the latter
as the main competitor.




7.2 Evaluation of IceTagger 137

Test # of # of unknown word
Corpus tokens sentences ratio

young 3,881 234 7.21%

old 6,023 226 8.88%

law /business 2,778 134 13.97%
computers 2,926 142 15.07%
newspaper 10,016 500 11.08%

Table 7.18: Statistics for the other corpora

young literature old literature
Tagger | Unknown Known All Unknown Known All
words words  words | words words  words

Ice 74.64% 93.03% 91.70% | 72.90% 92.78% 91.02%
TnT 76.43% 92.25% 91.11% | 72.86% 93.36% 91.53%
TBL 57.50% 91.17% 88.74% | 59.11% 91.92% 88.99%
MBT | 60.36% 90.86% 88.66% | 57.81% 91.23% 88.25%
MXP | 65.00% 90.39% 88.56% | 64.31% 90.43% 88.10%

Table 7.19: Tagging accuracy for the young and old corpora

of DDT taggers), or on text types that have not been used for development
of the taggers (in the case of linguistic rule-based taggers).

In this section, we present evaluation results for all the previously used
taggers, using the text segments described in Section 4.1.2. The segments
consist of 5 types: young literary work, old literary work, law/business text,
text about computers and newspaper text. For convenience, the statistics on
the other corpora from Section 4.1.2 is reproduced in Table 7.18.

We trained each DDT using the whole IF'D corpus as the training cor-
pus and tested each tagger on each of the text segments. Note that since
IceTagger is not a DDT it does not need a training phase. The results are
summarised in tables 7.19 — 7.23.

From tables 7.19 — 7.23, we can deduce the following:

e JceTagger achieves the highest accuracy for four out of the five different
text segments — it is only beaten by the TnT tagger when tagging
the old corpus. The reason for lower tagging accuracy of IceTagger
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law/business texts computer texts
Tagger | Unknown Known All Unknown Known All
words words ~ words | words words  words

Ice 75.77% 90.50% 88.44% | 51.47% 91.31% 85.30%
TnT 70.69% 88.91% 86.36% | 48.98% 90.91% 84.59%
TBL 53.47% 87.15% 82.43% | 37.64% 89.13% 81.37%
MBT | 58.10% 87.44% 83.33% | 41.72% 88.89% 81.78%
MXP | 60.93% 87.15% 83.48% | 44.22% 88.37% 81.72%

Table 7.20: Tagging accuracy for the business/law texts and computer texts

newspaper texts

Tagger | Unknown Known All
words words  words
Ice 71.71% 93.45% 91.04%
TnT 64.75% 89.44% 86.70%
TBL 50.45% 90.39% 85.95%
MBT | 53.15% 89.16% 85.16%
MXP | 55.04% 88.86% 85.10%

Table 7.21: Tagging accuracy for the newspaper texts
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Test Common Proper Adjectives Verbs All words

corpus nouns nouns

young 79.63% 77.27% 70.21% 73.17%  74.64%
(57.86%) (7.86%) (16.79%)  (14.64%)

old 78.04% 82.98% 73.03% 64.10%  72.90%
(55.33%) (8.79%)  (16.64%)  (14.58%)

law /business  80.80% 54.55%  86.87% 55.56%  75.77%
(71.13%)  (11.34%) (7.73%)  (4.64%)

computers 79.08%  22.76%  51.43% 52.94%  51.47%
(44.44%) (32.88%) (7.94%) (3.85%)

newspaper 82.94%  44.83%  80.92% 63.53%  71.711%
(53.87%) (23.51%) (11.80%)  (7.66%)

Table 7.22: Tagging accuracy of IceTagger for different word classes of un-

known words. The figures in parenthesis show how often each class occurs

Test Morpho Compound Ending | Morpho Compound Ending
corpus analysis analysis analysis | accuracy accuracy accuracy
young 34.29%  31.07% 31.43% | 80.21%  80.46% 69.32%
old 34.02%  32.90% 31.59% | 78.02%  76.70% 65.68%
law /business | 34.02%  45.36% 16.24% | 82.58%  77.84% 58.73%
computers 17.46%  31.75% 36.73% | 80.52%  70.00% 33.33%
newspaper 28.92%  33.33% 30.45% | 84.74%  81.62% 57.40%

Table 7.23: The table shows the ratio of unknown words that are success-
fully analysed by components of IceMorphy, and the corresponding tagging

accuracy of IceTagger for these words
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compared to TnT for this corpus is the surprisingly high accuracy of
the latter tagger for known words (93.36%). This accuracy is much
higher than the corresponding accuracy (91.82%) of the TnT tagger
when tagging the IFD corpus (see Table 7.17). This is difficult to
explain, but bear in mind that, in this experiment, the size of the test
corpus is small compared to the test corpora sizes we used when testing
against the IFD corpus.

The data-driven taggers achieve comparable tagging accuracy on the
newspaper text (see Table 7.21). IceTagger, however, obtains much
higher accuracy than the other taggers (error reduction with regard to
the TnT tagger is 32.6%). The most probable explanation for this is
that the DDTs have been trained on material which is different from
the testing material, i.e. the IFD corpus does not include newspaper
texts. The results thus indicate that the performance of the DDTs is
sensitive to its training material. IceTagger was, on the other hand,
developed by building linguistically motivated rules, which should be
better applicable to any type of text.

The tagging accuracy of IceTagger decreases as the ratio of unknown
words in the test corpora increases. For the young, old, computers,
law/business and computers corpora, the unknown word ratios are
7.21%, 8.88%, 11.08%, 13.97% and 15.07%, respectively, and the tagg-
ing accuracy for these corpora is 91.70%, 91.02%, 91.04%, 88.44% and
85.30%, respectively.

For all the taggers, the tagging accuracy of unknown words in the
computer texts is substantially lower than for unknown words in the
other texts. This can, first, be explained by the large ratio of unknown
proper nouns (technical acronyms) in these texts (and the small ra-
tio of common nouns), compared to the other texts (see Table 7.22).
Secondly, the IFD corpus, which the DDTs were trained on, does not
include any technical texts and the DDTs have, thus, not been able to
learn from such texts. IceTagger has similar problems in this regard
because its unknown word guesser, IceMorphy, was developed with re-
gard to a part of the IFD corpus.
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7.2.6 Conclusion

In this chapter, we have evaluated individual components of IceTagger and
compared its overall tagging accuracy to corresponding accuracy obtained by
DDTs.

Evaluation of IceMorphy, the unknown word guesser used in IceTagger,
showed that its precision, when guessing possible tags for all unknown words,
is just above 58%. The recall, however, whose accuracy is more important
for a tagger, is close to 76%. Note, however, that with a more comprehensive
dictionary, both the precision and the recall of IceMorphy should improve.
We would like to verify this hypothesis in future work.

Our evaluation results for Ice Tagger shows that it obtains higher accuracy
than five state-of-the art DDTs, when tested against the IFD corpus. Using
this corpus, our tagger makes 11.5% less errors than the best performing
DDT. Furthermore, for four out of five other different test corpora, IceTagger
obtains the highest accuracy.

The disambiguator of IceTagger uses only about 175 local rules, but is
able to achieve high accuracy through the use of global heuristics along with
automatic tag profile gap filling. The heuristics guess the functional roles
of the words in a sentence, mark prepositional phrases and use the acquired
knowledge to force feature agreement where appropriate. Other morpho-
logically complex languages might use similar heuristics for POS tagging.

Contrary to previous experience and assumptions, our work shows that
a linguistic rule-based approach does not have to be very labour intensive in
order to achieve high tagging accuracy. In the design of the disambiguation
phase of IceTagger, main emphasis was put on developing the heuristics, in-
stead of writing a large set of constraint rules. Moreover, the main dictionary
used by IceTagger is automatically derived from the IFD corpus. This is the
main reason why the development of the system took only 7 man months.
In Section 5.3.1, we stated that the aim of developing IceTagger was to show
that a linguistic rule-based tagger could be developed, without an enormous
effort, which, due to data sparseness problems, could achieve higher accuracy
than a state-of-the-art data-driven tagger. Our evaluation shows that we did
indeed succeed.

We are convinced that the tagging accuracy of IceTagger can still be
improved, by improving each of its individual components. For example,
writing more local rules, to handle the frequent ambiguous word forms, will
certainly be beneficial. The heuristics can also be improved, as discussed in
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Section 7.2.2.1. Trying to improve the accuracy of a DDT| however, demands
a significantly larger training corpus, which is time-consuming to construct.

The main dictionary used by Ice Tagger is derived from a training corpus.
Using the whole IFD corpus, the dictionary consists of about 60,000 word
forms. In future work, we would like to evaluate the tagger using a much
larger dictionary. Such a dictionary can be constructed using data from
Beygingarlysing islensks nitimamdls (Morphological Description of Icelandic;
(Bjarnadottir 2005)), a resource currently containing about 250,000 lemmas
and 5.5 million word forms. Due to size, it is imperative that such a dictionary
is represented using an appropriate data structure, like a trie, or converting
it to a DFA. By using a larger dictionary, the ratio of unknown words should
decrease and result in higher tagging accuracy. On the other hand, the
average ambiguity rate could increase (on the average, more tags should
be found for each word form), which itself should result in lower tagging
accuracy.

The tagset used in this research is large, i.e. consists of about 660 tags. In
future work, we would like to design a smaller version of this tagset (in fact,
we experimented with a smaller tagset in Section 7.2.3). When designing the
smaller tagset, the main decision is what features of the large tagset can be
left out without to much loss of information. In fact, the large tagset does
include information which are not of syntactic nature, i.e. the last character
for proper nouns which encodes named entity information. Moreover, we will
later see, in our work on shallow parsing (see chapter 6), that a substantial
part of the features can be omitted for the purpose of shallow parsing.

7.3 Integration of taggers

In this section, we describe four integration methods, all of which have
resulted in an improved tagging accuracy of Icelandic text.

The first three methods consist of integrating our morphological analyser
with state-of-the-art DDTs. The last method consists of integrating our
trigram tagger Tri with IceTagger.

As can been seen in Table 7.17, the tagging accuracy of fnTBL for un-
known words is relatively poor (55.51%). In order to improve this accuracy,
we overwrote fnTBL’s default initial tagging assignment for unknown words
(which assigns the most probable common noun tag (proper noun tag) to an
unknown lower case word (upper case word)) by calling IceMorphy instead
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(this was possible due to the availability of fnTBL’s source files). We made
IceMorphy return the most probable tag (according to the relevant training
corpus) from the set of guessed tags for the given unknown word (recall that
a transformation-based method needs one single tag for its initial assign-
ment). This increased the overall accuracy of fnTBL from 89.33% to 90.15%
(compare tables 7.17 and 7.24). The total accuracy obtained is though still
lower than the corresponding accuracy by the TnT tagger.

It is noteworthy that the tagging accuracy of IceTagger for known words is
substantially higher than the corresponding accuracy of the next best tagger,
TnT, as is evident in Table 7.17. This can partly be explained by the follow-
ing observation. The dictionary derived from a training corpus has, unfor-
tunately, a number of tag profile gaps. That is, for a given word w;, with
tags ti1, ti2, ..., tij, the correct tag profile, in fact, could have more than j
tags (the missing tags might just not have been encountered during training
(derivation of the dictionary). IceMorphy is able to generate missing tags
in a tag profile for a word belonging to a particular morphological class (see
Section 5.2.5), and IceTagger benefits from this functionality of IceMorphy.
In our experiments, we had noted that the tag profile gap filling component
contributes about 0.85% to the total average accuracy of IceTagger.

Our second integration method consists of using this feature of Ice Morphy
to generate a “filled” dictionary, to be used by another tagger, in this case the
TnT tagger. Each record in the dictionary used by 1’1 consists of a word
and the corresponding tags found in the training corpus. Additionally, to
facilitate lexical probability calculations, each tag is marked by its frequency
(i.e. how often the tag appeared as a label for the given word). Using the
same training corpus, we made IceMorphy generate a “filled” dictionary such
that each generated missing tag was marked with the frequency 17.

Consequently, by making the ThT tagger use this enhanced dictionary,
the tagging accuracy improved from 90.44% to 91.18% (compare tables 7.17
and 7.24).

The third integration method is an integration of our 7ri tagger with
IceMorphy. In order to improve the accuracy of this tagger, we call Ice Morphy
from within the 7' tagger to obtain possible tags for unknown words. We
made the Tri tagger only use the tags for those unknown words that go

"This seems logical since the missing tags were not found in the training corpus and are,
hence, infrequent. Admittedly, this is a very simple smoothing strategy and experimenting
with more sophisticated smoothing strategies would be worthwhile.
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successfully through morphological /compound analysis, but not those that
go through ending analysis because, in IceMorphy, the former is much more
accurate than the latter (see Table 7.4). Moreover, we made the Tri tagger
benefit from the tag profile gap filling described above. This version of the
Tri tagger achieves an accuracy of 91.34% (see Table 7.24).

The last integration method we have used is the integration of our ling-
uistic rule-based tagger with the 77 tagger. By making IceTagger call the
Tri tagger for full disambiguation (instead of simply selecting the most freq-
uent tag for a word not fully disambiguated) the overall tagging accuracy
increases from 91.54% to 91.80% (compare tables 7.17 and 7.24). The aver-
age ambiguity rate (tags per token) before calling the Tri tagger is 1.29.

Combining rule-based methods with statistical methods is well known.
In one study, a HMM tagger and a linguistic rule-based tagger were used
independently, their outputs aligned, and the result of the HMM tagger
used to solve remaining ambiguities in the output of the rule-based tagger
(Tapanainen and Voutilainen 1994). In another experiment, similar taggers
were used one after the other, but the HMM tagger was trained on the output
of the linguistic rule-based tagger (Ezeiza et al. 1998).

Note the difference between our integration method and the combination
used in these two papers. Our integrated system runs like a single tagger,
i.e. the text to be tagged is tagged only once. In contrast, the text is
tagged twice in the combination methods, and, additionally, post-processed
using alignment or training. A similar integration method as ours, using a
linguistic rule-based tagger and a HMM tagger, has, in fact, been used for
tagging Czech text (Haji¢ et al. 2001).

Henceforth, we will refer to the fnTBL+IceMorphy tagger as TBL*, the
TnT+IceMorphy tagger as TnT* the Tri+IceMorphy tagger as Tri* and
the IceTagger+Tri tagger as Ice*.

7.3.1 Conclusion

We have described several tagger integration methods for the purpose of
improving the tagging accuracy of Icelandic text. We have defined tagger in-
tegration as enabling one tagger to use a feature or a functionality of another
tagger. The accuracy of the best performing integrated tagger, consisting of
using IceTagger, for initial disambiguation, along with Tri, a tagger based
on a HMM, for full disambiguation, is 91.80%.
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Words/Tagger ~ TBL*  TnT*  Tri* Ice*
Unknown words 66.30% 72.80% 74.46% 75.33%
Known words 91.90% 92.54% 92.58% 93.00%
All words 90.15% 91.18% 91.34% 91.80%
Ay 7.69%  7.74%  9.13%  3.07%

Table 7.24: Accuracy using integration of taggers

%Error reduction with regard to the errors made by the unchanged version of the cor-
responding tagger.

7.4 Combination of taggers

In the first tagger combination experiment for Icelandic, the MXP, TBL
and TnT taggers were used in a simple voting scheme (see Section 7.1.1),
obtaining an average accuracy of 91.54% (using all ten test corpora of the
IFD corpus) (Helgadottir 2004) (see row 1 of Table 7.25). In this section, we
will combine unchanged version of taggers and integrated taggers to improve
upon this previously published result.

7.4.1 Simple voting

Our first combined tagger consists of using TBL, TnT and Ice in a simple vot-
ing scheme (in the case where all the three taggers disagree the tag proposed
by Ice is selected). We, thus, substituted the relatively low accuracy tagger
MXP for Ice. This substantially improves the tagging accuracy, from 91.54%
to 92.61% (see row 2 of Table 7.25). By adding the two least accurate tagg-
ers, MXP and MBT, to the combination pool, the overall accuracy increases
further to 92.80% (see row 3). This supports the hypothesis that adding
different taggers to a combination pool generally increases the accuracy. In
the case of (2:2:1) ties, we select the tag belonging to the most accurate
tagger in the tie, and when all taggers disagree we select the tag proposed
by the most accurate tagger, Ice.

Next, we used simple voting to combine TBL*, TnT* and Ice (recall that
the first two are improved versions of TBL and TnT (see Section 7.3)). Not
surprisingly, this combination improves the tagging accuracy from 92.61% to
92.94% (compare rows 2 and 4 in Table 7.25).
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The accuracy of the combined tagger in row 4 was next improved by
adding the taggers MXP and MBT to the combination pool, resulting in
an accuracy increase to 93.29% (see row 5). This time, the addition of the
two taggers is about twice as effective than before, mainly because of higher
accuracy for unknown words. The errors made by these two taggers for
unknown words are probably, in many cases, complementary to the corre-
sponding errors proposed by TBL* (which receives “help” from IceMorphy
for unknown words), but less complementary to TBL, which was used in the
combination pool in row 3.

The benefit of using our integrated taggers is clear by comparing the
accuracy of the combined taggers in rows 2 and 4, and in rows 3 and 5, in
Table 7.25.

Next, we replaced Ice with Ice*, i.e. Ice with the Tri tagger for full
disambiguation (recall that the accuracy of Ice is 91.54%, but accuracy of
Ice* is 91.80%). This slightly improved the overall tagging accuracy (see row
6 in Table 7.25).

Note that we have not used Tri* the second most accurate tagger, in
our combination. We did not expect an improvement by adding Tri* to
the pool because of reason of similarity, i.e. Tri* is a HMM tagger (as
TnT) and uses IceMorpy for guessing possible tags for unknown words
(as IceTagger). In fact, when we added Tri* as the sixth tagger to the
MXP+MBT+TBL*+TnT*+Ice* pool, the accuracy decreased from 93.34%
to 93.21%. This result agrees with other research, e.g. (Sjobergh 2003).

The first row of Table 7.26 shows the accuracy of the simple voting for
tags selected by different number of votes. The figures in parenthesis show
how often, on the average, each scenario occurs. For example, the scenario,
in which three taggers select the same tag, occurs 7.14% of the time and
the accuracy of the selection is 63.42%. As expected, the accuracy decreases
with fewer votes behind the selected tag.

7.4.2 Weighting

Up to this point, we have only used simple voting when combining the tagg-
ers. The next logical step is to try more sophisticated voting schemes, e.g.
weighted voting, in which we follow the work of van Halteren et al. (2001).

For weights, we, first, used the overall accuracy of each tagger (TotPre-
cision). This resulted, effectively, in no change in comparison with the best
simple voting scheme; see row 7 in Table 7.25.
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Accuracy of words

No. Combination Method® Unkn. Known  All® Ap©
1. MXP+TBL+TnT Simple 71.80% 92.99%  91.54% 12.2%
2. TBLA4TnT+Ice Simple 76.76%  93.77% 92.61% 12.7%
3. MXP+MBT+TBL+TnT+Ice Simple 76.74% 93.97%  92.80% 14.9%
4. TBL*4+TnT*+Ice Simple 76.55% 94.13% 92.94% 16.6%
5. MXP-+MBTHTBL*+TnT*+1ce Simple 78.70% 94.36%  93.29%  20.7%
6. MXP+MBT+TBL*+TnT*+Ice*  Simple 78.65%  94.41% 93.34%  18.8%
7. MXP+MBT+TBL*+TnT*+Ice* TotPrecision 78.56%  94.39%  93.32% 18.5%
8. MXP+MBTH+TBL*+TnT*+Ice*  TagPrecision 77.89%  94.28%  93.16% 16.6%
9. MXP+MBT+TBL*+TnT*+Ice*  Precision—Recall 78.85%  94.39%  93.33% 18.7%
10. MXP+MBT+TBL*+TnT*+Ice*  Simple+rule 1 78.65%  94.50%  98.43%  19.9%
11. MXP+MBT+TBL*+TnT*+Ice* Simple+rules 1&2 78.66%  94.56% 93.48%  20.5%

Table 7.25: Accuracy using combination of taggers

@Simple is majority voting, in which ties are resolved by selecting the tag of the most
accurate tagger in the tie. TotPrecision, TagPrecision, Precision—Recall are weighting
schemes, and rule refers to linguistically motivated rules.

bAll improvements in tagging accuracy are significant at o < 0.05, using McNemar’s
chi-squared goodness-of-fit test as described by (Dietterich 1998).

“Error reduction with regard to the errors made by the best single tagger in the corre-
sponding combination pool.

Second, we tried weighing with the precision of each tagger for each tag
(TagPrecision). Using these weights, the accuracy dropped to 93.16% (see
row 8).

Last, we tried using weights constructed by forcing each tagger not only
to use its precision for each tag, but, additionally, to add to the vote for tags
suggested by the opposition, by the amount (1-recall) on the opposing tag
(marked as Precision—Recall in row 9). The amount (1-recall) for a given tag
signifies how often a tagger fails to recognise the tag. This weight mechanism
did neither produce any improvements (see row 9)%.

These results, when using weighted voting, are similar to other published
results, e.g. using TotPrecision (Sjobergh 2003), and using TagPrecision and
Precision-Recall for a detailed tagset (van Halteren et al. 2001).

7.4.3 Linguistically motivated rules

The first row of Table 7.26 shows that the tagging accuracy of the combined
tagger is high when all the five individual taggers agree on the vote (98.86%).

8The precision and recall figures used were computed using the development corpus.
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Number of votes® Rules
No.>  Method 5 4 3 2 1 Rule 1 Rule 2
6. Simple 98.86% 84.46% 63.42% 45.63% 29.51%
(79.78%) (10.35%) (7.14%) (2.56%) (0.17%)
10. Simple+rule 1 98.87% 85.34% 63.86% 45.57% 28.44% 70.90%

(79.61%)  (10.14%)  (6.98%) (2.52%) (0.17%)  (0.56%)
11.  Simpletrules 1&2 98.87%  83.91%  61.73%  41.53%  25.81%  70.90%  87.36%
(79.61%)  (8.70%)  (6.03%) (2.20%) (0.16%) (0.56%) (2.74%)

Table 7.26: Accuracy for different number of votes, and for the linguistic
rules

®The figures in parenthesis show how often, on the average, each scenario occurs.
'The number refers to the corresponding row in table 7.25.

However, the accuracy falls rapidly with fewer and fewer votes behind the
selected tag. When the selected tag receives four votes the accuracy has
already dropped down to 84.46%, and even when there is a majority (3
votes) behind the selected tag, the accuracy is only 63.42%.

Linguistically motivated rules can help to improve the tagging accuracy
of a combination method. We wrote two kinds of rules, both of which are
based on specific strengths of Ice, and which are only fired if not all taggers
agree upon a vote.

First, we have noticed that the DDTs have difficulties providing the
correct tag for some specific tags in a particular context, whereas Ice per-
forms considerably better for those tags in the same context. This occurs, for
example, where there are “long” dependencies between a subject and a verb
and the verb has the same lexical form for first and third person. A typical
example (taken from the development corpus) is “ég opnadi dyrnar, steig inn

.. (I opened door, stepped inside ...). The verb “steig” should have the
tag sfglep (verb, indicative, active, first person, singular, past tense), but all
the DDTs propose a third person verb (sfg3ep). The reason is that the third
person verb is more frequent and the DDTs have a limited context window
size.

Another example of a long dependency is between a subject and a reflexive
pronoun, e.g. “...sagdi konan og ferdi sig ...” (...said woman and moved
herself ...), in which the reflexive pronoun has the same lexical form in all
genders. The correct tag for “sig” in this example is fpveo, but the DDTs
provide the tag fpkeo which is more frequent.

In both these examples, IceTagger provides the correct tag because of its
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built-in feature agreement functionality, but is outvoted by the DDTs. We,
thus, built a simple rule which always selects the first person tags, if they are
suggested by Ice, and the tags suggested by Ice for the reflexive pronouns
“sig9”, “sér” and “sin”. Despite the accuracy of this rule being only 70.90%,
(see Rule 1 in Table 7.26), the rule does improve the overall tagging accuracy
because of the relatively low recall of the other taggers for these tags. For
example, the average recall of the DDTs for the sfglep tag (computed using
the development corpus) is only 78.1%, compared to Ice’s recall of 91.6% for
the same tag.

For the second rule, we used a feature agreement constraint: “If all the
tags, provided by the individual taggers for the current word, are nominal
tags and the current tag provided by Ice agrees in gender, number and case
with the preceding nominal tag (agreed upon by all taggers) or the following
nominal tag (which has yet to be decided), then choose Ice’s tag” (this is
a slightly simplified version of our rule because we exclude specific nominal
pairs). Using this rule improves the tagging accuracy because disambiguating
using nominal feature agreement is one of the strengths of Ice. Table 7.26
shows that the accuracy of this rule (Rule 2) is 87.36%.

Row 11 of Table 7.25 shows that using simple voting along with the two
linguistically motivated rules results in an tagging accuracy of 93.48%.

7.4.4 Discussion
7.4.4.1 Most frequent errors

For the test corpora, we computed the average maximum obtainable accuracy,
97.70%, assuming a voting method always selects the correct tag. Equiva-
lently, this means that no tagger provides the correct tag for 2.30% of the
tags. This number can be regarded as a measurement of the relative difficulty
of the Icelandic tagging task. For Swedish, for example, no tagger is correct
for only 1.2% of the tokens (using seven taggers and a tagset of size 150)
(Sjobergh 2003), and for English the corresponding figure is 0.78% (using
four taggers and tagset size 170) (van Halteren et al. 2001).

Since there is a considerable gap between the highest accuracy using our
combined tagger and the maximum obtainable accuracy, there should still
be room for an improvement. In what follows, we use the definitions from
Section 7.2.3.1 (here repeated for convenience): A tag type error A >B occurs
when tag A is proposed by the combined tagger, but tag B is the correct
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tag. A word error occurs when a word is incorrectly tagged by the combined
tagger.

When analysing the errors made by the best combined tagger, we noticed
the following:

1. The 26 most frequent tag type errors are responsible for 25% of the
total errors.

2. The four most frequent tag type errors consist of selecting the accusa-
tive case instead of dative or vice verse (7.8% of the total errors). These
are the preposition tag type errors ap>ao and ao>ap and the noun
errors nveo>nvep and nvep>nveo. Note that these errors occur very
often in the same prepositional phrase, i.e. the combined tagger selects
the wrong case for the preposition+noun pair.

3. The next two most frequent tag type errors are aa>ao and ao>aa, con-
tributing 2.4% to the total errors. These are conflicts between adverbs
(tag aa) and prepositions.

4. The 42 most frequent word errors constitute 25% of the total errors.

5. The two most frequent word errors are the prepositions “7’ (in) and
“q” (on) (4.5% of the total errors), both of which govern either the
accusative case or the dative case (see item nr. 1 above). Moreover,
the word “d” is very ambiguous, i.e. it can have one of eight tags
ap_ao_sfglen_sfg3en aa_nven_ nwveo_ nuvep.

6. The third most frequent word error is “ad” (to) which can have one of
four tags ¢n_c¢_ap aa, denoting the infinitive marker, a conjunction,
a preposition governing accusative and an adverb, respectively.

The above distribution of errors in the best combined tagger is very similar
to the distribution of errors made by Ice (see Section 7.2.3.1).

One can deduce that in order to improve the tagging accuracy of Icelandic
text the individual taggers need to perform better on the most frequent tag
type and word errors. The problem is, however, that in many cases world
knowledge or semantic knowledge is needed to fix these errors. This especially
applies to the preposition tag type errors, in which a dative case is selected
instead of an accusative case, and vice verse.

For the DDTs the only option is to add more training material, and for
IceTagger more relevant linguistic rules need to be written.




7.4 Combination of taggers 151

7.4.4.2 Corpus annotation errors

We have previously pointed out that a combined tagger is useful for detecting
annotation errors in a corpus. We manually examined the first 1000 errors
made by our best performing simple voting method, when evaluated against
the tenth test corpora (which, if you recall, has been used for development of
Ice). Our examination revealed that 31 of the 1000 errors (i.e. 3.1%) were,
in fact, annotation errors.

The first 1000 errors appeared in the first 18,398 tokens of the test corpus,
ie. 0.17% (31/18,398) of these tokens have been incorrectly annotated. If
we assume that our sample is representative for the whole corpus, then this
ratio is considerably higher than the corresponding ratio, 0.10%, computed
using the English LOB corpus and manual examination of (only) 200 tokens
(van Halteren et al. 2001). However, bear in mind, that the IFD tagset is
almost 4 times larger than the LOB tagset.

7.4.5 Conclusion

We have described several combination methods for the purpose of improving
tagging accuracy of Icelandic text. We combined five taggers, each based on a
different language model. The best performing voting method (93.48%) con-
sists of simple voting, in which ties are resolved in favour of better performing
taggers, in addition to two simple linguistically motivated rules. This com-
bination reduces the error rate by 20.5%, with regard to the best performing
single tagger in the combination pool.

Error analysis showed that a small number of tag type errors is responsible
for a large ratio of the total errors. Furthermore, we demonstrated that a
small number of frequent words are responsible for these frequent tag type
errors. Finally, we showed how a combination tagger can be used to estimate
the annotation errors in a corpus.

Since the average obtainable maximum, computed using the test corpora,
is 97.70%, we believe there is still room for improvement. There are several
possibilities.

First, increasing the training corpus size. This is time-consuming, but
might be a feasible option because our best combination method could be
used for initial tagging, followed by manual corrections.

Second, adding more taggers to the combination pool might improve the
tagging accuracy, assuming the taggers are different from those already in
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our pool.

Third, adding more linguistic knowledge to IceTagger is possible, espe-
cially with the purpose of fixing frequent errors.

Fourth, the ratio of unknown words could be reduced by using an exten-
sive dictionary, as described in Section 7.2.6.

Lastly, in our experiments, we have only used voting methods for combin-
ing taggers, but it has been shown that using stacking methods can improve
the tagging accuracy further. In future work we would like to experiment
with such methods, e.g. methods based on memory-based learning or maxi-
mum entropy.




Chapter 8

Parsing Icelandic Text

8.1 Introduction

We decided to use the Parseval scheme (see Section 2.4.6) as the evalua-
tion method for IceParser. This scheme is the most common evaluation
method, and even though no previous parsing results have been published
for the Icelandic language (see Section 2.4.7) the widespread usage of this
scheme makes it at least possible to compare our results to results published
for related languages. Additionally, since our parser annotates constituent
structure (and syntactic functions, each of which can be treated as a sepa-
rate constituent during evaluation), it is straight-forward to use the Parseval
scheme.

Since no Icelandic treebank exists, we needed to build a gold standard to
be used in the evaluation. The gold standard consists of 509 sentences (8281
tokens), randomly selected from the IFD corpus. The IFD corpus is only
POS tagged, and thus we manually annotated the sentences with constituent
structure and syntactic functions, according to our annotation scheme (see
Section 6.2). The manual annotation was carried out by two persons'.

First, constituent structure was annotated, resulting in treebank A. Then,
the output of IceParser, for constituent structure only, was evaluated against
A. Second, syntactic functions were added to A and constituent structure
removed, resulting in treebank B. Correspondingly, the output of IceParser,
including syntactic functions, but with constituent structure removed, was

!'Thanks to Einar Freyr Sigurdsson, a Masters student in linguistics at the University
of Iceland, for helping the author with the annotation.
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then evaluated against B.

8.2 Evaluation

We used the Fwvalb bracket scoring program (Sekine and Collins 1997) for
automatic evaluation. For the evaluation of labelled constituent structure,
we carried out two experiments. In the first one, we used the POS tags
from the IFD corpus, i.e. we assumed correct tagging (see columns 2-4 in
table 8.1). In the second one, we used the tags generated by IceTagger (see
columns 5-7 in table 8.1).

In the case of correct tags, the overall F-measure (2*precision*recall /
(precision+recall)) is 96.7%. As can be deduced from table 8.1, VPz (which
stands for all subtypes of verb phrases; see Section 6.2.1.9), CP, SCP and
InjP are “easy” to annotate. These phrase types constitute 28.6% of the
phrases in treebank A, and thus help to make the overall accuracy quite
high. On the other hand, the accuracy for the more “difficult” phrase types,
like AP, NP and PP (which constitute 58.7% of the phrases), is about 95%-
97%, according to our results.

The F-measure for only three types of phrases, AdvP, APs and NPs, is
below 95%. At first sight, it might be surprising that the F-measure for
adverb phrases is not higher. This can, however, be explained (and will
be demonstrated in Section 8.3) by the fact that IceParser has problems
deciding when two (or more) adjacent adverbs form a single phrase. The
APs and NPs phrase types are used to group together a sequence of adjective
phrases and noun phrases, respectively. In Section 8.3, we will show that
annotating these phrase types is a relatively difficult task.

In the second experiment, we used IceTagger to tag the sentences in
treebank A, before IceParser was run. The POS tagging accuracy for these
sentences is 91.1% (unknown word ratio is 7.8%). In this case, the overall
F-measure for constituent structure drops from 96.7% to 91.9% (see column
7 in table 8.1), which is equivalent to about 5.0% reduction in accuracy. The
POS tagging accuracy is relatively low, compared to related languages (see
discussion in Section 7.1.1.1), and this has substantial effect on the overall
parsing accuracy.

As mentioned previously, we can not compare our results to other parsers
for Icelandic, since this evaluation is the first parser evaluation published for
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Using correct POS tags Using IceTagger
Phrase | Prec-  Recall F- Prec-  Recall F- Freq. in
type ision measure  ision measure test data
AdvP 94.5%  89.2% 91.8% | 86.3% 84.0% 85.1% 8.2%
AP 95.1%  95.2% 95.1% | 85.4% 87.2% 86.3% 8.1%
APs 83.3%  90.9% 87.0% | 64.9% 72.7% 68.6% 0.5%
NP 96.9%  96.7% 96.8% | 93.2% 92.9% 93.0% 37.6%
NPs 78.9%  82.0% 80.4% | 73.5% 75.0% 74.3% 1.5%
PP 96.7%  96.7% 96.7% | 91.5% 91.1% 91.3% 13.0%
VPx 99.2%  99.3% 99.2% | 93.7% 94.0% 93.8% 19.3%
CP 100.0% 100.0%  100.0% | 99.7% 99.5% 99.6% 5.7%
SCP 100.0%  99.1% 99.6% | 97.8% 97.4% 97.6% 3.4%
InjP 100.0% 100.0%  100.0% | 100.0% 92.9% 96.3% 0.2%
MWE 93.9% 100.0% 96.9% | 92.4% 92.9% 92.6% 2.5%
All 96.8%  96.6% 96.7% | 92.0% 91.8% 91.9% 100.0%

Table 8.1: Accuracy for the various phrase types

the language. For the sake of a comparison with a related language?, Swedish,
Knutsson et al. (2003) report 88.7% F-measure for all phrases, and 91.4% for
noun phrases, when using a tagger to preprocess the text and a shallow (not
finite-state) rule-based parser. Using a finite-state parser, Kokkinakis and
Johansson-Kokkinakis (1999) report higher numbers, 93.3% for all phrases
and 96.2% for noun phrases, despite using a tagger for preprocessing. The
tagger used, however, obtains very high accuracy when tagging the test data,
ie. 98.7%. We believe that this comparison indicates our parser performs
well when annotating constituents.

For the evaluation of syntactic functions, we also carried out experiments
with and without correct tagging®. When using the correct tags from the
IFD corpus, the overall F-measure is 84.3% — see column 4 of table 8.2.
When considering subjects and objects the highest accuracy is obtained for
the functions SUB.J> and OBJ<, i.e. a subject whose accompanying verb is

2Note that comparison between languages is questionable, because of different language
characteristics, parsing methods, annotation schemes, test data, evaluation methods, etc.

3By converting curly brackets (used to indicate syntactic functions), in the output of
IceParser, to ordinary brackets, we were able to use the Fvalb program for measuring the
accuracy of the syntactic function annotation.
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to the right, and an object whose accompanying verb is to the left. This was
to be expected because the normal word order is SVO.

The F-measure for COMP< is only 75.1%. This can be explained by the
relatively low recall (66.7%) as demonstrated in Section 8.3.2.

When IceTagger is used to produce tags, the overall F-measure for syn-
tactic functions drops from 84.3% to 75.3% (see column 7 in table 8.2), which
is equivalent to about 10.7% reduction in accuracy. Thus, the accuracy of the
syntactic functions module is more sensitive to tagging errors than the consti-
tuent module. This can be explained by the fact that the former component
relies to a much higher extent on the case feature, which is often responsible
for the errors made by the tagger. Moreover, the additional errors, made by
the phrase structure module when using POS tags from IceTagger, propagate
through to the syntactic functions module.

Again, we are not in a position to compare our results to another Icelandic
parser. For German (a related language), Miiller (2004), for example, has
presented the following results of syntactic function annotation using a finite-
state parser (and correct POS tags from a corpus): 82.5% F-measure for
all functions, and 90.8%, 64.5% and 81.9%, for subjects, accusative objects
and dative objects, respectively. If these results are used for comparison,
IceParser seems to obtain good results for syntactic functions.

Table 8.3 shows the accuracy of IceParser when the relative position in-
dicator is ignored (many shallow parser do not include such an indicator).
For example, when the three subject functions SUBJ, SUBJ> and SUBJ<
are combined into one (SUBJ), the F-measure for SUBJ is 90.5%. Corre-
spondingly, the F-measure for OBJ is 88.2%, when the three object functions
OBJ, OBJ> and OB.J< are combined into one.

Due to the modular architecture of IceParser, we were able to feed our
gold standard phrase structure annotation into the syntactic functions mod-
ule with the purpose of getting upper bound figures for current version of the
module. The results are shown in Table 8.4. The overall F-measure is 88.3%,
which is 4.0% higher than the corresponding F-measure shown in Table 8.2.
This demonstrates that it is important to try to increase the accuracy of the
phrase structure module.

In the first version of IceParser, the output file of one transducer is used
as an input file in the next transducer in the sequence. This version processes
about 6,700 word-tag pairs per second (running on a Dell Optiplex GX620
Pentium 4, 3.20 GHz). We have implemented another version of the parser
which, instead of reading and writing to files, reads from and writes directly
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Using correct POS tags Using IceTagger
Function Prec-  Recall F- Prec-  Recall F- Freq. in
type ision measure  ision measure test data
SUBJ 56.1%  87.1% 68.2% | 37.7% 64.7% 47.6% 4.7%
SUBJ> 95.5%  90.1% 92.7% | 92.5% 86.4% 89.4% 30.3%
SUBJ< 86.5%  81.1% 83.7% | 771.8% T12.5% 75.1% 12.3%
OBJ 0.0% 0.0% 0.0% 0.0%  0.0% 0.0% 0.2%
OBJ> 55.6%  35.7% 43.5% | 33.3% 14.3% 20.0% 0.8%
OBJ< 91.1%  89.3% 90.2% | 79.9% 76.6% 78.2% 19.7%
OBJAP> 60.0% 100.0% 75.0% | 50.0% 66.7% 57.2% 0.2%
OBJAP< 83.3%  62.5% 71.4% | 60.0% 37.5% 46.2% 0.4%
OBJNOM< | 100.0%  18.2% 30.8% | 100.0%  9.1% 16.7% 0.6%
I0BJ< 78.6%  68.8% 73.3% | 63.6% 43.8% 51.9% 0.9%
COMP 44.8%  78.0% 56.9% | 31.8% 54.0% 40.0% 2.8%
COMP> 91.3%  91.3% 91.3% | 85.0% 73.9% 79.1% 1.3%
COMP< 85.9%  66.7% 75.1% | 80.6% 91.8% 70.0% 12.7%
QUAL 85.7%  89.8% 87.7% | 76.7% 79.4% 77.9% 10.4%
TIMEX 88.6%  64.6% 74.7% | 95.0% 39.6% 55.9% 2.7%
All 85.3%  83.3% 84.3% | 771.0% 73.7% 75.3% 100.0%

Table 8.2: Accuracy for the various syntactic functions

Using correct POS tags Using IceTagger
Function Prec-  Recall F- Prec- Recall F-
type ision measure  ision measure
SUBJ 90.4% 90.6% 90.5% | 84.0% 85.0% 84.5%
OBJ 90.2% 86.3% 83.2% | 79.1% 73.4% 76.2%

OBJAP 2.7% 172.7% 72.7% | 55.6% 45.5% 50.0%
OBJNOM | 100.0% 18.2% 30.8% | 100.0%  9.1% 16.7%

I0BJ 78.6% 68.8% 73.3% | 63.6% 43.8% 51.9%
COMP 83.3% 79.4% 81.3% | 73.6% 68.4% 70.9%
QUAL 85.7% 89.8% 7. 7% | 76.7% 79.4% 77.9%
TIMEX 838.6% 64.6% 74.7% | 95.0% 39.6% 55.9%
All 88.4% 86.3% 87.4% | 80.4% 76.9% 78.6%

Table 8.3: Accuracy for the various syntactic functions when ignoring the
position indicator
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Using correct POS tags

Function Precision Recall F-measure
type

SUBJ 582%  91.8% 71.2%
SUBJ> 96.7%  91.2% 93.9%
SUBJ< 92.2%  84.7% 88.3%
OBJ 0.0% 0.0% 0.0%
OBJ> 55.6%  35.7% 43.5%
OBJ< 94.8%  92.7% 93.7%
OBJAP > 60.0% 100.0% 75.0%
OBJAP< 100.0%  87.5% 93.3%
OBJNOM < 100.0%  18.2% 30.8%
IOBJ< 78.6%  68.8% 73.3%
COMP 48.9%  86.0% 62.3%
COMP > 91.3%  91.3% 91.3%
COMP< 92.3%  75.0% 83.0%
QUAL 94.3%  97.3% 95.8%
TIMEX 97.0%  66.7% 79.0%
All 89.3%  87.2% 88.3%

Table 8.4: Accuracy of syntactic function annotation over gold-standard
phrase bracketing

to memory (using the Java classes StringReader and StringWriter). This
version annotates about 11,300 word-tag pairs per second, which is equivalent
to about 75% speed increase compared to the previous version.

8.3 Error analysis

In this section, we analyse some of the errors made by IceParser, for the case
of correct POS tags. First, we look at errors made during phrase annotation
and, then, we consider errors in syntactic functions annotation. Lastly, we
investigate the performance of IceParser when annotating special types of
sentences, namely interrogative sentences and relative clauses. In the discus-
sion, we occasionally refer to the individual transducers of IceParser, which
are described in detail in Appendix C.
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8.3.1 Errors in phrase annotation

Here, we show examples of phrase annotation errors for each of the different
phrase types shown in table 8.1, for which the F-measure is below 99.0%.

e AdvP
The only type of error in adverb phrase annotation occurs when the
parser incorrectly groups together two (or more) adjacent adverbs.
Consider the incorrect output (in the examples below, the POS tag
follows each word):

[PP um ao [NP pad fpheo NP| PP| [VP vissi sfg3ep VP] [NP stelpan
nveng NP| [AdvP ekki aa pd aa AdvP]
(about that knew girl not then)

The two adverbs at the end should form two distinct AdvPs because
ekki is a sentence adverb which does not modify the temporal adverb

bé.

e AP
Adverbs are also the source of some of the errors made in then anno-
tation of adjective phrases. Consider the incorrect output:

[CP og CP] [VP toku sfg3fp VP| [NP [AP [AdvP fram aa AdvP] eigin
lufoof AP] désir nufo NP]
(and took out own cans)

In this sentence part, the adverb fram is a particle associated with the

verb tdku (take out), but not a modifier of the adjective eigin. This type

of error could be reduced by building an exhaustive list of verb-particle
S

pairs®.

e APs
Since an APs consists of a sequence of adjective phrases, errors in the
latter phrases affect the former. Consider, for example, the incorrect

4Note that, for this purpose, we would need all wordforms in singular and plural, present
and past tense, indicative and subjunctive mood, etc., for the given verbs. Arguably, this
list would be quite large.
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output:

[VP stéo sfg3ep VP| [NP hann fpken NP| [APs [AP [AdvP uppi aa
AdvP] slyppur lkensf AP [CP og ¢ CP| [AP snaudur lkensf AP| APs|
(stood he up empty-handed and poor)

Once again, an adverb is the root of the error — wupp: is a particle
associated with the verb stdd, but not a modifier of the adjective slyp-
pur. The adjective phrase uppi slyppur is therefore wrong, and, conse-
quently, the whole sequence of adjective phrases is incorrect according
to the evaluation method.

To illustrate another type of error in APs annotation, consider the
following incorrect output:

[NP jardvegurinn nkeng NP] [VPb er sfg3en VPb] [APs [AP friésamur
lkensf AP| [CP og ¢ CP| [AP gljaandi lkenof AP[, , [AP tilbiinn lkensf
AP] APs| [VPi a0 cn gefa sng VPif

(the soil is fertile and shiny, ready to give)

An APs is defined as two or more adjective phrases, separated by a
conjunction or a comma (and agreeing in gender, number and case).
This pattern applies to the substring above and, therefore, IceParser
groups the three adjective phrases into one APs. The last adjective,
tilbiinn, should, however, not be a part of the APs because it is not
part of the enumeration. This type of error could be fixed by modifying
the definition of a APs, i.e. by not allowing a comma to appear after a
conjunction has appeared.

NP
A frequent noun phrase error made by the parser is exemplified by the
incorrect output:

[NP drin nhfng NP] [AP gullnu Ihfnuf AP]
(years golden)

Here, the correct annotation is [NP drin nhfng [AP gullnu lhfnvf AP]
NP] because the adjective gullnu is a post-modifier of the noun drin.
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IceParser makes this type of error because it does not include a pattern
for <noun/pronoun-adjective> word order.

Note that this type of error can not simply be accounted for by adding
a regular expression to the Phrase NP transducer, which groups a
noun/pronoun and a following adjective, agreeing in gender, number
and case, together into a NP. The reason is that, even though an agree-
ment holds between a noun/pronoun and a following adjective, the two
words might not be a part of the same NP! To see why, consider the
following sentence part:

[VPb er sfg3en VPb] [NP hann fpken NP] [AP dlikur lkensf AP]
(is he different)

Here, feature agreement holds between the pronoun hann and the adjec-
tive dlikur (as can be seen by comparing the corresponding POS tags),
but these words constitute two separate noun phrases, corresponding
to a subject and a verb complement.

When the word order <adjective-noun> occurs in Icelandic text, it is
very likely that the words are part of the same noun phrase, i.e. that
the adjective modifies the noun. There are exceptions to this — con-
sider, for example, the incorrect output:

[NP pau fphfn NP| [VPb voru sfg3fp VPb] [NP [AP barnlaus lhfnsf
AP| hjonin nhfng NP|
(they were childless couple-the)

In this case, the adjective barnlaus is not a modifier but a comple-
ment of the verb voru. The meaning of the sentence is essentially: they
couple-the were childless, and, therefore, the correct annotation is:

[NP pau fphfn NP| [VPb voru sfg3fp VPb] [AP barnlaus lhfnsf AP]
[NP hjonin nhfng NP]
An extreme example of an error made by IceParser for noun phrase

annotation is the following output:

[NP einna fohfe [AP likast lhense AP] kl6 nvep NP
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(rather like plug)

These words are grouped into a noun phrase because the pattern <in-
definite pronoun, adjective, noun> is a normal word order in such
phrases. In this case, however, all the three words have different case
markers, and should therefore be annotated as:

[NP einna fohfe NP| [AP likast lhense AP| [NP klé nvep NP

This type of error can be eliminated by using the case feature in the
patterns of the Phrase NP transducer.

NPs

The Phrase_ NPs transducer groups together a sequence of noun phrases
agreeing in case. Such a sequence, typically, denotes an enumeration
of some kind (see Section 6.2.1.8). This grouping can, however, result
in errors. Consider, for example, the incorrect output:

[AP sterkur lkensf AP [VPb var sfg3ep VPb] [NPs [NP hann fpken
NP] [CP og ¢ CP] [NP ipréttamadur nken NP| NPs| [AP ageetur lkensf
AP]

(strong was he and athlete fine)

Here, the parser groups the noun phrases [NP hann fpken NP[ and [NP
iprottamadur nken NPJ together because the phrases agree in case. The
correct annotation, however, is:

[AP sterkur AP| [VPb var VPb] [NP hann NP| [CP og CP] [NP iprdtta-
madur [AP dgetur AP| NP|

In general, the regular expressions, used by the Phrase_ NPs trans-
ducer, demand the comma token or a conjunction between the noun
phrases. Thus, noun phrases like:

[NPs [NP ordio nheng NP| [NP hjdtri nven NP| NPs|
(word-the superstition)
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...are incorrectly annotated by IceParser as:

[NP ordid nheng NP| [NP hjdtri nven NPJ

On the other hand, the Phrase_ NPs transducer does not demand a
token between two noun phrases, when the former phrase consists of a
proper noun and the latter of a common noun, for example:

[NPs [NP Jonas nken-m NP| [NP skdlastjori nken NP| NPs/
(Jonas headmaster)

This is quite a common scenario, but, the corresponding pattern can
result in errors like:

[NPs [NP Jona nven-m NP| [NP mamma nven NP| NPs| [NPs [NP
hans fpkee NP] [INP Ola nkee-m NP] NPs|
(Jona mother his Ola)

In this case, the correct annotation is:

[NP Jona nven-m NP| [NP mamma nven NP| [NPs [NP hans fpkee
NP| [NP Ola nkee-m NP| NPs|

e PP
Prepositions in Icelandic are the only type of adpositions. However, a
certain few prepositions can, in fact, appear after the associated noun
phrase. The Phrase PP transducer of IceParser does contain patterns
for some of these few exceptions, but not all of them. For example,
IceParser generated the incorrect output:

[VP foru sfg3fp VP| [NP fjandans nkeeg NP| [PP til ae PP
(went devil to)

This is, in fact, an idiom, and should be annotated as:

[VP foru sfg3fp VP| [PP [NP fjandans nkeeg NP] til ae PP]
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Since a NP or a NPs is included in a PP, errors in the annotation of
the former phrase result in annotation errors in the latter phrase. To
give on example, consider the incorrect output:

[PP d ap [NP jorou nvep NP| PP| [SCP sem ¢ SCP| [NP himni nkep
NPJ
(on earth as in heaven)

Here, the two noun phrases agree in case and are separated by a sub-
ordinating conjunction, which, in fact, functions as a coordinating con-
junction. The correct annotation is thus:

[PP d ap [NPs [NP jorou nvep NP| [SCP sem ¢ SCP| [NP himni nkep
NP] NPs] PP]

The Phrase_ NPs transducer, however, only considers coordinating con-
junctions when grouping noun phrases, and the above therefore results
in a PP annotation error.

Errors in the annotation of a special kind of MWE, the MWE PP, can
result in errors in annotation of preposition phrases. This is demon-
strated in the next item below.

MWE

IceParser relies on a list of multiword expressions for each of the differ-
ent kinds of MWEs (see Appendix C.4). This list was used when hand-
annotating the gold standard, and, therefore, the recall for MWEs is
100% (see table 8.1). On the other hand, precision is not 100% because,
in some cases, the MWEs found by IceParser are actually not MWEs
in the particular context. Consider, for example, the following incor-
rect output of IceParser:

[NP ég fplen NP| [VP stokk sfglep VP| [PP [MWE _PP it aa vid
ao MWE _PP| [NP kirkjugardinn nkeog NP| PP]
(I jumped out by cemetery-the)

IceParser annotates the adverb-preposition pair 4t-vid (out-by) as a
MWE;, but in this case the adverb 4t is actually a particle associated
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with the preceding verb stokk (jumped). As pointed out above, such
type of errors could be reduced by a list of verb-particle pairs.

8.3.2 Errors in syntactic functions annotation

As can be deduced from tables 8.1 and 8.2, the syntactic functions module
is less reliable than the phrase structure module. The reason is twofold.
First, as discussed in Chapter 3, Icelandic word order is rather free, and this
freedom mainly concerns the relative order of major syntactic constituents,
such as noun phrases (subjects and objects), preposition phrases and adverb
phrases. Second, phrase annotation is needed for the annotation of syntactic
functions, and, hence, errors in the former can produce errors in the latter.

In this section, we analyse some of the errors made by IceParser when
annotating syntactic functions.

e Subjects
To give an example where IceParser annotates a subject without a
correct position indicator, consider the output:

[VPb er sfg3en VPb] [AdvP ekki aa AdvP| [VPi a0 c¢n koma sng VPif
{*SUBJ [NP matur nken NP| *SUBJ} ¢ ¢
(is not to come food?)

The correct annotation for the subject is {*SUBJ< [NP matur NP/
¥SUBJ<} because matur is the subject of the verb er at the beginn-
ing of the sentence. IceParser does include patterns to match the
order <VP-AdvP-SUBJ>, but, in this case, the infinitive verb phrase
[VPi ad koma VPi] is positioned in between the AdvP and the SUBJ.
The parser, however, marks all stand-alone nominative noun phrases
as {*SUBJ ... *SUBJ}, and therefore the [NP matur NP| phrase does
receive subject marking, albeit incomplete.

In some cases, the parser does not recognise a subject whose accompany-
ing word is directly to the right. A typical example is the following
incorrect annotation:

[NP honum fpkep NP| [VPb var sfg3ep VPb] {*COMP< [AP ckunnugt
lhensf AP] *COMP<} [PP um ao PP
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(he was unaware of)

Here, the noun phrase should be marked as emph{*SUBJ> |[NP honum
fpkep NP| *SUBJ>} — the subject is an oblique case subject (i.e. a
non-nominative subject). The pattern <oblique case subject - the verb
vera - an adjective> is not uncommon, but the parser does not include
patterns for recognising oblique case subjects associated with the verb
vera.

Objects

As mentioned above, some of the errors in syntactic function anno-
tation are due to errors made in the phrase structure annotation. For
the incorrect phrase structure output (discussed in Section 8.3.1):

[CP og CP| [VP toku sfg3fp VP| [NP [AP [AdvP fram aa AdvP] ei-
gin lufoof AP] dédsir nufo NP]
(and took out own cans)

... the parser will produce the syntactic function:

{*OBJ< [NP [AP [AdvP fram aa AdvP] eigin lufoof AP] ddsir nufo
NP] *OBJ<}

This object is incorrect because it includes the adverb phrase [AdvP
fram aa AdvP].

The F-measure for indirect objets ({*IOBJ< ...*IOBJ<}) is only
about 73%. The reason is that a number of possible patterns for indi-
rect objects are not included in the parser. For example, consider the
incorrect output:

{*SUBJ > [NP pii fp2en NP] *SUBJ >} [VP getur sfg2en [AdvP ekki aa
AdvP] unnt ssg VP] {*OBJ< [NP mér fplep NP] {*QUAL [NP pess
fphee NP| *QUAL} *OBJ<}

(you can not comply me that)

(literally meaning “you cannot comply with me doing that”)
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Here, the di-transitive verb unnt demands an dative indirect object and
a genitive direct object, resulting in the correct annotation:

{*SUBJ> [NP pi fp2en NP| *SUBJ>} [VP getur sfg2en [AdvP ekki aa
AdvP| unnt ssqg VP| {*IOBJ< [NP mér fplep NP] *IOBJ<} {*OBJ<
[NP pess fphee NP| *OBJ<}

IceParser, however, only accounts for a <dative,accusative> or <accusa-
tive,dative> pattern for indirect and direct objects, and, therefore, an-
notates the genitive object as a genitive qualifier.

The F-measure for objects of an adjective ({*OBJAP< ... *OBJAP<},
{*OBJAP> ... *OBJAP>}) is only about 70-75%. Recall (from Section
8.3.1) the incorrect output:

{*OBJ< [NP einna fohfe [AP likast lhense AP] klé nvep NP| *OBJ<}
(rather like plug)

This is an example of a phrase annotation error which results in errors
in syntactic functions annotation. The correct annotation is:

{*QUAL [NP einna fohfe NP| *QUAL} {*COMP< [AP likast lhense
AP] *COMP<} {*OBJAP< [NP K6 nvep NP] *OBJAP<}

e Verb complements
Adverbs are responsible for some of the errors in verb complement
annotation. For example, IceParser generates the following incorrect
output:

[AdvP samt aa AdvP| {*COMP [AP [AdvP stundum aa AdvP| estur
lkensf AP] *COMP}
(nevertheless sometimes upset)

The adverb stundum does not modify the adjective estur, and thus the
correct annotation is:
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[AdvP samt aa AdvP| [AdvP stundum aa AdvP| {*COMP [AP estur
lkensf AP] *COMP}

In our discussion on NP errors, we mentioned an error occurring when
an adjective post-modifies a noun. This same error is partly to blame
for the relatively low recall for verb complements. Consider again the
noun phrase [NP drin nhfng [AP gullnu lhfnuf AP] NPJ, which in our
gold standard appears in the sentence:

{*SUBJ> [NP petta fahen NP| *SUBJ >} [VPb voru sfg3fp VPb] { *COMP <
[NP drin nhfng [AP gullnu (hfnuf AP] NP] *COMP<}
(These were years golden)

Since this NP is incorrectly annotated by the Phrase_ NP transducer,
the Func_ COMP transducer is not able to correctly annotate this
complement, which in turn negatively affects the recall for *COMP<.

In some cases, IceParser has problems distinguishing between subjects
and verb complements. Consider, for example, the incorrect output:

[AdvP kannski aa AdvP| [VPb hafdi sfg3ep [AdvP adeins aa AdvP|
verid ssg VPb] {*SUBJ< [NP kjinaskapur nken NP| *SUBJ<} [PP af
ap [NP honum fpkep NP| PP|

(maybe had only been silliness of him)

Because of a missing subject before the verb verid, the parser assumes
an inverted word order, i.e. that the nominative subject appears after
the verb. The noun kjdnaskapur is, however, a verb complement in this
context, and the correct annotation is:

[AdvP kannski aa AdvP| [VPb hafdi sfg3ep [AdvP adeins aa AdvP|
verid ssg VPb] {*COMP< [NP kjinaskapur nken NP] *COMP<} [PP
af ap [NP honum fpkep NP|] PP]

Another example demonstrating a subject/verb complement error is

the following incorrect output:

{*SUBJ> [NP pad fphen NP| *SUBJ>} [VPb gdtu sfg3fp verid ssg
VPb] {*COMP< [NP slitrur nufn NP] *COMP<} [PP 1r ap [NP dag-
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bladi nhep NP| PP|, , {*SUBJ [NP sigarettustubbar nkfn NP] *SUBJ}
., [AdvP jafnvel aa AdvP| {*SUBJ [NP plistrar nkfn NP] *SUBJ}
(it could be slits from newspaper, cigarettes-stubs, even plasters)

Here, both [NP sigarettustubbar nkfn NP| and [NP pldstrar nkfn NP
should be verb complements belonging to the preceding verb phrase
[VPb gdtu sfg3fp verid ssg VPb], but not subjects. Again, this type of
error has a negative affect on the recall for *COMP<.

e Qualifiers
Consider the incorrect annotation:

{*QUAL |[NP hvorugur foken drengjanna nkfeqg NP| *QUAL}
(neither boys-the)

Here, an incorrect annotation of the noun phrase, results in an error in
the annotation of the genitive qualifier (and a missing annotation of a
subject). The correct annotation is:

{*SUBJ> [NP hvorugur foken NP| *QUAL [NP drengjanna nkfeq NP|
*QUAL *SUBJ >}

8.3.3 Interrogative sentences and relative clauses

In Section 8.3.2 we analysed some errors in the output of IceParser with
regard to syntactic functions. Some of these errors point to the limitations
of the shallow (local) parsing mechanism. In this section, we investigate the
syntactic function annotation of IceParser with regard to interrogative sen-
tences and relative clauses. We would like to see if these type of constructions
are in some way more problematic for our parser.

In Icelandic (and in many other Germanic languages) an interrogative
sentence normally changes the word order so that the verb phrase appears
before the subject. However, the verb-subject-object order is not constrained
to interrogative sentences in Icelandic (as exemplified in Section 6.2.2.2).
Therefore the general patterns for handling subjects in declarative sentences
should work equally well for interrogative sentences.
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Consider the following examples®:

[VP gekk sfg3ep VP| {*SUBJ< [NP ferdin nveng NP] *SUBJ<} [AdvP ekki
aa vel aa AdvP| ¢
(went trip-the not well?)

[VPb eru sfg3fn VPb] {*SUBJ< [NP per fpufn NP] *SUBJ<} {*COMP<
[AP [AdvP ekki aa AdvP| unadslegar lufnsf AP] *COMP<} ¢
(are they not lovely?)

[AdvP hvar aa AdvP| [VPb er sfg3en VPb] {*SUBJ< [NP petta fahen NP]
*SUBJ<) ¢
(where is this?)

In all these three examples the subject is correctly annotated and the
relative position indicator points to the verb phrase appearing to the left of
the subject.

Of course, IceParser does not annotate all interrogative sentences cor-
rectly. Consider the following output:

{*SUBJ > [NP hvad fshen NP| *SUBJ>} [VPb eru sfg3fn VPb] {*SUBJ [NP
peir fpkfn NP] *SUBJ} {*COMP [AP margir lkfnsf AP] *COMP} ?
(how are they many?)

In this example, the noun phrase [NP hvad fshen NP] is not the sub-
ject of the verb eru, but rather the noun phrase [NP peir fpkfn NPJ. The
Func_SUBJ transducer annotates the first noun phrase as the subject, because
the word hvad is in the nominative case and appears to the left of a finite verb
phrase. The second noun phrase is then (in a later transducer) annotated
as a subject without a relative position indicator, because it is considered
a stand-alone nominative noun phrase. For a similar reason, the adjective
phrase at the end of the sentence is annotated as a stand-alone complement.

The correct annotation is:

[NP hvad fshen NP] [VPb eru sfg3fn VPb] {*SUBJ< [NP peir fpkfn NP]
*SUBJ<} {*COMP< [AP margir lkfnsf AP] *COMP<} ¢

5All examples in this section are taken from the output of IceParser.
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(how are they many?)

Let us now consider relative clauses. The only rule with regard to relative
clauses in IceParser is to mark nominative subjects appearing to the left of
a relativizer (the word sem tagged as ct)®. This works reasonably well, as
can be seen in the following examples:

{*SUBJ> [NP éq fplen NP| *SUBJ >} [VP reyndi sfglep VP[] {*SUBJ> [NP
allt fohen NP] *SUBJ >} [SCP sem ct SCP] {*COMP> [AP hewgt lhensf AP]
*COMP>} [VPb var sfg3ep VPb]

(I tried everything that possible was)

The noun phrase [NP allt fohen NP] is correctly annotated as the subject
of the verb war in the relative clause.
As another illustration, consider the following output:

{*SUBJ> [NP [AP ungur lkensf AP] madur nken NP| *SUBJ>} [SCP sem
ct SCP] [VP dkvad sfg3ep VP] [VPi ad cn bjarga sng VPi] {*OBJ< [NP
jordinni nvepg NP] *OBJ<}

(young man who decided to save earth-the)

Here the noun phrase [NP [AP ungur lkensf AP| madur nken NP] is cor-
rectly annotated as the subject of the verb dkvaod in the relative clause.

As an example of an error in the context of a relative clause, consider the
following;:

[CP og ¢ CP] {*SUBJ [NP peir fakfn menn nkfn NP| *SUBJ} [PP i ap [NP
[AP mestum hfpsf AP] metum nhfp NP| PP| [SCP sem ct SCP] {*COMP>
[AP skedastir lkfnse AP] *COMP>} [VPb eru sfg3fn VPb]

(and those men in most respected that vicious are)

In this example, a prepositional phrase appears between the noun phrase
[NP peir fakfn menn nkfn NP] and the relativizer. IceParser does not ac-
count for this possibility when marking a subject and therefore this particular

6A relativizer is a subordinating conjunction that links a relative clause to its head
noun.
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subject has a missing relative position indicator pointing to the right.

Recall (from Section 3.2) that the case feature in the POS tags provides
an important clue regarding the syntactic function of a phrase. For a simple
sentence like Madurinn elskar Mariu (Man-the loves Mary) the parser re-
turns the correct output (Madurinn is in the nominative case and Mariu is
in the accusative case):

{*SUBJ> [NP Madurinn nkeng NP| *SUBJ >} [VP elskar sfg3en VP] {*OBJ<
[NP Mariu nveo-m NP| *OBJ<}

The case feature is also valuable when annotating syntactic functions in
relative clauses. Consider the following output:

{*SUBJ> [NP Madurinn nkeng NP| *SUBJ >} [VP elskar sfg3en VP] {*OBJ<
[NP Mariu nveo-m NP| *OBJ<} [SCP sem ct SCP| [VP keypti sfg3ep VP]
{*OB.J< |[NP hest nkeo NP] *OBJ<}

(Man-the loves Mary who bought (a) horse)

(In case this English gloss is ambiguous, it is Mary who bought a horse)

Again this is a correct annotation (according to our annotation scheme).
The noun phrase [NP Mariu nveo-m NP] is in the accusative case and is
therefore not a subject candidate.

Furthermore, consider the following sentence:

{*SUBJ> [NP Madurinn nkeng NP| *SUBJ>} [SCP sem ct SCP| [VP el-
skar sfg3en VP| {*OBJ< |[NP Mariu nveo-m NP| *OBJ<} [VP keypti sfg3ep
VP| {*OBJ< [NP hest nkeo NP] *OBJ<}

(Man-the who loves Mary bought (a) horse)

(In case this English gloss is ambiguous, it is the man who bought a horse)

In examples like this one, IceParser is not “tempted” to annotate the noun
phrase in the embedded clause (/NP Mariu nveo-m NP]) as the subject of the
verb in the main clause (keypti), because the noun phrase is in the accusative
case. The parser thus correctly marks the noun phrase as an object of the
verb elskar.

These examples demonstrate that the parser consistently annotates sub-
jects and objects in sentences with or without a relative clause.

On the other hand, IceParser has problems annotating similar sentences
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where the main verb demands a non-nominative subject (in such cases the
object is in the nominative case). To illustrate, consider the following output:

[NP Manninum nkepg NP| [SCP sem ct SCP| [VP dskotnadist sfm3ep VP]
{*SUBJ< [NP [AP mikill lkensf AP| audur nken NP| *SUBJ<} [VP keypti
sfg3ep VP| {*OBJ< [NP hest nkeo NP| *OBJ<}

(man-the who acquired great wealth bought (a) horse)

Here the verb dskotnadist demands a non-nominative subject (note that
the noun manninum is in the dative case) and a nominative object. In this
case, the parser incorrectly marks the noun phrase /NP [AP mikill lkensf
AP| audur nken NP| as the subject of the verb dskotnadist. The correct
annotation is:

{*SUBJ> [NP Manninum nkepg NP| *SUBJ>} [SCP sem ct SCP| [VP
dskotnadist sfm3ep VP] {*OBJNOM< [NP [AP mikill lkensf AP] audur
nken NP] *OBJNOM<} [VP keypti sfg3ep VP] {*OBJ< [NP hest nkeo NP|
*OBJ<}

The following demonstrates a similar type of an error with regard to a
relative clause and a dative subject:

[VP hafoi sfg3ep VP| [AdvP ekki aa AdvP| {*OBJ< [NP augun nhfog NP]
*OBJ<} [PP af ap [NP manninum nkepg NP| PP] [SCP sem ct SCP] [VP
skoladi sfg3ep VP| {*SUBJ< [NP dlifunum nufpg NP| *SUBJ<} [PP [MWE_ PP
nidur aa med ap MWE _PP| [NP viskiinu nhepg NP| PP/

(had not eyes off man-the who washed olives-the down with whisky-the)

The correct subject of the verb skoladi (washed) is the noun phrase /NP
manninum nkepg NP] which is a part of a preposition phrase”. IceParser in-
correctly marks the dative noun phrase [NP dlifunum nufpg NP| as a subject
of the verb skoladi, because this particular verb can take a dative subject!
In that case, the verb has a different meaning, e.g. likinu skoladi d land,
meaning “the body washed (from the sea) to the shore”.

IceParser contains regular expressions for recognising non-nominative

"IceParser never marks a noun phrase contained in a preposition phrase as a subject
— it is simply not part of the annotation scheme.
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subjects®, but these expressions do not handle embedded clauses like the
ones above.

In this section, we have illustrated that IceParser annotates syntactic
functions reasonably accurately for interrogative sentences and relative clauses.
On the other hand, we have also showed that there exist frequent sentence
constructions which our parser does not annotated correctly.

8.4 Conclusion

In this chapter, we have evaluated the incremental finite-state parser IceParser,
for parsing Icelandic text. The parser comprises two modules: the phrase
structure module and the syntactic functions module. Both modules consist
of a sequence of transducers, which add syntactic information into the input
strings, according to our shallow syntactic annotation scheme.

Evaluation shows that F-measure for phrases and syntactic functions is
96.7% and 84.3%, respectively, when assuming correct POS tagging. We
have argued that these results are good because Icelandic has a relatively
free word order, which is difficult to account for in a parser.

Only three out of eleven phrase types result in less than 95% accuracy,
and for the three most common phrase types (NP, PP, and VPx) the F-
measure is about 97% or higher. Error analysis shows that adverbs are a
frequent source of errors made in the annotation of phrase structure. We
have indicated that the errors associated with adverbs could be reduced by
including a list of frequent verb-particle pairs in the parser. Moreover, the
noun phrase transducer only relies on word order, but by adding gender,
number and case agreement into its patterns, its accuracy would probably
increase.

For the two most common syntactic functions (*SUBJ > and *OBJ<), the
F-measure is above 90%. By ignoring the position indicator in the function
labels, the F-measure for syntactic function increases from 84.3% to 87.4%.
Since the syntactic function annotation depends on the phrase annotation,
it is very likely that improving the latter component will result in higher
accuracy in the former component.

Not surprisingly, our evaluation shows that accuracy of the parser decreases
when the POS tags are not perfect. When IceTagger is used for tagging the

8These patterns are recognised with the help of a list of verbs demanding such subjects.
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test data, we noticed a 5% reduction in accuracy for phrase structure, and
10.7% reduction in accuracy for syntactic functions. This indicates that it
is of prime importance to further improve the tagging accuracy of Icelandic
text.

We demonstrated that the overall upper bound on F-measure for the
current version of the syntactic functions module is 88.3%, obtained by run-
ning the gold standard phrase annotation through the syntactic functions
module.

Our parsing results are the first published results for the Icelandic lang-
uage. We have, therefore, not been able to compare our results to other
parsers for Icelandic. On the other hand, a comparison with related lang-
uages indicates that our results are good.

In Section 6.1, we hypothesised that the use of a finite-state parsing
method for a morphologically complex language, with a relatively free word
order, like Icelandic, is effective, and additionally, that an enormous effort
is not needed in the development of a finite-state parser for the language
in order to obtain good results. We believe that our evaluation shows that
finite-state parsing methods are, indeed, effective for Icelandic. Moreover,
good results were obtained by using only about 1 man year in development,
including the construction of the GDC, the development and testing of the
parser, the construction of the gold standard and evaluation work.

In Section 6.1, we also mentioned the importance of the case feature for
the purpose of grouping words together into phrases and identifying syntactic
functions. This feature has been used when writing many of the syntactic
patterns in Ice Tagger, but our error analysis has showed the benefit of using
this feature in more patterns.

In future work, we would like to improve individual components of our
parser, and build a version of it which utilises to a greater extent the morpho-
logical information available in the POS tags. Moreover, it would be interest-
ing to use the shallow output of IceParser as input into a full (deep) parsing
system.




Part 1V

Concluding remarks
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Chapter 9

Conclusions

In this last chapter, we give a summary of the thesis and some directions for
future work.

In this thesis, we investigated the effectiveness and viability of using
(mainly) rule-based methods for analysing the syntax of Icelandic text. We
developed a Natural Language Processing Toolkit, IceNLP, for this purpose.
The toolkit consists of a tokeniser/sentence segmentiser, the morphological
analyser IceMorphy, the linguistic rule-based POS tagger IceTagger, and the
shallow parser IceParser. In addition to developing a new tagger, we ex-
perimented with integration methods and combination methods of various
taggers, for the purpose of increasing the tagging accuracy. The above tools
and methods have been tested and evaluated, and compared to other appli-
cable methods.

The main motivation for our work was the lack of basic tools for processing
the Icelandic language, and we argued that this work is a step towards the
goal of developing a BLARK for the language.

The first part of the thesis (Part I — Introduction) presented the motiva-
tion for our work, and introduced background material on POS tagging and
syntactic analysis. Additionally, in this first part, we briefly described the
main characteristic of the Icelandic language.

In the second part (Part II — Data and System), we, first, described the
data used for development of the tools, as well as for evaluation. Secondly,
we described the tagging system, including tokenisation, the morphological
analyser, IceTagger, and TriTagger, our re-implementation of a known statis-
tical tagger. Lastly, the parsing system was described, including our shallow
syntactic annotation scheme and the functionality of our finite-state parser,
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IceParser

Evaluation of the system along with error analysis is presented in the
third part (Part III — Evaluation). We evaluated individual components
of IceTagger, i.e. the morphological analyser/unknown word guesser, the
heuristics, and the performance of the tagger as a whole. Overall, IceTagger
achieves about 91.5% tagging accuracy when tested using the IFD corpus.
This is about 1.1% percentage points higher than achieved by the best data-
driven tagger. Moreover, we presented evaluation results using other corpora
than IFD, which seem to indicate that our tagger is less sensitive to different
test material than the data-driven taggers.

We, originally, hypothesised that higher tagging accuracy could be ob-
tained by developing a linguistic rule-based tagger (without using an enor-
mous effort in the development) than achieved by a state-of-the-art statistical
tagger. Our tagging system was developed in only 7 man months, which can
be considered a short development time for a linguistic rule-based system.

By using various integration and combination methods, we were able to
increase the tagging accuracy of Icelandic text. Our best integrated tagger,
consisting of IceTagger and TriTagger, achieves 91.8% accuracy. By combin-
ing 5 different taggers, using a simple voting scheme and two linguistically
motivated rules, we obtained an accuracy of about 93.5%.

Both modules of IceParser, i.e. the phrase structure module and the
syntactic functions module, were evaluated. The former module achieves
96.7% F-measure, and the same measure for the latter module is 84.3%.
These results, which are comparable to results for related languages, are
obtained by using only a limited amount of information available in the
POS tags for each word. The overall time spent on development of the
parsing system was about 1 man year. Our work shows that finite-state
parsing methods are both effective and viable for a morphologically complex
language with a relatively free word order, like Icelandic. Note, moreover,
that no treebank exists for Icelandic, and, thus, using data-driven parsing
methods is currently not an option.

9.1 Future work

In the first part of this thesis, we argued that language technology has just
taken its first steps in Iceland. Consequently, a substantial effort, in the
coming years, will be devoted to further developing the BLARK for the
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Icelandic language. Tools like a tagger and a parser are now a part of the
BLARK, and we like to consider our work in this area as a foundation for
further research and development.

In the evaluation part of this work, we have discussed a number of issues
that we would like to work on in the future — here we summarise those:

e By using an extensive dictionary (instead of a dictionary derived from
the IFD corpus) the precision and recall of IceMorphy might improve.

e By writing more local rules in IceTagger to handle frequent ambiguous
word forms, the accuracy of the tagger should improve.

e The heuristics used by IceTagger can be improved, which should result
in higher tagging accuracy.

e The main dictionary used by IceTagger contains less than 60,000 word
forms. Intuitively, using larger (and more comprehensive) dictionaries
(derived from the large resource Morphological Description of Icelandic)
should result in higher accuracy because of fewer occurrences of un-
known words. However, larger dictionaries could result in higher av-
erage ambiguity rate, which generally reduces the tagging accuracy.
Therefore, experimenting with different dictionary sizes is an interest-
ing project.

e The tagset used in this research is large, i.e. consists of about 660 tags.
An important future work is to design a smaller version of this tagset
and evaluate the taggers using this new tagset. When designing the
smaller tagset, the main decision is what features of the large tagset
can be left out without to much loss of information.

e Evaluating the data-driven taggers using a larger tagged corpus (i.e.
larger than IFD) is now a feasible option. The best performing combi-
nation tagger can be used initially to tag new text, followed by hand-
correction.

e In our experiments with combination of taggers, we have only used
voting methods. We would like to experiment with stacking methods,
e.g. methods based on memory-based learning or maximum entropy.

e [t is worthwhile to improve individual components of our parser, IceParser.
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e An interesting alternative is to build a version of the parser, which

utilises to a greater extent the morphological information available in
the POS tags.

e The shallow output of our parser could be used as an input into a full
(deep) parsing system.
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Abbreviation FExplanation

AdvP Adverb phrase

AP Adjective phrase

BLARK Basic Language Resource Kit

CFG Context-free grammar

CG Constraint Grammar

CYK Cocke-Younger-Kasami

DDM Data-driven method

DDT Data-driven tagger

DFA Deterministic finite-state automaton

EngCG English Constraint Grammar

finTBL A tagger based on transformation-based error-driven learning
GATE General Architecture for Text Engineering

GDC Grammar definition corpus

GF Grammatical function

HPSG Head-Driven Phrase-Structure Grammar

IFD Icelandic Frequency Dictionary

IL Institute of Lexicography at the University of Iceland
IT Information Technology

ITE Icelandic tagging experiment

LRBM Linguistic rule-based method

LRBT Linguistic rule-based tagger

LFG Lexical Functional Grammar

LOB Lancaster-Oslo/Bergen

LT Language Technology

MBT A tagger based on memory-based learning
MESC Icelandic Ministry of Education, Science and Culture
MXPOST A tagger based on maximum entropy

MWE Multiword expression

NL Natural Language

NLP Natural Language Processing

NP Noun phrase

PCFG Probabilistic Context-free grammar

POS Part-of-speech

PP Preposition phrase

TBL Transformation-based learning

TnT Trigrams and Tags — a tagger based on trigrams
UCREL University Center for Computer Research on Language
VP Verb phrase

XFST Xerox finite-state tool

XRC Xerox Research Centre

Table A.1: Abbreviations used in text
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Char#  Category/Feature  Symbol — semantics

1 Word class n-noun

2 Gender k—masculine, v—feminine, h-—neuter, x—unspecified

3 Number e-singular, f-plural

4 Case n—nominative, o—accusative, p—dative, e—genitive

5 Article g—with suffixed definite article

6 Proper noun m-—person name, 6—place name, s—other proper name

1 Word class l-adjective

2 Gender k-masculine, v—feminine, h-neuter

3 Number e-singular, f-plural

4 Case n-nominative, o—-accusative, p—dative, e-genitive

5 Declension s—strong declension, v—weak declension, o—indeclineable

6 Degree f-positive, m—comparative, e-superlative

1 Word class f-pronoun

2 Subcategory a—demonstrative, b—reflexive, e—possessive, o—indefinite,
p—personal, s-interrogative, t-relative

3 Gender /Person k-masculine, v—feminine, h-neuter/1-1°¢ person, 2-2"% person

4 Number e-singular, f-plural

5 Case n-nominative, o—accusative, p—dative, e—genitive

1 Word class g-article

2 Gender k-masculine, v—feminine, h-neuter

3 Number e—singular, f-plural

4 Case n—nominative, o-accusative, p—dative, e-genitive

1 Word class t—numeral

2 Category f-cardinal, o-numeric constant, p—percentage

3 Gender k—masculine, v—feminine, h-—neuter

4 Number e-singular, f-plural

5 Case n—nominative, o—accusative, p—dative, e—genitive

1 Word class s—verb (except for past participle)

2 Mood n—infinitive, b—imperative, f-indicative, v—subjunctive,
s—supine, l-persent participle

3 Voice g—active, m—middle

4 Person 1-15¢ person, 2-2"% person, 3-3"% person,

5 Number e—singular, f-plural

6 Tense n—present, p—past

1 Word class s—verb (past participle)

2 Mood b—past participle

3 Voice g-active, m—middle

4 Gender k-masculine, v—feminine, h-neuter

5 Number e-singular, f-plural

6 Case n-nominative, o—accusative, p—dative, e—genitive

1 Word class a—adverb and preposition

2 Category a—does not govern case, u—exclamation,
o—-governs accusative, p—governs dative, e-governs genitive

3 Degree m-—comparative, e-superlative

1 Word class c—conjunction

2 Category n-sign of infinitive, t—relativizer,

1 Word class e—foreign word

1 Word class x—unanalyzed word

Table B.1: The Icelandic tagset




Appendix C

IceParser — The Finite-State
Transducers

IceParser is implemented in Java and the lexical analyser generator tool
JFlex (http://jflex.de/). It consists of two main components, a phrase struc-
ture module and a syntactic functions module. The input to the parser is
POS-tagged sentences. The tags are assumed to be part of the tagset used
in the IFD corpus, i.e. the tagset used by IceTagger. Figure C.1 shows the
architecture of IceParser.

C.1 The phrase structure module

This module consists of 13 transducers. Ten of these mark phrase structure,
two add case information to phrases, and one takes care of “clean up”. Case
information is added to the phrase types APs and NPs in order to facilitate
the marking of a sequence of adjective and noun phrases.

All the phrase structure transducers include the file phraseDef.txt, which
defines a number of base patterns used by the transducers. In the examples
which follow, we do not explicitly show this include statement.

Let us now discuss each of these transducers, in the (approximate) order
in which they are executed.

1. Phrase  MWEP1: This is a simple transducer which puts the mark-
ers [MWE PP ... MWE _PP| around multiword expressions (MWEs)
consisting of specific <preposition, adverb> pairs. The <preposition,
adverb> pairs consists of the preposition “fyrir” followed by any of the

196
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The Phrase Structure Module
mzm » Phrase MWE » Phrase MWEP1 [—»
Phrase MWEP2 » Phrase AdvF » Phrase AF —>
Case_AF » Phrase APs » Phrase NP —>
Phrase_VF » Case NP » Phrase_NPs —>
Phrase_FP » Cleanl Output

file

The Syntactic Functions Module
I nput
file » Func_TIMEX » Func_QUAL >
Func_SUBJ » Func_COMP » Func_OBJ —>
Func_OBJ2 » Func_OBJ3 » Func_SUBJ2 —>
Clean2 > Output

file

Figure C.1: The architecture of IceParser
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adverbs “aftan”, “austan”, “framan”, “nedan”, “nordan”, “ofan”, “sun-

nan”, “utan”, “vestan” (for example, “fyrir framan” = in front).

The JFlex code for this transducer, despite being simple, is a good
illustrative example of the format of each of the finite-state transducers:

Jipublic

%class Phrase_MWEP1
%standalone

%line

%unicode

hi
String Open=" [MWE_PP ";
String Close=" MWE_PP] ";
%}

AdverbPart = {WS}+{AdverbTag}
PrepPart = {WS}+{PrepTag}

Pair = [fFlyrir{PrepPart}(aftan|austan|framan|nedan|nordan]
ofan|sunnan|utan|vestan){AdverbPart}

oo
{Pair} { System.out.print(Opentyytext()+Close) ;}

The options at the top of the file (prefixed with the percentage sign) in-
struct the JFLex compiler to generate a public class “Phrase . MWEP1",
with a main function (because of the %standalone directive) that ex-
pects a name of an input file on the command line. Furthermore, the
generated program should use the full 16-bit Unicode input character
set, and line counting should be turned on.

The code included in %{ and %} is copied directly into the generated
Java source code.

Two regular definitions!, AdverbPart and PrepPart, define the adverb
part and the preposition part of the <preposition, adverb> pair, re-

!Regular definitions are a sequence of definitions of the form: d; -> 75, where each d;
is a distinct name and each 7; is a regular expression.
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spectively. For example, the adverb part consists of one or more white
spaces ({WS}+) followed by an AdverbTag. The AdverbTag is a name
defined in the file phraseDef.txt (PrepPart is defined similarly):

AdverbTag = aa[me] 7{WS}+

i.e. the letters aa optionally followed by the letters m or e (see the
description of the Icelandic tagset in Appendix B) and postfixed with
one or more white spaces.

The name Pair is defined as the preposition “fyrir” followed by specific
adverbs.

Actions are included inside curly brackets. Thus, when the gener-
ated lexical analyser recognises the pattern Pair the action is simply
to put the appropriate brackets and labels around it (yytext()), e.g.
[MWE _ PP fyrir ao aftan aa MWE _PP] (a0 and aa are the POS tags
denoting preposition and adverb, respectively).

2. Phrase . MWEP2: This transducer marks MWEs consisting of spe-
cific <adverb, preposition> pairs by putting the markers [MWE PP
...MWE_PP] around the pairs. Examples of <adverb, preposition>
pairs are: “uat um” (out of), “upp ¢’ (up to), “ofan @”, (onto) “nidur ",
(down to) and “upp fyrir” (up to).

Note that the transducers Phrase . MWEP1 and Phrase  MWEP2
can not be combined into one transducer because of sentence parts like
“upp fyrir aftan”, in which “fyrir aftan” (behind) should be recognised
as a unit, but not “upp fyrir”.

3. Phrase . MWE: This transducer marks MWEs consisting of common
bigrams and trigrams. It puts the markers [MWE _AdvP ... MWE _AdvP],
[MWE AP ...MWE AP[or [MWE CP... MWE CP]around MWEs
that function as an adverb, an adjective, or a conjunction, respectively.

The code for this transducer includes a list of about 70 “adverb” MWEs,
15 “adjective” MWESs, and 20 “conjunction” MWEs. For example, the
MWE “hins vegar” (on the other hand) functions as an adverb and is
marked as [MWE AdvP hins fakee vegar nkee MWE AdvP| by this
transducer; “pess hdttar” (such kind) functions as an adjective and is
marked as [MWE AP pess fakee hdttar nkee MWE AP, and “af pui
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ad” (because) functions as a conjunction and is marked as [MWE_CP
af ap pvi fphep a0 ¢ MWE _CP].

The complete list of multiword expressions recognised by IceParser can
be found in Appendix C.4.

Phrase AdvP: The main function of this transducer is to mark AdvPs,
consisting of a single adverb, by putting the markers [AdvP ... AdvP]
around them. An adverb in the input text is recognised using the
patterns:

WordChar = [“\r\n\t\f ]

Word = {WordCharl}+

WordSpaces = {WS}*{Word}{WwS}+
Adverb = {WordSpaces}{AdverbTag}

According to these patterns, an adverb is sequence of word characters
(all possible characters except white spaces) followed by at least one
space followed by an adverb tag.

Additionally, this transducer marks coordinating conjunction phrases,
[CP ...CP], subordinating conjunction phrases, [SCP ...SCP/, and
interjection phrases, [InjP ... InjP], consisting of a single conjunction
and interjection, respectively.

Phrase AP: This transducer marks adjective phrases, [AP ... AP],
which consist of a single adjective optionally preceded by an AdvP. It
uses the following patterns:

Gender = [kvhx] /* k=masc., v=fem., h=neut., x=unspec */
Number = [ef] /* e=singular, f=plural */

ObliqueCase = [ope] /* o=acc., p=dat., e=gen. */

Case = n | {0ObliqueCase} /* n=nom. */

Degree = [fmel /* f=pos., m=comp., e=superl. */

Declension = [osv] /* o=no, s=strong, v=weak */

OpenAdvP = "[AdvP"
CloseAdvP = "AdvP]"
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AdjectiveTag = 1{Gender}{Number}{Case}{Declension}{Degree}
Adjective = {WordSpaces}{AdjectiveTag}

AdverbPhrase = {0OpenAdvP}~"aa"{WS}+{CloseAdvP}
AdjectivePhrase = {AdverbPhrase}?{Adjective}

In JFlex, the regular expression ~a matches everything up to (and
including) the first occurrence of a text matched by a. Thus, an AdvP,
to be included in an AP, consist of a bracket and a label denoting
the start of an adverb phrase ({OpenAdvP}) followed by everything
up to the tag aa, followed by at least one whitespace and a label and
a bracket denoting the end of the AdvP ({CloseAdvP}). The reason
for explicitly specifying the aa tag is that adverbs in comparative or
superlative (the tags aam or aae) are never a part of an AP.

To illustrate, the AP “mjdg bjart” (very bright) is annotated as [AP
[AdvP mjég aa AdvP] bjart lhensf AP].

6. Case AP: This transducer adds case information to adjective phrases.
As previously mentioned, this is performed in order to facilitate mark-
ing of a sequence of adjective phrases.

The transducer searches for AP patterns, [AP ... AP/, extracts the case
information from the last tag of the last word (the head) of the phrase
and appends the case character to the starting label of the phrase.

For example, lets assume the phrase [AP andstyggilequr lkensf AP]
(disgusting) is part of the input into this transducer. Then, when this
AP is recognised, a specific function is called, with the tag lkensf as
an argument, which extracts the case character (n) from the tag and
returns it. The action, associated with the recognised pattern, appends
the returned case to the starting label, resulting in the string [APn
andstyggilequr lkensf AP[, denoting an nominative AP.

7. Phrase APs: The purpose of this transducer is to group together a
sequence of adjective phrases (APs), which form a single constituent.
The APs are adjacent to each other, optionally separated by a comma
or a conjunction. Furthermore, all adjacent APs that form a single
constituent do agree in case. Thus, in addition to adjacent conjunction
phrases or a comma, this transducer uses the case information added
by the previous transducer to facilitate the grouping:
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APConjNom = ({WS}+({ConjPhraseOrComma}{WS}+)?{APNom})+
APConjAcc = ({WS}+({ConjPhraseOrComma}{WS}+)7{APAcc})+
APConjDat = ({WS}+({ConjPhraseOrComma}{WS}+)7{APDat})+
APConjGen = ({WS}+({ConjPhraseOrComma}{WS}+)?{APGen})+

APSeq = {APNom}{APConjNom} | {APAcc}{APConjAcc} |
{APDat}{APConjDat} | {APGen}{APConjGen}

According to the patterns above, a sequence of APs, APSeq, consists of
at least two adjective phrase, marked by one of nominative, accusative,
dative, or genitive case, optionally separated by a conjunction phrase
or a comma (ConjPhraseOrComma). The definition of an AP marked
by a specific case is, for example:

OpenAP = "[AP"
CloseAP = "AP]"
APNom = {OpenAP}n~{CloseAP}

where, the letter n denotes the nominative case.

The pattern ConjPhraseOrComma is defined as follows:

Comma = ll,ll{ws}+ll,ll
ConjPhrase = {OpenCP}~{CloseCP}
ConjPhraseOrComma = {ConjPhrase} | {Comma}

The pattern consists either of a coordinating conjunction phrase or the
single lexeme comma.

To illustrate, assuming the input into this transducer consists of anno-
tated phrases like:

[APn gul lhfnsf AP] , , [APn raud lhfnsf AP| (yellow, red) and [APn
mardir lkfnsf AP|] [CP og ¢ CP] [APn serdir lkfnsf AP] (bruised and
wounded)

This transducer will then produce the output:

[APs [APn gul lhfnsf AP] , , [APn raud lhfnsf AP] APs| and [APs
[APn mardir lkfnsf AP] [CP og ¢ CP|] [APn serdir lkfnsf AP] APs].
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8. Phrase NP: This transducer marks noun phrases. It is the most
complicated of all the transducers, because noun phrases can be formed
in various ways (see section 6.2.1.7).

The implementation uses various patterns for noun phrases depend-
ing on the first word/tag of the phrase. A noun phrase (NP) can,
for example, start with interrogative pronouns “hvad” (what), “hver”
(who) or “hvor” (which), a reflexive pronoun (like “sig” (himself)), a
demonstrative pronoun, an indefinite pronoun, a personal pronoun, an
article, etc.

The implementation uses the main word order for an Icelandic NP, i.e.
the order described in section 6.2.1.7. An example of a (complex) NP is
“allir pessir prir storu strakar” (all these three big boys), which consists
of an indefinite pronoun, demonstrative pronoun, numeral, adjective,
and a noun, respectively.

The main patterns used are (without showing all the details):

Hvada = {WS}*[Hh]vada{WS}+{InterPronounTag}
Hvad = {WS}*[Hh]v(ad| ((er|or) [a-z]*)){WS}+{InterPronounTag}

AdjectivePhrase =  {0OpenAP}~ {CloseAP}
AdjectivePhrases = {WS}*({OpenAPs}~{CloseAPs}|
{AdjectivePhrase} [{MWE_AP})

NounProperPoss = {ReflexivePronoun}? ({Noun}|{ProperNoun})
({PossPronoun}|{Numeral})?

Ref1NP = {ReflexivePronoun}({Noun}|{PersPronoun})?

HvadaNP = {Hvada}{Numerall}?{AdjectivePhrases}?{NounProperPoss}

NumNP = {Numeral} ({AdjectivePhrases}?{NounProperPoss})?

ArticleNP = {Article}{Numeral}?{AdjectivePhrases}?{Noun}

PersNP = {PersPronoun}{ReflexivePronoun}?

PossNP = {PossPronoun}({AdjectivePhrases}?{Noun})?

DemonNP = {DemonPronoun} ({IndefPronoun} |
{Numeral}?{AdjectivePhrases}?{NounProperPoss}?)
IndefNP = {IndefPronoun}t+({Article}|{DemonPronoun})?

{Numerall}?{AdjectivePhrases}?{NounProperPoss}?
AdjAP = {AdjectivePhrases}{Numeral}?{NounProperPoss}
ProperNounNP = {Title}?{ProperNoun}+
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({ReflexivePronoun}|{PossPronoun})?
NounNP = {Noun}({ReflexivePronoun}|{Numeral}|{DemonPronoun}?
{IndefPronoun}|{PossPronoun})?

NounPhrase = {Hvad} | {HvadaNP} | {ReflNP} | {ArticleNP} |
{DemonNP} | {IndefNP} | {PersNP} | {PossNP} |
{NumNP} | {AdjAP} | {NounNP} | {ProperNounNP}

The {NounPhrase} is the main pattern which uses a number of sub-
patterns for the various types of an NP. This transducer produces the
following annotation for the complex NP above: [NP Allir fokfn pessir
fakfn prir tfkfn [AP storu lkfnvf AP] strikar nkfn NP].

9. Phrase VP: Annotation of verb phrases is carried out by this trans-
ducer. As discussed in section 6.2.1.9, six categories are used for verb
phrases: [VP ... VP|, [VPi ... VPif, [VPb ... VPb], [VPs ... VPs],
[VPp ... VPp] and [VPg ... VPg/, denoting a finite VP, an infinitive
VP, a VP consisting (mainly) of the verb “be”; a supine VP, a past par-
ticiple VP and a present participle VP, respectively. The information
about the type of a VP facilitates the annotation of syntactic functions
(see section C.2).

The search for the different kinds of verb phrases is straight-forward,
because the tag associated with each verb includes, in most cases, the
information needed. Consider, for example, the code needed to recog-
nise a past participle verb phrase (VP):

Al
String VPIOpen=" [VPp ";
String VPIClose=" VPp] ";
h}
VerbPastPartTag = sp{Voice}{Gender}{Number}{Case}
VerbPhrasePastPart = {WordSpaces}{VerbPastPartTag}
oo
{VerbPhrasePastPart} {System.out.print(VPPOpentyytext()+VPPClose) ;

The p letter in the second character of the VerbPastPartTag pattern
is an indication of a past participle verb. The patterns for present
participle and supine VPs are implemented in a similar manner.
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Patterns for recognising infinitive VPs are:

Al
String VPPOpen=" [VPp ";
String VPPClose=" VPp] ";
h}
InfinitiveTag = cn
Infinitive = {WordSpaces}{InfinitiveTag}
VerbInfinitiveTag = sn[mgl{WS}+
VerbInfinitive = {WordSpaces}{VerbInfinitiveTag}
VerbPhraseInf = {Infinitive}?{VerbInfinitive}{VerbSupine}x
hto
{VerbPhraseInf} {System.out.print(VPIOpen+yytext()+VPIClose);}

According to these patterns, an infinitive VP (VerbPhraselnf) consists
of the (optional) infinitive (a word tagged as cn) followed by a verb
tagged as an infinitive verb (sng or snm), followed by zero or more

supine verbs. An example of output generated by this transducer for
an infinitive VP is: [VPi ad cn laga sng VPi] (to fix).

VPs consisting of the verb “be”, and a few other verbs which demand
nominative predicates, are found using patterns that simply search for
all possible word forms for these verbs, which have a finite verb POS
tag.

Finally, a finite verb phrase (not including “be” verbs) is recognised
using the patterns:

Al

String VPOpen=" [VP ";

String VPClose=" VP] ";
h}
VerbFiniteTag = s[bfv]{Voice}{Person}{Number}{Tense}{WS}t+
VerbFinite = {WordSpaces}{VerbFiniteTag}
VerbPhrase = {VerbFinite}

(({wS}*{AdverbPhrase}) ?{VerbSupine}+)?

he
{VerbPhrase} {System.out.print(VPOpen+yytext()+VPClose);}




206

C. IceParser — The Finite-State Transducers

10.

11.

A finite VP, thus, consists of a verb tagged with a finite verb POS
tag, optionally followed by an adverb phrase and one or more supine
verbs. Examples of output generated by this transducer for a finite VP
are: [VP sagoi sfglep VP| (said) and [VP hafoi sfg3ep [AdvP liklega
aa AdvP| fario ssg VP| (had probably gone).

Case INP: This transducer adds case information to noun phrases.
This is carried out in order to group a sequence of noun phrases (see
the description of the next transducer). The transducer searches for
NP patterns, [NP ... NP/, extracts the case information from the last
tag of the last word (the head) of the phrase and appends the case
character to the starting label of the phrase. Thus, the functionality
of this transducer is similar to the one described for the Case AP
transducer (see above).

Phrase NPs: The purpose of this transducer is to group together
a sequence of noun phrases (NPs), which form a single constituent.
The NPs are adjacent to each other, and optionally separated by a
comma or a conjunction. Furthermore, all adjacent NPs that form a
single constituent do agree in case. The functionality of this transducer
differs from the Phrase APs (described above) in that a genitive
NP qualifier phrase can be part of the grouping. Thus, in addition to
adjacent conjunction phrases or a comma, this transducer uses the case
information added by the previous transducer to facilitate the grouping:

NPNomGenQual = {NPNom}{GenQualifierl}x*
NPAccGenQual = {NPAcc}{GenQualifierl}x*
NPDatGenQual = {NPDat}{GenQualifier}x*
CommaNPNom = {Commal}{WS}+{NPNom}{WS}+
CommaNPAcc = {Commal}{WS}+({NPAcc}|{APAcc}){WS}+
CommaNPDat = {Comma}{WS}+({NPDat}|{APDat}){WS}+
CommaNPGen = {Comma}{WS}+{NPGen}{WS}+

NPConjNom = {CommaNPNom}*{ConjPhrase}{WS}+{NPNom}
NPConjAcc = {CommaNPAcc}*{ConjPhrase}{WS}+({NPAcc}|{APAcc})
NPConjDat = {CommaNPDat}*{ConjPhrase}{WS}+({NPDat}|{APDat})
NPConjGen = {CommaNPGen}*{ConjPhrase}{WS}+{NPGen}
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NPSeq = {NPProperNom}{WS}+{NPNom} |
{NPProperAcc}{WS}+{NPAcc} |
{NPProperDat}{WS}+{NPDat} |
{NPProperGen}{WS}+{NPGen} |

{NPNomGenQual}{WS}+ ({NPProperNom} |{NPConjNom}) |
{NPAccGenQual}H{WS}+({NPProperAcc}|{NPConjAcc}) |
{NPDatGenQual}{WwS}+({NPProperDat}|{NPConjDat}) |
{NPGen}{WS}+ ({NPProperGen}|{NPConjGen})

oo
{NPSeq} { System.out.print (NPOpent+yytext()+NPClose);}

All the details are not shown above, but, according to the patterns, a
sequence of NPs, NPSeq, consists of a noun phrase marked by one of the
four cases, and optionally followed by a genitive qualifier, followed by
a sequence of noun phrases agreeing in case and separated by a comma
and finally a conjunction phrase. The definition of a NP marked by a
specific case is, for example:

OpenAP = "[NP"
CloseAP = "NP]"
NPNom = {OpenNP}n~{CloseNP}

where, as before, the letter n denotes the nominative case.
To illustrate, assuming the input into this transducer consists of sub-
strings like:
e |[NPn born NP| [NPg hans NP| [CP og CP| [NPn nidjar NP| (chil-
dren his and descendants)
e |NPd fiskum NP| , [NPd lidodyrum NP| [CP og CP] [NPd spendyrum
NP| NPs| (fish, arthropods and mammals)

..the transducer will produce the output:

e [NPs [NPn born NP| [NPg hans NP| [CP og CP| [NPn nidjar NP]
NPs|
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e [NPs [NPd fiskum NP| , [NPd liddyrum NP] [CP og CP]| [NPd
spendyrum NP| NPs|.

12. Phrase PP: PPs are annotated by this transducer. A PP consists
of either a preposition followed by an infinitive VP, or a preposition
followed by a single NP or a sequence of NPs. Single accusative or
dative NPs can, additionally, be followed by a genitive qualifier NP,
denoting possession.

The NPs can optionally be preceded by an adverb phrase or a multiword
expression, functioning as an adverb phrase ((MWE_PP ... MWE_PP].
Furthermore, one special case need to be accounted for, i.e. the prepo-
sition “vegna” can appear after the noun phrase(s).

hi
String Open=" [PP ";
String Close=" PP] ";
%}

Vegna = {WS}*vegna{WS}+
NounPhrase = {OpenNP}~{CloseNP}
NPs = {OpenNPs}~{CloseNPs}
AdverbPrepPhrase = {MWE_PP}

NPGenSpec = {0penNP}g~™f (pls)hee{WS}+{CloseNP}
AdjectivePhrase = {0OpenAP}~{CloseAP}

AdverbPhrase = {0OpenAdvP}~{CloseAdvP} | {MWE_AdvP}
VerbPhraseInf = {OpenVPi}~{CloseVPi}

GenQualifier = {WS}*({NPGen} | {NPsGen})

OneNP = ({NounPhrase}|{AdjectivePhrase}){GenQualifier}?
SeqNP = {NPs}{GenQualifier}?
PrepPhraseRestl = {AdverbPhrase}{WS}+({0OneNP}|{SeqNP}) |

{OneNP} | {SeqNP}
{VerbPhraselInf}

PrepPhraseRest2
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PrepPhraseRest3 = {GenQualifier}{WS}+({0OneNP}|{SeqNP})

PrepPhraseAccDat = {PrepositionAccDat}({PrepPhraseRest1}|
{PrepPhraseRest2}|{PrepPhraseRest3})?
PrepPhraseGen = {PrepositionGen}
({PrepPhraseRest1}|{PrepPhraseRest2})?
PrepPhraseMWE = {AdverbPrepPhrase}{WS}+({OneNP}|{SeqlNP})
PrepPhraseSpecial = {NPGenSpec}{Vegna}{PrepTagGen}

hte

{PrepPhraseSpecial} {System.out.print(Opent+yytext()+Close);}
{PrepPhraseAccDat} {System.out.print(Opentyytext()+Close);}
{PrepPhraseGen} {System.out.print (Opent+yytext () +Close) ;}
{PrepPhraseMWE} {System.out.print (Open+yytext ()+Close) ;}

Not all of the details are shown above, but, to summarise, this trans-
ducer marks PPs that i) start with an accusative or dative case preposi-
tion, and are followed by a) an adverb phrase/genetive qualifier phrase
and one or more noun phrases or b) an infinitive phrase, or ii) start
with a genitive case preposition, and are followed by a) an adverb
phrase phrase and one or more noun phrases or b) an infinitive phrase,
or iii) start with a multiword expression functioning as an preposition
(MWE _PP), followed by one or more noun phrases, or iv) consist of a
noun phrase (a pronoun) followed by preposition “vegna”.

For example, given the input substrings below:
e iap [NPd [APd skuggsalu lhepst AP| hiisi nhep NP| (in shadowy
house)

e iap [NPd ségu nvep NP| [NPg fjolskyldunnar nveeg NP| (in story
family’s)

e [IMWE PP 1ti aa vid ao MWE_PP] [NPa sjoinn nkeog NP] (out
by sea)

e i ap [NPs [NPd haustmyrkri nhep NP| [CP og ¢ CP| [NPd ve-
trargnaudi nhep NP| NPs| (in autumn-darkness and winter-hiss)

.. this transducer produces the corresponding output:

e [PP i ap [NPd [APd skuggselu lhepst AP| husi nhep NP| PP]
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e [PP i ap [NPd ségu nvep NP| [NPg fjolskyldunnar nveeg NP| PP|

e [PP [MWE_PP 1ti aa vid ao MWE_ PP| |[NPa sj6inn nkeog NP|
PP

e [PP i ap [NPs [NPd haustmyrkri nhep NP] [CP og ¢ CP] [NPd
vetrargnaudi nhep NP| NPs| PP|

13. Cleanl: The purpose of this transducer is mainly to correct three
types of annotation errors that might have been made by the previous
transducers in the sequence.

5Hence, the Cleanl transducer changes this to the correct string [MWE CP
til ae pess fphee a0 ecn MWE _CP].

First, this transducer finds the occurrence of a nominative adjective
phrase inside a dative noun phrase and converts it to two indepen-
dent phrases. This pattern occurs when the adjective governs the case
of the following noun, e.g. in the clause ‘“ndtengdara ségu” (closely-
connected history). The previous transducers annotates this as [NPd
[APn ndtengdara lhenvm AP[ ségu nvep NP[, because the Phrase NP
transducer does not take the different cases into account, but, rather,
assumes that the adjective modifies the noun. Since this is a common
phenomenon, the Cleanl transducer searches for this pattern and cor-
rects the annotation (using string searches and replacements). For our
example above, it returns the string /A Pn ndtengdara lhenvm AP| [NPd
sogu nvep NP]J.

The Phrase NP groups together two (or more) adjacent proper nouns.
This is in most cases correct (e.g. “Jdn Jonsson”), except when the
second proper noun is, in fact, a genitive qualifier. This occurs, for
example, in the clause “Bandariki Norour-Ameriku” (United-States North-
America’s), which is annotated as [NPg Bandariki nhfn-6 Norour-Ameriku
nvee-6 NP[ by the previous transducers. The second task of the Clean1
transducer is to find these occurrences and correct the annotation
(using string searches and replacements). In the above example, it
returns the correct string [NPn Bandariki nhfn-6 NP| [NPg Nordur-
Ameriku nvee-6 NP|

Additionally, this transducer converts a sequence of adverb phrases into
one phrases consisting of two or more adverbs. This can be carried out
in a simple manner:
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{AdvPSeq} {
String str = yytext();
/* rm all adverb labels */
str = str.replaceAll("\\[AdvP","");
str = str.replaceAll("AdvP]","");
/* Then add one instance */
str = "[AdvP" + str + "AdvP] ";
System.out.print(str) ;

For an input string like [AdvP brddum aa AdvP] [AdvP aftur aa AdvP],
this transducer outputs [AdvP bradum aa aftur aa AdvP].

C.2 The syntactic functions module

This module consists of 9 transducers, 8 of which mark functions and one
takes care of “clean up”. All the syntactic functions transducers include the
files phraseDef.txzt (describe in section C.1) and funcDef.tzt, which defines a
number of base functional patterns used by the transducers. In the examples
which follow, we do not explicitly show these include statements. Moreover,
we do not show POS tags in the examples.

Let us now discuss each of these transducers, in the order in which they
are executed.

1. Func_ TIMEX: This first transducer puts the markers {*TIMEX
... *TIMEX} around temporal expressions. The transducer mainly
uses patterns that include numbers and names of months, e.g.:

i
String TempOpen = " {*TIMEX ";
String TempClose=" *TIMEX} ";
h}

NumberTag = t[ao]l{WS}+

NounNumeral = {WordSpaces}({NounTag}{WordSpaces}){NumberTag}
TimeAcc = {OpenNP}a{NounNumeral}{CloseNP}

TimeMonth = {OpenNP}a({WS}+{AdjPhrase}){Month}
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({WordSpaces}{NumberTag}) 7{CloseNP}
OneNumber = {OpenNP}{WordSpaces}{NumberTag}{CloseNP}
Temporal = {TimeAcc} | {TimeMonth} | {OneNumber}

oo
{Temporal} {System.out.print(TempOpen+yytext()+TempClose);}

According to these patterns, a Temporal is a noun phrase ({OpenNP}
...{CloseNP}), which includes numbers or names of the months (and
can include an adjective phrase). Note that if the noun phrase does
not only include a number ({OneNumber}), then only accusative noun
phrases (the character a) are used.

For example, given the input substrings below:

e [NP atta NP| (eight)
o [NP arid 1982 NP| (year 1982)
e [NP [AP 3. AP| desember 1987 NP|

... the corresponding output is:

o {*TIMEX [NP &tta NP] *TIMEX}
o {*TIMEX [NP &rid 1982 NP| *TIMEX}
o {*TIMEX [NP [AP 3. AP] desember 1987 NP| *TIMEX}

2. Func_ QUAL: This transducer puts the markers { *QUAL ... *QUAL}
around genitive qualifier noun phrases. An exception are genitive noun
phrases appearing inside a genitive PP. The patterns used in this trans-
ducer are the following:

Al
String OpenQual="{*QUAL ";
String CloseQual=" *QUAL}";
ht

PPSkip = {0OpenPP}{PrepositionGen}{NPGen}
NPGenSeq = {0penNPs}{WS}+{0penNP}g~{CloseNPs}
NPQual = {NPGen}({WS}+{NPGen})* | {NPGenSeq}
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YA
{PPSkip} {System.out.print (yytext()); }
{NPQual} { System.out.print (OpenQual+yytext()+CloseQual);}

Hence, either a qualifier is one or more single genitive noun phrases
({NPGen}) or a sequence of noun phrases, in which the first phrase is
a genitive noun phrase ({NPGenSeq}).

To illustrate, given the input substrings below:

e [NPn systir NP| [NPg hennar NP] (sister hers)

e [NP [AP nykjorinn AP| forseti NP| [NP lyoveldisins NP| (newly-
elected president republic’s)

e [PP & [NP timum NP]| [NPs |[NP ratubila NP| [CP og CP| [NP
|AP mikilla AP| mannflutninga NP| NPs| PP|

...the corresponding output is:

e [NPn systir NP| {*QUAL |[NPg hennar NP| *QUAL}

e [NP [AP nykjorinn AP| forseti NP| {*QUAL NP lyoveldisins NP]
*QUAL}

e [PP & NP timum NP| {*QUAL [NPs |[NP ratubila NP] [CP og
CP| NP [AP mikilla AP| mannflutninga NP| NPs| *QUAL} PP|

3. Func_SUBJ: This transducer puts the markers {*SUBJ ... *SUBJ},
{*SUBJ> ... *SUBJ >} or {*SUBJ< ... *SUBJ<} around subject noun
phrases. Refer to section 6.2.2.2 for a description of how subjects should
be annotated according to the annotation scheme.

This transducer uses various patterns to recognise subjects, depending
on whether the subject appears to the left of the finite verb phrase, to
the right of the verb phrase, precedes a relativizer (i.e. a subordinating
conjunction that links a relative clause to its head noun), etc. Here, we
only discuss the main case, i.e. when the subject appears to the left of
the finite verb phrase (other cases are implemented similarly):

NomSubject = {NPNom} | {NPsNom}
PPorQual = ({PP}{WS}+)+ | {FuncQualifier}{WS}+
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VPorVPBe = {VP}|{VPBe}

SubjectVerb =
({FuncQualifier}{WS}+)? ({NomSubject}|{NPNum})
{WS}+{PPorQual}?{VPorVPBe} |
{DatSubject}{WS}+{PPorQual}?{VPDat} |
{AccSubject}{WS}+{PPorQual}?{VPAcc}

{FuncQualifier} matches a qualifier function ({*QUAL ... *QUAL})
and {NomSubject}, {AccSubject} and {DatSubject} match a single
nominative NP, or a sequence of NPs in the nominative, accusative,
or dative case, respectively. {NPNum} matches a NP consisting of a
numeral and {PPorQual} matches a preposition or a qualifier function.
{VPorVPBe} matches a finite verb phrase or a “be” verb phrase, and
{VPDat} and {VPAcc} match verbs that demand oblique case subjects
(this verb list is implemented as a regular expression).

The action associated with the pattern {SubjectVerb} is a bit more
complicated than the actions we have seen for the other transducers
presented hitherto. The reason is that the subject marking should only
be put around a part of the recognised pattern. Neither a preposition
phrase nor a verb phrase should be marked as a part of the subject.
The action, thus, needs to find out where the subject, in the recognised
substring, ends.

In our implementation, this is performed by simple string searches. If
a PP is part of the recognised substring then the subject ends where
the PP starts. Otherwise, the subject ends where the VP starts.

The {SubjectVerb} pattern matches subject-verb pairs in which the
verb appears to the right of the subject. Therefore, the markers { *SUB.J >
... *SUBJ>} are used.

To illustrate, given the input substrings below ...

(a) [NPn ég NP| [VPb var VPb] (I was)

(b) [NP systir NP| {*QUAL |NP hennar NP| *QUAL} [VPb var VPb|
(sister hers was)

... the corresponding output is:
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(a) {*SUBJ> [NPn ég NP| *SUBJ>} [VPb var VPb] [APn litill AP]

(b) {*SUBJ> [NP systir NP| {*QUAL [NP hennar NP| *QUAL}
*SUBJ>} [VPb var VPb]

4. Func_ COMP: This transducer puts the markers { *COMP ... *COMP},
{*COMP> ... *COMP>} or {*COMP< ... *COMP<} around verb
complement phrases. Recall that complements are objects of verbs
which demand a predicate nominative (mainly the “be” verb; see section
6.2.2.3). Here, we only discuss the main word order, i.e. Subject-Verb
Phrase-Complement (variants of it are implemented similarly). Note
that after the verb phrase (and before the complement) a qualifier, and
adverb phrase or an accusative/dative case noun phrase might appear
(see examples below).

This transducer assumes that subjects have already been annotated by
the previous transducer. The code for the main case is the following:

VPPastSeq =

{VPPast} ({WS}+{ConjPhraseO0rComma}{WS}+{VPPast})*
Complement = {APNom}|{APsNom}|{NPNom}|{NPsNom}|{VPPastSeq}
SubjectVerbBe = {FuncSubject}{WS}+{VPBe}{WS}+

SubjVerbAdvPCompl =

{SubjectVerbBe}{AdvP}{WS}+{Complement}
SubjVerbNPCompl =

{SubjectVerbBe} ({NPAcc}|{NPDat}){WS}+{Complement}
SubjVerbCompl =

{SubjectVerbBe} ({FuncQualifier}{WS}+)?{Complement}

{FuncSubject} matches a subject function ({*SUBJ[<>]? ... *SUBJ[<>]?}),
{VPBe} matches a verb which demands a nominative predicate and
{NPAcc} and {NPDat} match an accusative and a dative noun phrase,
respectively. {Complement} matches a sequence of nominative adjec-
tive/noun phrases or a sequence of past participle phrases.

The above patterns match substrings in which the verb phrase appears
to the left of the complement. Therefore, the markers {*COMP<
... *COMP<} are used. As before, string searches are used to find
where the complement starts in the matched substring.
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To illustrate, given the input substrings below:

o {*SUBJ- [NPn ég NP] *SUBJ~} [VPb var VPb| [APn litill AP
(I was small)

o {*SUBJ> NP saga NP| {*QUAL |NP [AP visindalegrar AP| sal-
fredi NP| *QUAL} *SUBJ>} |[VPb er VPb| [AdvP ekki AdvP|
|AP [AdvP ykja AdvP] long AP|

o {*SUBJ> |NP [AP salfraedileg AP] viofangsefni NP| *SUBJ>}
|[VPb hafa verid VPb| [NP manninum NP| [AP hugleikin AP|

...the corresponding output is:

e {¥*SUBJ> [NPn ég NP| *SUBJ>} [VPb var VPb| {*COMP<
|APn litill AP| *COMP<}

o {*SUBJ> NP saga NP| {*QUAL |NP [AP visindalegrar AP| sal-
frzedi NP| *QUAL} *SUBJ>} [VPb er VPb| [AdvP ekki AdvP]
{*COMP<= |AP [AdvP ykja AdvP| long AP| *COMP<}

o {*SUBJ> |NP [AP salfracdileg AP] viofangsefni NP| *SUBJ>}
[VPb hafa verid VPb| [INP manninum NP| {*COMP< [AP hugleikin
AP| *COMP~}

5. Func_ OBJ: This transducer puts the markers {*OBJ> ... *OBJ>}
or {*OBJ< ... *OBJ<} around direct objects of verbs. Refer to section
6.2.2.3 for a description of how objects should be annotated according
to the annotation scheme.

This transducer uses various patterns to recognise objects, depending
on the exact sequence of subject-verb-object (SVO). The main order
is SVO, but other sequences like VSO, OVS, and VO (no subject) are
also recognised.

Here, we only discuss the main case (SVO), i.e. when a subject appears
to the left of the finite verb phrase and an object appears to the right
of the verb phrase (other cases are implemented similarly). For this
case, an adverb phrase or a preposition phrase can appear before the
object.

RelCP = {0OpenCP}~sem{WS}+{ConjTag}{CloseCP}
SubjectRelCP = {FuncSubject}|{RelCP}




C.2 The syntactic functions module 217

SubjVerb = {SubjectRelCP}{WS}+{VP}{WS}+
Object = ({FuncQualifier}{WS}+)?
({NP}|{NPs}|{AP}|{APs}) ({WS}+{FuncQualifier})?

SubjVerbObj = {SubjVerb}{Object}
SubjVerbAdvPObj = {SubjVerb}{AdvPs}{Object}
SubjVerbPPObj = {SubjVerb}{AdvPs}?{PP}{WS}+{0bject}

{SubjectRelCP} matches a subject function or a relativizer. {Sub-
jVerb} consists of a subject and a finite verb phrase. An {Object} is
a sequence of adjective/noun phrases, optionally prefixed or suffixed
with a qualifier.

The above patterns match substrings in which the object appears to the
right of the verb phrase. Therefore, the markers {*OBJ< ... *OBJ<}
are used. As before, string searches are used to find where the object
starts in the matched substring.

To exemplify, given the input substrings below:

e {*SUBJ> NP fadmur NP| {*QUAL |NP hans NP| *QUAL} *SUBJ>}
|[VP umlykur VP| [NP [APs [AP lagreist AP| [AP svort AP| APs|
hisin NP|

e [CP sem CP][VP upplysti VP| {*QUAL [NP hennar NP| *QUAL}
[NP 1if NP| (which enlightened her life)

e {*SUBJ> |NP bau NP| *SUBJ>} [VP fundu VP| [MWE_ AdvP
hér og hvar MWE__AdvP| [NP [AP gamla AP| skiapa NP)|

.. the corresponding output is:

o {*SUBJ> |NP fadmur NP| {*QUAL [NP hans NP| *QUAL} *SUBJ -}
[VP umlykur VP| {*OBJ< [NP [APs [AP lagreist AP| [AP svort
AP| APs| hasin NP| *OBJ<}

e [CP sem CP||VP upplysti VP| {*OBJ< {*QUAL [NP hennar NP]
*QUAL} [NP lif NP| *OBJ<}

e {*SUBJ> |NP pau NP| *SUBJ=>1 [VP fundu VP| [MWE_ AdvP
hér og hvar MWE_AdvP| {*OBJ< |[NP |AP gamla lkfosf AP]|
skapa nkfo NP| *OBJ<}
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6.

Func_OBJ2: The purpose of this transducer is fourfold. First, it
marks indirect objects of di-transitive verbs. Second, nominative ad-
jective phrases and verb past participle phrases, which have not been
assigned a function by the previous transducers, are marked as com-
plements. Third, the transducer marks objects and complements of
complements (refer to section 6.2.2.3) Lastly, the transducer marks
nominative objects of verbs that demand oblique case subjects (refer
to section 6.2.2.3).

Here, we only describe patterns used for marking indirect objects. Re-
call, that the previous transducer in the sequence (Func OBJ) has
marked direct objects. In the case where this direct object is in the
dative case and a accusative noun phrase follows, it is very likely that
the assumed direct object is, in fact, an indirect object and the follow-
ing noun phrase is the direct object. Thus, the sequence <verb, dative
noun phrase, accusative noun phrase> is a strong indication of the
sequence <verb, indirect object, direct object>.

NPObj = "{*0BJ<"{WS}+{Dat0bj}{WS}+"*0BJ<}"
DatObj = {NPDat} | {NPsDat}

VerbObjObj = ({VP}|{VPInf}){WS}+{NPObj}{WS}+
({PP}{wS}+)? ({NPAcc}|{NPsAcc})

The patterns {VP} and {VPInf} match a finite verb phrase or an infini-
tive verb phrase, respectively. The {NPObj} pattern matches a dative
noun phrase(s) which has been marked with an object function. The
{NPAcc} and {NPsAcc} match a accusative noun phrase or a sequence
of accusative noun phrases, respectively.

When finding a substring matching the {VerbObjObj} pattern, the
transducer must therefore change the direct object marking to indirect
and mark the noun phrase that follows as a direct object. This is
accomplished with string searches/replacement.

To exemplify, given the input substring: |VPi ad cn segja sng VPi]
{*OBJ< [NPd bér fp2ep NP| *OBJ<} [NPa bad fpheo NP]|, the result-
ing string is [VPi ad cn segja sng VPi| {*IOBJ< |[NPd bér fp2ep NP|
*TOBJ<} {*OBJ< [NPa bao fpheo NP| *OBJ<}.
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7. Func__OBJ3: This transducer marks dative objects of complement
adjective phrases.

DatObj = {NPDat} | {NPsDat}

AdjCompl = {0OpenComp}{WS}+{0OpenAP}~{CloseAP}
{wS}+{CloseComp}

ObjDat = {DatObj}({WS}+{FuncQualifier})?

ObjDatCompl = {0bjDat}{WS}+{AdjCompl}

ComplObjDat = {AdjCompl}{WS}+{0bjDat}

The {NPDat} and {NPsDat} patterns match dative single noun phrases
or a sequence of dative noun phrases, respectively. The {OpenComp}
pattern matches an opening complement function marker and {OpenAP}
the opening adjective phrase marker. Hence, the {ObjDatCompl} and
{ComplObjDat} patterns match dative objects that either precede or
follow an complement adjective phrase.

Additionally, this transducer marks accusative noun phrases which have
not yet received a function label and have a specific format, as temporal

expressions. An example of such phrase is the accusative noun phrase
[NP eitt vor NP| (one spring).

8. Func_SUBJ2: The purpose of this transducer is simply to annotate
“stand-alone” nominative noun phrases that have not been assigned a

function by the previous transducers. Each such noun phrase receives
the markers {*SUBJ ... *SUB/J}.

C.3 Other transducers

1. Clean2: Recall that the Case AP and Case NP transducers add
case information to the AP and NP labels (to use for other transducers
that run later in the sequence). This information is removed by this
transducer. Additionally, this transducer suppresses two or more whites
paces into one.

PhraseCase = [nadg] /* nom, acc, dat, gen x/
StartNP = {OpenNP}{PhraseCase}
StartAP = {OpenAP}{PhraseCase}
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Tolh

~1n n {,}

{ws}+ { System.out.print(" ");}
{StartNP} { System.out.print("[NP");}
{StartAP} { System.out.print("[AP");}

C.4 Multiword expressions
This section shows a list of MWEs recognised by our shallow parser, IceParser.

The list is in the form of regular expression and is obtained from the three
finite-state transducers responsible for annotating the MWEs.

Transducer Phrase  MWEP1

AdverbPart = {WS}+{AdverbTag}
PrepPart = {WS}+{PrepTag}

MWE_PP = [fFlyrir{PrepPart}(aftan|austan|framan|handan|nedan|
nordan|ofan|sunnan|utan|vestan){AdverbPart}

Transducer Phrase  MWEP2

MainPrepPart = (adl|aflaleftir|fralfyrir|lhjalilmed|til|um]|dr]|
vid|yfir|undir){PrepPart}

MWE_PP = [aAlft(an|ur){AdverbPart}{MainPrepPart} |
[aA]ust (an|ur) {AdverbPart}{MainPrepPart} |
[4A]{AdverbPart}(eftir|medal|milli|méti|undan){PrepPart}|
[bBlak{NounPart}vid{PrepPart} I
[fF]ram(an|mi) ?{AdverbPart}{MainPrepPart} |
[gGlegn{AdverbPart}um{PrepPart} |
[(hH]ér{AdverbPart}(a|fyrir|hja|i|vid|undir) {PrepPart} |
[hH]andan{AdverbPart}(ad|af |fra|fyrir|i|lum|vid|yfir)

{PrepPart} |
[nN]edan{AdverbPart}{MainPrepPart} |
[nN]id (ur|ri){AdverbPart}{MainPrepPart} |
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[nN]ord (an|ur) {AdverbPart}{MainPrepPart}
[iI]lnn(ilan)?7{AdverbPart}{MainPrepPart}
[i1]1{AdverbPart} (gegnum|kringum) {PrepPart}
[o0]fan{AdverbPart}{MainPrepPart}
[rRI1étt{AdverbPart}(ilalhja|vid) {PrepPart}
[sS] (unnan |udur) {AdverbPart}{MainPrepPart}
[uU]pp{AdverbPart}{MainPrepPart}
[uU]ppi{AdverbPart}(a|i){PrepPart}
[uU]tan{AdverbPart}{MainPrepPart}

[40] t{AdverbPart}{MainPrepPart}
[a0]ti{AdverbPart}(4|i|vid) {PrepPart}
[vV]esta(an|ur){AdverbPart}{MainPrepPart}
[yY]fir{AdverbPart}{MainPrepPart}
[pplratt{AdverbPart}fyrir{PrepPart}

Transducer Phrase  MWE

Ada = {WS}*ad{WS}+{AdverbTag}
Adc = {WS}*ad{WS}+{ConjTag}
Adi = {WS}*ad{WwS}+{InfinitiveTag}

Adp = {WS}*ad{WS}+{PrepTag}

Af = {WS}*[aAlf{WS}+{PrepTag}

Afa = {WS}x[aA]lf{WS}+{AdverbTag}

Aa = {ws}*a{ws}r+{AdverbTag}

Ap = {wS}*a{wS}+{PrepTag}

Adeins = {WS}*adeins{WS}+{AdverbTag}
Adur = {WS}*adur{wS}+{AdverbTag}

Aftur = {WS}*[aAlftur{wS}+{AdverbTag}
Afram = {WS}*afram{WS}+{AdverbTag}

Alls = {wS}*[aA]llls{WS}+{PronounTag}
A11t = {WwS}x[aAl1l1lt{WS}+{PronounTag}
Alveg = {WS}*[aAllveg{WS}+{AdverbTag}
Annad = {WS}*annad{WS}+{PronounTag}
Annars = {WS}*[aAlnnars{WS}+{PronounTag}
Aukp = {WS}*auk{WS}+{PrepTag}

Auki = {WS}xauki{WS}+{AdverbTag}

An = {WS}*[4A1n{WS}+{PrepTag}

Bak = {WS}*bak{WS}+{NounTag}

Badum = {WS}*[bB]ladum?{WS}+{PronounTag}
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Beggja = {WS}*[bB]eggja{WS}+{PronounTag}
Betur = {WS}*betur{WS}+{AdverbTag}

Bil = {WS}*bil{WS}+{NounTag}

Blatt = {WS}*[bB]latt{WS}+{AdverbTag}
Boginn = {WS}*bdéginn{WS}+{NounTag}
Daemis = {WS}*demis{WS}+{NounTag}

Ed = {WwS}*ed{WS}+{ConjTag}

Eda = {WS}x*[eE]da{WS}+{ConjTag}

Ef = {WS}*[eElf{WS}+{ConjTag}

Eftir = {WS}*xeftir{WS}+{PrepTag}
Einhvern = {WS}*[eE]inhvern{WS}+{PronounTag}
Einhvers = {WS}*[eE]inhvers{WS}+{PronounTag}
Eins = {WS}*[eE]ins{WS}+{AdverbTag}
Einsp = {WS}*[eE]ins{WS}+{PronounTag}

En = {WS}*en{WS}+{ConjTag}

Enn = {WS}*enn{WS}+{AdverbTag}

Enda = {WS}*[eE]lnda{WS}+{AdverbTag}
Engan = {WS}*[eElngan{WS}+{PronounTag}
Engu = {WS}*[eElngu{WS}+{PronounTag}
Einu = {WS}*einu{WS}+{AdjectiveTag}
Einun = {WS}*einu{WS}+{NumeralTag}

Er = {WS}*er{WS}+{VerbFiniteTag}

Fer = {WS}xfer{WS}+{VerbFiniteTag}

Ferns = {WS}*[fFlerns{WS}+{AdjectiveTag}
Fraa = {WS}*fra{ws}+{AdverbTag}

Fram = {WS}*[fF]lram{WS}+{AdverbTag}
Framvegis = {WS}*framvegis{WS}+{AdverbTag}
Fremst = {WS}*fremst{WS}+{AdverbTag}
Fyrr = {WS}*[fF]lyrr{wS}+{AdverbTag}
Fyrst = {WS}x[fF]lyrst{WwS}+{AdverbTag}
Hattar = {WS}*hattar{WS}+{NounTag}
Heldur = {WS}*[hH]eldur{WS}+{AdverbTag}
Her = {WS}x*[hH]ér{ws}+{AdverbTag}

Herna = {WS}*[hH]érna{WS}+{AdverbTag}
Hinn = {WS}*[hH]inn{WS}+{PronounTag}
Hins = {WS}*[hH]ins{WS}+{PronounTag}
Hinum = {WS}*[hH]inum?{WS}+{PronounTag}
Hvad = {WS}*[hH]vad{WS}+{PronounTag}
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Hvar = {WS}*[hH]var{wS}+{AdverbTag}

Hvort = {WS}*hvort{WS}+({ConjTag}|{PronounTag})
Hverju = {WS}xhverju{WS}+{PronounTag}
Hvers = {WS}t*[hH]vers{WS}+{PronounTag}
Haegra = {WS}*[hH]egra{WwS}+{AdjectiveTag}
I = {WS}*i{WS}+{PrepTag}

Jafnt = {WS}x[jJlafnt{WS}+{AdverbTag}
Jafnvel = {WS}x[jJ]lafnvel{WS}+{AdverbTag}
Konar = {WS}*konar{WS}+{NounTag}

Kosti = {WS}xkosti{WS}+{NounTag}

Kyns = {WS}*kyns{WS}+{NounTag}

Lagi = {WS}*lagi{WS}+{NounTag}

Leid = {WS}*leid{WS}+{NounTag}

Leyti = {WS}*leyti{WS}+{NounTag}

Likt = {WS}*[1L]ikt{WS}+{AdverbTag}

Margs = {WS}*[mM]args{WS}+{AdjectiveTag}
Medal = {WS}*medan{WS}+{AdverbTag}

Medan = {WS}*medan{WS}+{ConjTag}

Megin = {WS}*megin{WS}+{AdverbTag}

Meira = {WS}*[mM]eira{WS}+{AdjectiveTag}
Mikid = {WS}*mikid{WS}+{AdverbTag}
Minnsta = {WS}*minnsta{WS}+{AdjectiveTag}
Min = {WS}*[mM]in{WS}+{PronounTag}

Moti = {WS}*moti{WS}+{NounTag}

Mynda = {WS}*mynda{WS}+{VerbInfinitiveTag}
Neins = {WS}*[nN]eins{WS}+{PronounTag}
Nokkru = {WS}*[nN]okkru{WS}+{PronounTag}
Nokkurn = {WS}*[nN]okkurn{WS}+{PronounTag}
Nokkurs = {WS}*[nN]okkurs{WS}+{PronounTag}
Ny = {WS}t*ny{WS}+{AdverbTag}

Nyju = {WS}*nyju{WS}+{AdjectiveTag}

Rettu = {WS}t*[rR]léttu{WS}+{AdjectiveTag}
Sagt = {WS}*sagt{WS}+{VerbTag}

Sama = {WS}*[sS]ama{WS}+{PronounTag}

Saman = {WS}*saman{WS}+{AdverbTag}

Sams = {WS}*[sS]ams{WS}+{PronounTag}

Samt = {WS}*[sS]amt{WS}+{AdverbTag}

Segja = {WS}xsegja{WS}+{VerbInfinitiveTag}
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Sem = {WS}*[sS]lem{WS}+{ConjTag}

Sema = {WS}t*sem{WS}+{AdverbTag}

Sidur = {WS}*sidur{WS}+{AdverbTag}

Sin = {WS}*[sS]in{WS}+{PronounTag}

Sinni = {WS}*sinni{WS}+{NounTag}
Sjalfsogdu = {WS}*sjalfsogdu{Ws}t+{AdjectiveTag}
Smam = {WS}*[sSlmam{WS}+{AdverbTag}

Stad = {WS}*stad{WS}+{NounTag}

Stadar = {WS}*stadar{WS}+{NounTag}

Stundum = {WS}*stundum{WS}+{AdverbTag}

Svo = {WS}*svo{WS}+{AdverbTag}

Og = {WS}x[o0]g{WS}+{ConjTag}

Tila = {WS}*[tT]il{WS}+{AdverbTag}

Tilp = {WS}*[tT]1il{WS}+{PrepTag}

Tvenns = {WS}*[tT]venns{WS}+{AdjectiveTag}
Um = {WS}*[uUIm{wS}+{PrepTag}

Ur = {WS}*[aU]lr{WS}+{PrepTag}

Vegar = {WS}t*vegar{WS}+{NounTag}

Veginn = {WS}*veginn{WS}+{NounTag}

Vegna = {WS}t*vegna{WS}+{PrepTag}

Vid = {WS}*[vV]id{wS}+{AdverbTag}

Vill = {WS}*vill{WS}+{VerbFiniteTag}
Vinstra = {WS}*[vV]instra{WS}+{AdjectiveTag}
Visu = {WS}*visu{WS}+{AdjectiveTag}

Ymiss = {WS}*[§YImiss{WS}+{PronounTag}
Thad = {WS}*pad{WS}+{PronounTag}

Thar = {WS}*[pP]lar{WS}+{AdverbTag}

Theim = {WS}*[pP]leim{WS}+{PronounTag}
Thess = {WS}*pess{WS}+{PronounTag}

Thett = {WSkxpétt{WS}+{AdverbTag}

Thin = {WS}*[pP]in{WS}+{PronounTag}

Tho = {WS}*[pP]o{WS}+{AdverbTag}

Thott = {WS}*[pP]l6tt{WS}+{ConjTag}

Threnns = {WS}*[pPlrenns{WS}+{AdjectiveTag}
Thvi = {WS}xpvi{WS}+{PronounTag}

Thvia = {WS}*pvi{WS}+{AdverbTag}

Odru = {WS}*[60]1dru{WS}+{PronounTag}

Ofugu = {WS}*[60]fugu{Ws}+{AdjectiveTag}
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011u = {WS}*[60]11u{WS}+{PronounTag}

MWE_AdvP = {Adp} ({Nyjul}|{Sjalfsogdu}|{Visu}|
{Minnsta}{Kosti}| ({Nokkru}|{0dru}){Leyti}) |

({A11s}|{Annars}|{Einhvers}){Stadar}|

{Afa}{0g}{Tila} |

{Aftur}{Ap} ({Bak}|{Moti}) |

{Aftur}{0g}{Aftur} |

{A11t}{I} ({Einu} [{Lagi}) |

{A11t}{Adp}{Thvi} I

({Annars}|{Hins}){Vegar} |

{Aukp}{Thess} I

{Aa} ({Ny} | {Stundum}) |

{Ap}{Hinn}{Boginn} |

{Adur}H{Fyrr}

{An}{Thess}{Adc} |
{Blatt}{Afram} I
({Badum} |{Beggja}|{Herna} |{Hinum}|{Haegra}|{Min} |
{Rettul}|{Sin}|{Thin}|{Vinstral}|{Theim} [{0dru}|{0fugul}) {Megin}|
({Einhvern}|{Engan}|{Nokkurn}){Veginn} |
{Eda}{011u}{Heldur} |
{Ef}{Tila}{Vill} I
{Ekki}{Sist}
{Engu}{Ada}{Sidur} |
{Enn}?{Einun}{Sinni} |
{Fram}{0g}{Aftur} |
{Fyrst}{0g}{Fremst} |
{Her}{0g} ({Thar}|{Hvar}|{Nu}) |
{Hvar}{Sem}{Er} |
{Hvort} ({Ed}|{Sem}){Er}? |
{Hvers}{Vegna} |
{Haerra}{0g}{Haerra} |
{Jafnt}{0g}{Thett} |
{Meira}{Adi}?{Segja} |
{Nokkru}{Sinni} |
{0g}{Svo}{Framvegis} |
{Sama}{Hvort} |
{Samt}{Sem}{Adur} I
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{Sem} ({Sagt}|{Betur}{Fer})
{Sidur}{En}{Svo}
{Smam}{Saman}

{Svo}{0g}
{Tilp}({Daemis}|{Adi}{Mynda})
{Tila}{0g}{Fraa}
{Um}({Leid}|{Thad}{Bil})
{Vegna}{Thess}
{Vid}{0g}{Vid}

{Thess} ({Vegna}|{I}{Stad})
{Thar}7{Ada}{Auki}
{Thar}{Aa}{Medal}
{0dru}{Hverju}

MWE_AP = ({Alls}|{Annars}|{Einhvers}|{Einsp}|{Ferns}|{Hvers}|
{Margs}|{Neins}|{Nokkurs}|{Sams}|{Tvenns}|{Threnns}|
{Ymiss}|{Thess}){Konar} |
{Hvers}Kyns} |
{Thess}{Hattar}

MWE_CP = ({Af}[{Ur})?{Thvi}{Adc} I

{Aa}{Medan}

{Eftir}{Adc} |

{Adur}{En}

{Alveg}? ({Eins}|[{Likt}){0g} |
({Enda}|{Jafnvel}) {Thott} |
{Hvorki}{Meiraa}{Ne}{Minna}{En} |
{Svo}{Adc}

{Svo}{Mikid}?{Sem} |
({Tilp}|{An}){Thess}? ({Adi}|{Adc}) |
{Um}{Leid}{0g} |
{Vegna}{Thess}{Adc} |

{Thar} ({Tila}|{Sem}) |
{Tho}{Adc} |
{Thvia}{Adeins}?{Adc}




