IceQA: Developing a question answering system
for Icelandic*

Olafur Pall Geirsson

Abstract

In this report, we summarize the first attempt made to develop
an open source question answering (QA) system for the Icelandic lan-
guage. We present IceQA, a QA system built on top of the QANUS
framework.

A couple of textprocessing modules are missing for the Icelandic
language, and thus, IceQA is limited to answering questions in three
categories: persons, locations and years. From an evaluation run over
a set of 100 questions in these given categories, it achieves a strict
accuracy score of %41 and relaxed accuracy score of %51. We look at
the development process of IceQA and future prospects in question
answering for the Icelandic language.

1 Introduction

With the gradual increase in amount of information being stored in natural
language text, the need for an automated system to extract that information
becomes more apparent. Such a system would allow the user to ask a question
using natural language and receive an accurate answer both quickly and
reliably. Current search engines such as Google and Bing may be successful at
directing users towards answers given a query, but they do not put together a
complete answer for the user. Instead, they return a ranked list of documents.
Question answering (QA) systems in contrast deliver exact answers.
Inspiration for this research project came from the fact that much re-
search has been put into QA over the last decade along with a trend towards
an open advancement of question answering [3]. Being both an interesting
interdisciplinary research area and having practical application, question an-
swering has gained some public attention in the past years. The best known
example of a QA system could be IBM Watson which won a Jeopardy! com-
petition live on television. Other well known examples include Apple’s Siri
and Google Now. The introduction of newly available open source QA frame-
works has facilitated for rapid development and evaluation of QA systems.

*This project was supported by grant no. 1320360091 from the Icelandic Student In-
novation Fund.

We sought out to develop a prototype of an open-domain question an-
swering system for the Icelandic language. Despite the amount of research
put into QA in recent years, no such system has been developed for the
Icelandic language. Following the naming conventions of existing Icelandic
text processing tools, we named the system IceQA. To find a platform for
developing IceQA we researched the current availability of open source QA
frameworks. For working with Icelandic text we made use of IceNLP[7], an
open source text-processing toolkit for the Icelandic language.

We hypothesised that it would be possible to develop a prototype of an
open domain question answering system for the Icelandic language within
the period of 3 months that would achieve some level of accuracy. We were
eager to find out what accuracy was achievable, especially considering the
progress [10] that has been made in language technology for the Icelandic
language over the last 13 year. On the other hand, we were also willing to em-
brace the fact that there might be missing some essential modules to achieve
an accuracy level comparable to state-of-the-art QA systems developed for
other languages.

2 Background

The development of IceQA was split into four phases. The first phase for
reading sources and preparation of information base, the second for evalu-
ating existing open source QA frameworks, the third for integrating IceNLP
components into such a framework, and the last phase for evaluating the
outcome. In this section, we’ll cover the terminology used in QA and the
approach taken to develop IceQA.

2.1 Terminology

To understand QA it is necessary to look at the most common terminology
used in this field.

Broad domain Broad domain refers to the breadth of topics for which a
QA system can achieve acceptable level of accuracy. When
designing a QA system it is necessary to consider in which
domains of knowledge ranging from history and geography to
science and to literature, the system should be able answer
questions from.

Answer type taxonomy A set of types or classes which an answer to a
given question can be classified into. The most widely used
taxonomy in QA is a hierarchical two-layered taxonomy in-
troduced by Li and Roth [5], including 6 coarse classes (ab-
breviation, entity, description, human, location and numeric
value) and 50 fine classes.

Factoid question A question to which a correct answer is a single non-
debatable fact or statement, in particular a named entity.
An example of a factoid question would be ‘Who is the pres-
ident of Iceland?’, where the correct answer would be the
name Olafur Ragnar Grimsson. An example of a non-factoid
question is ‘When do you get old?’, to such a question a
correct answer may not necessarily exist or vary depend-
ing on whom the question is directed to. Answers to factoid
questions rarely exceed 5 words and are most commonly 1-2
words.

Named Entity Recognition (NER) The combined task of detecting and
classifying a named entity in a given text. A named entity
can be anything which is referred to with a proper name.
The types of classes used in NER depends on a predefined
taxonomy used for each context. Examples of classes used
in traditional NER systems are persons, organizations and
locations.

Question classification The task of assigning an answer type to a ques-
tion. In QA, often the first step towards retrieving an answer
to a given question is to perform question classification.

Query language complexity Query Language Complexity refers to the
ambiguity and structural complexity of the questions in a QA
problem. It relates to the difficulty of extracting the intended
meaning of the question from its linguistic expression.

User interaction / Usability The degree of user interaction required to
run the QA system, i.e. ask a question and receive an answer.
For a QA system to be usable by the public it would be
necessary to, for example, implement a web browser interface
or providing a conversational agentﬂ Very likely however in
the case of IceQA, we would only be limited to a command
line interface.

2.2 Defining IceQA

By understanding common question answering terminology, it is possible to
define what type of a question answering system IceQA should be.

To begin with, the broad domain was determined. For testing IceQA a
collection of all articles from the Icelandic Web of Science (is. Visindavefur
Haskola Islands) was used. This was considered as a good corpus for a few

1Ex. Apple’s Siri

reasons. It’s large enough for development purposes, it covers a broad range
of topics while still being credible enough to produce reliable answers.

Next, an answer type taxonomy was defined. To do so we looked at
existing tools for the Icelandic language to classify questions as well as the
taxonomy used by existing QA system for other languages. Many successful
QA system today use the above mentioned taxonomy defined by Li and Roth.
However, this two-layered taxonomy has been designed to cover the types of
answers from the TRECﬂ track. The TREC tracks are used as a platform to
evaluate separate QA systems which often have been under development for
many years, in contrast with a 2 month prototype implementation of IceQA.
To add on top of that, for the Icelandic language there does not exist a
question classification module. This does dramatically limit our capabilities
to produce a reliable answer type from questions presented in Icelandic.
Keeping this in mind and our goal of developing a prototype we settled on
a simpler answer ontology. The answer type taxonomy would only contain
three answer types: person, location and year.

Finally, for user interaction we would settle with the interface provided
by the framework on which we build IceQA. The only requirement set to
IceQA’s usability is a standard way of evaluating its accuracy.

2.3 Platform selection

Writing IceQA from scratch would be an overwhelming task, instead we
decided to use an existing QA framework on top of which we would build
IceQA. Some open source QA framworks exists, we had two particular sys-
tems in mind. Firstly, OpenEphyra [I1] developed at Carnegie Mellon and
secondly QANUS [9] developed at the National University of Singapore. We
researched both systems, beginning with OpenEphyra.

OpenEpyra is a widely used open source QA framework. When IBM
set out to develop their IBM Watson, they used a slight modification of
OpenEphyra as a baseline comparison [2, p. 66]. Running a provided example
of the system on our computer however did not work ‘out of the box’. After
some online researching and digging into the documentation and code-base
for a couple of days no solution to the problem still appearedﬂ The decision
was made to look at other alternatives instead.

QANUS is built with extensibility in mind and as such, it turns out to be
an ideal framework for developing IceQA. The framework is well documented,
written in Java like IceNLP and the provided reference implementation of a
QA system worked ‘out of the box’. The framework also does not put any
limitation on what kind of text processing modules are used making it pos-

2The Text REtrieval Conference (TREC) is an on-going series of workshops focusing
on a list of different information retrieval research areas.

3In hindsight, this may likely may have due to the limited experience of the researcher
in Java development.

sible to integrate IceNLP into the system. Neither does the framework make
any restriction on the input data format, making it possible to incorporate
a different kind of corpus than AQUAINT-2, the one provided from the ref-
erence implementation. Further implementation details of QANUS will be
explained in more detail in Section [3] IceQA Implementation.

Two other QA frameworks were also looked at, ARANEA and Qanda by
MITRE, before a decision was made to settle on QANUS. ARANEA is a
system which extracts answers from the Web using two different techniques:
knowledge annotation and knowledge mining [6]. ARANEA is written in C
making it harder to integrate with IceNLP modules. Also, ARANEA was
rather developed to test a particular approach to QA instead of as an all-
round QA platform. This made ARANEA a less suitable option for TceQA
than QANUS. Qanda is a QA system developed by MITREH which has had
some success in the TREC tracks [I]. Currently however only one module
of Qanda has been made available for download making it an unattractive
platform for developing IceQA.

Having researched frameworks options for developing IceQA, the decision
was eventually made to settle on QANUS. This would not necessarily mean
that QANUS is the final choice for developing IceQA. The experience gained
from developing with QANUS however will make us better able to make an
informed decision later on to switch platforms, if necessary. Keeping this in
mind the decision to resolve on a particular platform would not necessarily
have to be a game changing one.

3 IceQA Implementation

QANUS adopts a pipelined approach to QA[S], dividing the QA task into
four sub-tasks:
1. Information base preparation 3. answer retrieval

2. question processing 4. evaluation

The overview of the system can be seen in Figure [1| (Borrowed from|g]). We
will look at all four stages individually and then explain the modifications
made during development of IceQA.

3.1 Information source preparation

Information base preparation (IBP) is the task of preparing a corpus to be
used as an information base for the answer retrieval stage. This can include
performing any necessary text-processing on the corpus such as part of speech
tagging, named entity recognition and lemmatisation. The output of this
stage in QANUS is a Luceneﬂ index, ready for use in the answer retrieval

4A US federally funded R&D center
5An open source text search engine written in Java, https://lucene.apache.org/

https://lucene.apache.org/

Processed

Questions .
Questions

Information
Base Evaluation
Preparation

Information Generated Evaluation
Base Answers Results
\/\

Figure 1: Overview of QANUS

Answer
Retrieval

Question
Processing

LCLWSJ

stage. The Lucene index contains the corpus including annotations processed
with the IceNLP toolkit.

In this stage, little modification was required for IceQA. Some Icelandic
text-processing wrappers were developed in order to align the AP]H of IceNLP
with the QANUS framework. The above mentioned text-processing tools are
already available in IceNLP. No customizations were required.

3.2 Question processing

Question processing (QP) is, similarly as the IBP stage, the task of process-
ing a question to be used later in the answer retrieval stage. This includes
performing text-processing such as part of speech tagging and lemmatisation
for the question but also question classification and possibly query expan-
sion. The output of the question processing stage is an XML file including
the question string and question annotations.

For IceQA, the problem with this stage is that no question classifica-
tion tool for the Icelandic language exists. Much research has been put into
the field of question classification and for many languages there are already
existing question classification modules which achieve high accuracy. Thus,
developing one from scratch for the Icelandic language, however, is a project
on its own and outside the scope of this summer project. The solution instead
was to rapidly develop a simple rule-based question classifier that would be
able to classify the questions fitting the defined answer taxonomy of IceQA,
as explained before in Section [2.2]

Another compromise that had to be made was on query expansion. In
many QA systems, a question is translated into multiple queries including
synonyms of words used in the original question. This can in some cases
lead to a higher performing QA system [4]. To perform query expansion it

S Application programming interface.

is necessary to have thesaurus API which at the moment is either not freely
available or easily accessible for the Icelandic language. Developing such a
module would be possible but as with the question classification, still outside
the scope of this summer project. The decision was made to skip performing
query expansion. This would still suffice to run an evaluation of IceQA and
see how accurately IceQA could perform in answer retrieval, as a baseline
score.

3.3 Answer retrieval

Answer retrieval (AR) is the task of finding a correct answer to a given
question. As one may suspect, implementing this stage is the most compli-
cated part of developing a QA system. The input to this stage is twofold,
a Lucene index including the processed corpus from the IBP stage and a
list of annotated questions from the QP stage. In QA, two main classes of
algorithms have been applied to the answer-extraction task[4], one based on
answer-type pattern extraction and one based on N-gram tiling. In QANUS,
the reference QA system implements the former one, answer-type pattern
extraction. The output from the AR stage is a list of answers to the given
questions, including source passages (sentences from where the answers were
extracted) and a link to the document containing the answer text.

For IceQA, a couple of modification were made to the reference im-
plementation that came shipped with QANUS. Mainly, the way how dif-
ferent types of questions were delegated to answering modules was made
different. Originally, all answer extraction took place in a single class
FeatureScoringStrategy with different methods handling different types of
answer types. Instead, a module based approach was adopted. A IAnswerer
interface was designed to deal with this problem. Also, there was no conve-
nient interface for handling annotated text withing the AR stage. A Passage
class was implemented and integrated into the QANUS framework to treat
this nuisance. Details on how answer extraction is implemented in IceQA
can be found in Section B.5l

3.4 Evaluation

The evaluation stage manages comparison of obtained answers with expected
answers, outputting a report with the accuracy of the QA system. Accuracy
is defined as the ratio between the number of correctly generated results to
the total number of factoid questions sent to the QA system. The results
from the evaluation stage will be discussed in the Section

For IceQA, no modifications were required to run the evaluation stage.

<< Java Interface >>

IAnswerer

e Subscription():String[]
e FormulateQuery(String):String

,“ e ExtractCandidates(RetrievedDocuments) >
K :AnswerCandidate[] \\
! EAS N
7 z ~ N
’ Pid S \
L . 7’ ~ ~ AN
<< Java Class >> e AN << Java Class >>
PersonAnswerer R S FruinlHamborgAnswerer
. . 7’ ~ N N
<< Java Class >> << Java Class >>
YearAnswerer LocationAnswerer

Figure 2: IceQA TAnswerer interface

3.5 Answer extraction

Getting the answering extraction algorithm right is critical in order to achieve
a high level of accuracy. To offer a clean way to answer any question of
arbitrary type an IAnswerer interface was developed and incorporated into
IceQA.

Answer extraction in IceQA is split into a couple of steps including
IAnswerer selection, query formulation, candidate extraction and candidate
selection. The IAnswerer and candidate selection phases are performed by
the FeatureScoringStrategy class while query formulation and candidate
extraction take place inside the answering modules. We look at both the
IAnswerer interface and then the FeatureScoringStrategy class to see in
detail how answer extraction is implemented in IceQA.

3.6 IAnswerer interface

A Java class implementing the IAnswerer interface is called an answering
module. Such a module is designed to answer a specific type of questions
to which it ‘subscribes’ to. When IceQA is confronted with such a question,
the answering module helps out with two parts of the answer extraction
algorithm. Firstly, it is used to formulate an appropriate query into the
information base. Secondly, after the formulated query has been used to
query the information base the answering module is used to extract potential
answer candidates. An overview of the IAnswerer interface can be seen in
Figure 2] A dotted arrow line from a Java class pointing into the IAnswerer
interface denotes that that class implements the IAnswerer interface. By
implementing the IAnswerer interface, an answering module ‘subscribes’ to
questions it intends to answer.

The IAnswerer interface is useful. For example, a person answering mod-
ule (e.g. PersonAnswerer) would subscribe to questions which have the an-

swer type PERSON while, a year answering module (e.g. YearAnswerer) would
subscribe to questions having the answer type YEAR, and etc. Subscriptions
are not only limited to answer types, but also include the question text. It
is therefore also possible to develop an answering module that subscribes to
questions containing a particular phrase or named entity. For example, it
would be possible to make a Valur[] answering module which could answer
any questions related to the football club. Another example would be a ‘Hvad
keyptir pu fyrir peninginn sem frain i Hamborg gaf bér?ﬂ answering module
for an interactive game with a conversational agent.

3.7 FeatureScoringStrategy class

The FeatureScoringStrategy class is the heart of answer extraction in
IceQA. Inside the getAnswerForQuestion method the algorithm to extract
an answer to a given question is performed. The algorithm used by IceQA
for this part can be seen in Algorithm

Algorithm 1: Answer extraction in FeatureScoringStrategy

Input: Question ¢, Information base I ;
Output: Answer a to question ¢ ;
begin
Let max be negative infinity ;
Let M be the set of answer modules having subscribed to ¢ ;
for m € M do
Let ¢’ be the formulated query by m given q ;
Let D be retrieved documents by I given ¢ ;
for de D do
Let P be the set of passages returned by querying ¢’ into d ;
Let Cp be the set of candidates extracted by m given P ;
/* A candidate is composed of an answer, source
passage and document */
for c € Cp do
Let s be the sum of heuristic scores given ¢ and ¢’ ;

if s > maz then
L Let a be ¢

L return a

Currently, for IceQA the score calculated in the innermost loop is per-
formed using five heuristics scores: paragraph coverage score, sentence cov-
erage score, proximity score, document score and repeated term score. A
description of each of them can be read as follows:

"A popular football club in Reykjavik.
8 A traditional Icelandic question game.

Paragraph coverage score

Sentence coverage score

Proximity score

Sentence score

Repeated term score

The count of the occurrences of the search
terms within a given passage divided over
the number of words in the search string.
For example if 3 out of 4 words in the
search query are contained in the source
passage paragraph, this score would be
0.75.

The same heuristic as coverage score ex-
cept, the source passage is now limited
to the sentence containing the candidate
answer, not the whole paragraph. In the
previous example, we can imagine that
only 2 out of the 4 words in the query
are contained in the string resulting in a
sentence coverage score of 0.5. For good
answer candidates, the sentence coverage
score and paragraph coverage score would
be the same.

The distance between the occurrences of
the answer candidate and query within the
source passage. If the answer candidate
can be found inside a passage containing
the formulated query this score is high, if
it is located far away in from the query
term this score is low.

The index of the source document re-
turned by the text search engine. If the
candidate answer is inside the highest
ranked document this score is 1, if the can-
didate answer is inside the lowest ranked
document this score is 0.

Penalise answer candidates containing re-
peated words from the formulated query.
If the answer contains words from the for-
mulated query it scores abnormally high
in the other heuristics, this score is to
weigh against that.

10

4 Evaluation

QANUS comes shipped with an evaluation module. In order to use it a set
of gold-standard questions and answers needed to be collected.

4.1 Question restrictions

To evaluate the performance of IceQA a set of questions had to be collected.
Given the broad domain of IceQA and defined answer type taxonomy some
restrictions had to be made on what kind of questions were allowed to be
used for evaluation. The restrictions to the questions were set as the four
following rules:

1. The question must be in Icelandic.

2. The answer to the question has to be one of the types: person name,
location or year.

3. The answer to the question must be found inside an article from the
Icelandic Web of Science.

4. The answer to the question can not be a list of person names, locations
Or years.

A group of seven computer science students working at Reykjavik Univer-
sity over the summer volunteered to compose new questions admitting to
these rules. Instructions to the participating volunteers were communicated
through the web-page http://scriptogr.am/olafurpg/post/IceQA| (page in
Icelandic). Answers were submitted through a Google form with three text
fields. The first field for the question, the second field for the correct an-
swer and the third field for the URL to the source article. Please follow the
provided link for more details on the instructions layout.

4.1.1 Questions collected

A total of 100 questions were collected, which was considered as sufficient
to develop the prototype of IceQA and perform evaluation. A subset of the
collected questions was used during the development of IceQA. This subset,
often referred to as a ‘dev’ set, contained 21 questions: 7 with the answer type
year, 7 with the answer type person and 7 with the answer type location.

4.2 Results

The evaluation metric used is an accuracy score calculated as the ratio of
correctly answered question to the total number of questions, more formally

No. of correctly answered questions

Accuracy score =
Y Total number of questions

11

http://scriptogr.am/olafurpg/post/IceQA

Strict accuracy Relaxed accuracy
Answer type No. of questions Correct no. % Correct no. %

Location 30 6 20 14 46.7

Person name 27 8 29.6 16 59.3

Year 43 27 61.4 27 61.4
Total 100 41 41 57 57

Table 1: IceQA Accuracy

Two accuracy scores were calculated, one ‘strict’ and one ‘relaxed’. The
strict score was obtained directly by running the evaluation module while
the relaxed score was manually calculated by comparing obtained answers
with the expected answers. The relaxed score might be considered as a bet-
ter representation of the actual performance since the strict evaluation only
performs plain string comparison. This may lead to a correct answers be-
ing evaluated as wrong if for example the obtained answer is in a different
case than the expected answer (e.g. obtained ‘Islandi’ but expected ‘Island’)
or some non-critical details are either missing or additionally present (e.g.
obtained ‘Reykholti’ and ‘Christian Goldbach’ but expected ‘Reykholti i
Breidafirdi’ and ‘Goldbach’).

The results from the evaluation stage can be seen in Table [I] As sus-
pected, the relaxed accuracy is higher than the strict one. Not surprisingly
either, the relaxed score is only higher for the location and person name
answer types. It does not affect the year answer type category.

At the beginning of this project, we hypothesised that it would be possi-
ble to develop an open domain question answering system within the period
of three months that would achieve some level of accuracy. Looking at the
results we may be safe to say that our hypothesis holds true. The top sys-
tem in the TREC 2007 QA track LymbaPAO07 and the tenth-placed system
QUANTA achieved accuracy scores of 70.6% and 20.6% respectively [9]. The
reference implementation of a QA system that comes shipped with QANUS
achieves an accuracy of 11.9%. Comparing these results, one could come to
the conclusion that IceQA performs exceptionally well. However, such a com-
parison is unfair against the other QA systems since they do not make the
same restrictions on the types of allowed questions as IceQA does. Nonethe-
less, achieving over a 50% relaxed accuracy score is certainly a promising
beginning.

5 Discussions

From a research perspective, the open-domain question answering problem
is attractive as it is one of the most challenging problems in the field of com-
puter science and artificial intelligence, requiring a combination of techniques

12

from multiple interdisciplinary fields including information retrieval, knowl-
edge representation and reasoning, natural language processing and machine
learning. From a societal perspective, the open-domain is also attractive as
it has the potential to revamp the way humans interact with computers.
This motivated us to develop a question answering system, IceQA, for the
Icelandic language. We hypothesised in the beginning that it would be pos-
sible for IceQA to achieve some level of accuracy on a run of open domain
question answering.

We were able confirm our hypothesis by making IceQA achieve a very
promising accuracy score over a limited domain. Starting out developing
IceQA, we were confronted with the problem that a question classification
tool for the Icelandic language does not exist. This forced us to make a
compromise on the types of questions that would be presented to IceQA for
evaluation. Only questions that have an answer type of name, location or
year were tested. For these answer types, a simple rule-based question clas-
sification module had to be developed. This allowed us to run an evaluation
of IceQA, obtaining a strict accuracy score of 41% and a relaxed accuracy
score of 57%. In comparison with existing QA systems for other languages
this score can be considered as relatively good. However, such QA system
do not put the same restrictions on the allowed types of questions as IceQA
does.

The source to IceQA is freely available for download from Bitbucket,
https://bitbucket.org/olafurpg/iceqa. Also, a web interface to demonstrate
the capabilities of IceQA is under development but, unfortunately, is not
ready yet to be included in this report.

Question answering for the Icelandic language has a long way to go.
Primarily, a question classification module needs to be developed before a
truly open-domain question answering system becomes a reality. In addi-
tion, some work needs to be done in improving existing tools for question
answering to attain a higher accuracy score. This in particular refers to the
Icelandic named entity recognition module, IceNER. Moreover, further work
can be put into the answer extraction algorithm currently used by IceQA.
Nevertheless, it is safe to say that open-domain question answering is possi-
ble for the Icelandic language just as for any other language. Getting there,
however, will require increased amounts of research.

References

[1] John D. Burger, Lisa Ferro, Warren Greiff, John Henderson, Marc Light,
Scott Mardis, and Alex Morgan. MITRE’s qanda at TREC-11. Tech-
nical report, DTIC Document, 2006.

[2] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David
Gondek, Aditya A. Kalyanpur, Adam Lally, J. William Murdock, Eric

13

https://bitbucket.org/olafurpg/iceqa

3]

4]

[5]

6]

7]

8]

19]

[10]

[11]

Nyberg, and John Prager. Building watson: An overview of the DeepQA
project. AI magazine, 31(3):59-79, 2010.

David Ferrucci, Eric Nyberg, James Allan, Ken Barker, Eric Brown,
Jennifer Chu-Carroll, Arthur Ciccolo, Pablo Duboue, James Fan, and
David Gondek. Towards the open advancement of question answering
systems. Technical report, IBM Research Report RC24789, 2009.

Dan Jurafsky, James H. Martin, Andrew Kehler, Keith Vander Lin-
den, and Nigel Ward. Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech
Recognition, volume 2. MIT Press, 2000.

Xin Li and Dan Roth. Learning question classifiers. In Proceedings of the
19th International Conference on Computational Linguistics - Volume
1, COLING ’02, pages 1-7, Stroudsburg, PA, USA, 2002. Association

for Computational Linguistics.

Jimmy Lin and Boris Katz. Question answering from the web using
knowledge annotation and knowledge mining techniques. In Proceedings
of the twelfth international conference on Information and knowledge
management, pages 116-123, 2003.

Hrafn Loftsson and Eirikur Régnvaldsson. Icenlp: A natural language
processing toolkit for icelandic. In INTERSPEECH, pages 1533-1536,
2007.

Jun-Ping Ng. QANUS, a open-source question answering framework,
January 2010.

Jun-Ping Ng and Min-Yen Kan. QANUS: An Open-source Question-
Answering Platform. 2010.

Eirtkur Roégnvaldsson, Hrafn Loftsson, Kristin Bjarnadéttir, Sigrin
Helgadottir, Matthew Whelpton, Anna Bjoérk Nikulasdottir, and An-
ton Karl Ingason. Icelandic language resources and technology: Status
and prospects. 2009.

Nico Schlaefer, Petra Gieselmann, Thomas Schaaf, and Alex Waibel.
A pattern learning approach to question answering within the ephyra
framework. In Text, Speech and Dialogue, pages 687694, 2006.

14

	Introduction
	Background
	Terminology
	Defining IceQA
	Platform selection

	IceQA Implementation
	Information source preparation
	Question processing
	Answer retrieval
	Evaluation
	Answer extraction
	IAnswerer interface
	FeatureScoringStrategy class

	Evaluation
	Question restrictions
	Questions collected

	Results

	Discussions

