Continued development of Apertium-IceNLP:
A rule-based Icelandic to English machine translation system

Olafur Waage
School of Computer Science
Reykjavik University
IS-101 Reykjavik, Iceland
olafurwO9@ru.is

Abstract

We describe the continued development of
the open source rule based Icelandic to En-
glish machine translation system (Brandt
et al., 2010). It was created by combining
the Apertium machine translation frame-
work and adding the IceNLP toolkit with
the purpose to increase the translation ac-
curacy. It had an WER of 50.6% and a
PER of 40.8%, scoring worse than the pure
Apertium is-en language pair it was based
on.

We removed IceMorphy from the transla-
tion pipeline and replaced it with Aper-
tium’s morphological analyzer (It-proc).
Then, we created a parser and mapper from
Apertium’s stream format to IceNLP’s tag
format for IceTagger to use. After this
was completed, and after fixing the errors
that cropped up along the way, the updated
WER is 40.5% and PER is 21.3%.

We conclude that increased accuracy might
be achieved by looking deeper into Ice-
landic multiword expressions.

1 Introduction

Machine translation (MT) has come a long way in
the last few years but accurately translating Ice-
landic has been a demanding task. A step forward
was made in 2010 when a prototype machine trans-
lation system was created by combining Apertium
and IceNLP (Brandt et al., 2010). It was achieved
by adding IceMorphy and IceTagger as the first
two parts of the translation system, replacing simi-
lar parts from the Apertium framework. The ques-
tion it tried to answer was: Would the translation

quality of Apertium increase when adding IceNLP
modules to the Apertium translation pipeline?

The results of that prototype were that it had a
word error rate (WER) of 50.6% and an position-
independent word error rate (PER) of 40.8%,
scoring worse than the pure Apertium translation
pipeline. Both Apertium and Apertium-IceNLP
also scored worse than other Icelandic to En-
glish (is-en) translation system (Tungutorg and
Google Translate). The conclusion was that us-
ing only IceTagger and removing IceMorphy from
the pipeline might increase the accuracy, since Ice-
Morphy has a poor support for multiword expres-
sions, which Apertium handles well.

The work described in this paper goes through
the process of removing IceMorphy from the ex-
isting Apertium-IceNLP prototype and replacing it
with Apertium’s morphological analyzer (It-proc).
We describe the creation of a parser and a map-
per from the Apertium tagset format to the IceNLP
tagset to be used by IceTagger and the errors fixed
along the way. Furthermore, we describe errors
like the differences between the tagsets, incom-
plete and wrong tag databases and missing fre-
quency information required for IceTagger to func-
tion properly.

Results of this continued development of
the Apertium-IceNLP prototype were positive.
Apertium-IceNLP’s WER and PER scores are
40.5% and 21.3%, respectively, while the score of
pure Apertium is 42.8% (WER) and 23.8% (PER).
These scores cannot be directly compared with the
previous results since the testing was done using
different test data, though they can give an estimate
of the improvement done.

maorpho analy’zer]—)[pos tagger]—b[lexical selectiun]—)[lexical transfer]

¥

Translated Te morpho generator

post generatnr](—[structural transfer]

Figure 1: The Apertium Pipeline

2 Background

Translating Icelandic using a computer is a de-
manding task that requires both in-depth knowl-
edge of the language and highly technical soft-
ware. Over the years the accuracy of Icelandic
translation has increased and, in 2010, Martha
Dis Brandt created a prototype machine transla-
tion system for her Master’s thesis, where she com-
bined Apertium (an existing shallow-transfer ma-
chine translation system) and IceNLP (an Icelandic
NLP toolkit). The result of that prototype was not
a positive one but there were ideas on how to im-
prove the system.

2.1 Apertium

Apertium (Forcada et al., 2009), was developed
originally to translate from Spanish to Catalan, and
Spanish to Portuguese; designed in such a way
that adding new language pairs was simple. It is
a shallow-transfer MT system, which means that
the system does not perform deep analysis on the
source text. The Apertium system is setup as a
pipeline of various programs that function inde-
pendently from each other, so replacing them is
relatively simple (Forcada et al., 2009).

Each language pair is a work of the Aper-
tium community and anyone can join and start a
new language pair or assist in improving an ex-
isting one. The Icelandic to English language
pair has a 45.9% word error rate (WER) and a
38.2% position-independent word error rate (PER)
(Brandt et al., 2010)

2.2 IceNLP

IceNLP is a natural language processing (NLP)
toolkit used to process and tag Icelandic text
(Loftsson and Rognvaldsson, 2007b). It contains
a tokenizer and a morphological analyser (Ice-
Morphy), a lemmatizer (Lemmald; (Ingason et
al., 2008)), a linguistic rule-based part-of-speech
(POS) tagger (IceTagger; (Loftsson, 2008)), a tri-
gram tagger (TriTagger), and a shallow (finite-
state) parser (IceParser; (Loftsson and Rognvalds-

son, 2007a)).

The IceNLP tools focused on in this paper are
IceMorphy and IceTagger. IceMorphy morpholog-
ically analyses text to find all possible tags from a
given word. It does not look at an entire sentence
but only one word at a time. IceTagger then takes
this list of tags for each word and selects the most
likely tag for the word based on the sentence.

The sentence Eg er gédur. would
be analyzed and tagged by IceNLP like this
Eg fplen er sfglen gédur lkensf

The tags in between the words mark the tag
of the preceding word. fplen describes a per-
sonal pronoun, first person, singular and nomina-
tive, which fits for the word Eq in this case.

2.3 Apertium-IceNLP

A prototype of combining these two systems was
started by Brant for her Masters thesis. The sys-
tem utilizes the existing pipeline within Apertium
to translate Icelandic text analyzed by IceMor-
phy/Lemmald and tagged by IceTagger. It had an
error rate higher than other similar systems, scor-
ing worse than the pure Apertium pipeline.

The hypothesis was that the IceMor-
phy/Lemmald analysis was not good enough
so the next task was to replace it with the
Apertium analyzer.

The pipeline (as seen in figure 1) starts with a
morphological analyser (It-proc) and its results are
sent to the tagger to select the correct tag for each
word. In the original prototype, the idea was to
swap out It-proc and the Apertium tagger for Ice-
Morphy/Lemmald and IceTagger. IceTagger and
IceMorphy were chosen since they start the tag-
ging process and IceTagger has a high tagging ac-
curacy for Icelandic text.

A problem with combining IceNLP and Aper-
tium is that they use different tagsets. IceNLP
uses a single letter for each morphological fea-
ture and does not have any other syntax attached
to it. For example the tag nk fng would describe a
noun, masculine, plural, nominative and definitive

Translator WER | PER
Apertium-IceNLP | 50.6% | 40.8%
Apertium 45.9% | 38.2%
Tungutorg 44.4% | 33.7%
Google Translate | 36.5% | 28.7%

Table 1: Testing results

respectively. Within Apertium this same tag would
be <n><m><pl><nom><def>. This problem
was solved by using a tagmapping file that had an
IceNLP tag on the left and the corresponding Aper-
tium tag on the right.

The final setup would then utilize IceMorphy
to analyze the input text, send that result to IceTag-
ger which would tag the text and ouput an Aper-
tium formatted result which would continue down
the rest of the Apertium pipeline, resulting in a
translated text.

2.3.1 Original Apertium-IceNLP Results

To produce WER and PER scores, a
tool called apertium-eval-translator
was used. This tool has been used by Apertium
before to calculate scores of their language pairs
so it was chosen to be able to compare the results
to other Apertium systems.

One thousand sentences were randomly cho-
sen and then filtered to produce 397 usable ones.
This size was chosen to give a reasonable number
of sentences after filtering. The reason for filtering
was due to the randomness of the selection and it’s
source, since many of these sentences do not aid
in giving a good estimation of the systems quality.
For example, sentences need to have three or more
words, have less than two unknown words, are not
tabular, etc.

These sentences were translated using Aper-
tium, Apertium-IceNLP, Tungutorg and Google
Translate. Then those sentences were copied and
minimal corrections where made to make them as
grammatically correct as possible.

These files were then processed with
apertium-eval-translator giving
the scores shown in Table 1.

To decrease the error rate, it might be sufficient
to simply replace the POS tagger of Apertium and
leave out IceMorphy and Lemmald. The reason is
that IceMorphy and IceTagger do not handle mul-
tiword expressions (MWE) at all, and IceTagger
wants to tag them as individual words. Apertium

handles MWE’s very well and this would most
likely give desired results, since Icelandic uses a
lot of phrases that cannot be translated directly.

There are many examples of Icelandic MWE’s
that are only one word in English. Examples of
this include:

Af hveriju —-> Why
Vegna pess ad —> Because
A medan -> While

3 Development

The aim of the development covered in this report
focused on removing IceMorphy and Lemmald
from the Apertium-IceNLP pipeline and leave only
IceTagger behind. This would require writing a
parser and a mapper from the Apertium tagset to
IceNLP the tagset so that minimal changes would
be needed to IceTagger. No further change would
be required, since IceTagger could already output
Apertium style tags. This work was therefore only
focused on the first part of the pipeline process.

3.1 Changes to IceTagger

Even though IceTagger would theoretically not
need any changes, some were made to simplify the
implementation of the new changes.

A new flag was added to the IceNLP toolkit.
-x <icenlp|apertium> which either uses
IceMorphy or lt-proc as the morpho analyzer re-
spectively. If that flag is set to Apertium, then
the mapping process is the first one to run within
Apertium-IceNLP. Also a slightly different tag-
ging function is called from IceTagger since dictio-
nary token lookup is only done to unknown words
(to help IceTagger tag the surrounding words cor-
rectly) and no dictionary lookup is needed to find
the lemma since It-proc provides it.

3.2 Switching out IceMorphy

The previous version of Apertium-IceNLP got the
raw source language sentence and was able to
parse it in its natural way. But by using lt-proc
as the entry point, the input string becomes a for-
matted text stream so it needs to be modified and
parsed before IceTagger is able to do its work. The
pipeline was setup as a command line script where
the output of It-proc was piped into the IceNLP ex-
ecutable.

There, a system of parsing tools take the
stream; process and prepare it so little modifica-
tion is needed on the IceTagger side.

Following are simple explanations of each part
of the mapping and parsing tools created.

3.2.1 ApertiumSegmentizer

This class is the first one to be run on the text
from It-proc. It goes through the text stream to find
the end of a sentence. It searches for <sent>$.
This is a tag used by Apertium to mark the end
of sentences and is used as a tag after periods and
question marks. It uses a simple StringBuilder and
adds one character at a time. When it is adding a
$ to the string, it checks if the last 7 characters are
the end of sentence tag, and if so, the reading is
stopped and the string collected is returned.

This class can be used in a loop to check if
there are more sentences and the class is not spe-
cific to IceNLP.

3.2.2 LtProcParser

This class receives the sentence from the seg-
mentizer and is responsible for splitting the sen-
tence into words. The Apertium stream format
uses ~ as a start of a word and ends it with a $.
So a simple regular expression is used to split the
stringup ~ [~ $[7$1$

~"Gladur/gladur<adj><pst><m><sg>
<nom><sta>$

When split, each sentence (string) consists of
a starting symbol ”~ and an end symbol $. After
the start symbol comes the lexeme of the word in
question. After the lexeme comes a list of all pos-
sible tags, starting with a forward slash, then the
lemma and finally the tags. Words that are un-
known have the lexeme unchanged and one lemma
with an asterix in front of it with no tags eg.
dyralif/+dyralif.

To store each word, an ApertiumEntry class
was created. One Apertium entry is one word and
can contain zero or more LexicalUnit objects. It
also stores the surface form of the word. The Lex-
icalUnit class contains the lemma, tags and other
properties that can assist in parsing the data.

LtProcParser needs to handle edge cases as
well, such as the invariable part of a multiword
marker, where only the first word of a multi word
expression is tagged and the rest of the expression
is attached to the end of the lexical unit.

An example of an invariable multiword marker
is the multiword expression var {1 samraemi

“var 1 samraemi/vera<vblex><past>
<pl><sg># 1 samremi/vera<vblex>

<past><p3><sg># 1 samramis$

Here the only lemma considered is vera and
the rest of the expression is tagged along behind.

After parsing the sentence, LtProcParser re-
turns an array of ApertiumEntry objects to be used
by the IceNLPTokenConverter class.

3.2.3 IceNLPTokenConverter

Here the ApertiumEntry objects are processed
and converted into IceNLP tags. IceNLPToken-
Converter relies heavily on the tag profile (the list
of possible tags) of each word and the tag map used
by IceTagger to convert IceNLP tags to Apertium
tags.

The process that IceNLPTokenConverter goes
through is to detect the first tag of each LexicalU-
nit within the ApertiumEntry object. Then dif-
ferent methods are used to select an IceNLP tag.
There are methods for unknown words, preposi-
tions, verbs and then there are methods that convert
tags directly.

But before this is done, the lexical units of
each Apertium entry is cleaned. This process
changes such tags as <np><org> to <np><al>
since IceNLP does not differentiate between
proper nouns with the same detail as Apertium.

The normal mapping process is to find the
word in a tag dictionary. These dictionaries are
a map of words and their tags sorted by usage fre-
quency. When a word is found in one of these dic-
tionaries, the tagset there is used and the Itproc tags
are ignored. The tags used in the mapping process
are based on the Frequency Dictionary of Icelandic
(Pind et al., 1991).

3.2.4 Frequency information

A problem with the Apertium is-en language
pair is that the tag profile returned by It-proc is not
sorted in frequency order. This is a disadvantage
for IceTagger because if there are more than one
possible tags after disambiguation then IceTagger
picks the first one, assuming it is the most frequent
one.

This information is retained when using Ice-
Morphy and IceTagger, but when replacing Ice-
Morphy with It-proc, then it is lost.

This is stored within IceNLP in two files (base-
Dict.dict and otb.dict), an example of an entry
within baseDict.dict is:

eigi=svg3en_svglen_svg3fn_aa

It has the word, and then an equal sign fol-
lowed by the tag profile. These values are sorted

by frequency, so the most common tag is the first
one.

Without this information, the whole process
would perform worse than before, so some method
must be derived to use the It-proc tags but sort them
based on the frequency information in these files.

IceNLPTokenConverter does these conver-
sions in the following manner.

For normal mapping (not a verb, preposition,
multiword expression or an unknown word) the
frequency dictionaries are searched for an entry us-
ing the lexeme of the word. If those entries are
found, then the first tag within that entry is con-
verted into an Apertium style tag and that tag is
searched for within the It-proc results. If found, it
is added to the list to be returned and the next tag is
searched for in the same fashion. If it is not found,
then it continues with the next tag.

When it is done with all the tags from the dic-
tionary and there are more tags to be added from
It-proc, they are added to the list in the same order
they are currently in.

If IceNLPTokenConverter is dealing with a
verb, then the exact same method is applied but
it trusts the frequency dictionary tag list and only
adds to the list tags from It-proc that appears in the
tagset list from the dictionary.

3.3 Differences between tagsets

When a running version of the mapping tools was
up, a few tests were done to confirm that every-
thing would be running properly. A majority of the
problems with switching out IceMorphy for It-proc
was not the parsing or programming, but the differ-
ences between the Apertium and IceNLP tagsets.
The prior development had created an IceNLP to
Apertium mapping and a decision was made to use
that same mapping since at the time it seemed like
it would work with minimal problems.

The mapping file has the IceNLP tags, whites-
pace then the corresponding Apertium tag. Work
had been done to sort out all errors for mapping
from IceNLP to Apertium but using those same
mappings backwards would account for a lot of
work.

3.3.1 One to One

There are a few different tags in IceNLP that
describe a preposition but within Apertium there is
only one tag.

apm <pr>
ape <pr>

ao <pr>
ap <pr>
ae <pr>

This is fine when mapping from IceNLP to
Apertium but when going back you will have prob-
lems, so when reading into the reverse Hash Map
the last tag in the file with the string <pr> is used,
for example, the tag ae above. A solution to that
is to have the most important tag the last one. The
Apertium tagset does not have the information to
differenciate between the tags.

3.3.2 Missing tags

The tag map included all the necessary
IceNLP tags but it did not capture all of the Aper-
tium tags. An early error was discovered when the
parsing process did not find a tag, it was left empty
and IceTagger then started guessing what tags to
use. This was a difficult error to spot at first since
the output looked pretty normal, especially if Ic-
eTagger guessed correctly.

A large text corpus was tagged frequently to
keep track of how many of these errors were left.
They were looked at individually and fixed one by
one, since sometimes the error was only a missing
entry in the mapping file but other times it was an
error in the Apertium is-en language pair.

3.3.3 Combined tags

Another early error was that Apertium used
combined tags for words that could be both
male/female and singular/plural. Usually when a
word could be both male and female in the same
form, two different entries would be created for
that word within Apertium. One with the <m> tag
and one with the <f> tag, but sometimes a com-
bined tag would be used <mf>. An example of this
was the word fleiri (more). Here is an exam-
ple sentence and output from It-proc early in the
development process. (formatting mine):

Pad voru fleiri strdkar i hdépnum
There were more boys in the group.

~“fleiri

/fleiri<det><gnt><mf><sp><nom><sta>
/fleiri<det><gnt><mf><sp><acc><sta>
/fleiri<det><gnt><mf><sp><dat><sta>
/fleiri<det><gnt><mf><sp><gen><sta>

$

Here the word fleiri is tagged as a de-
terminer, quantifier, male/female, singular/plural,
nominative/accusative/dative/genative and with a
strong inflection. Since IceNLP does not contain
a tag that describes a word belonging to both gen-

ders and both tenses the fix was to increase the data
sets from the current 4 to 20. This would include
12 lines for male, female and neuter in plural and 8
lines for male and female in singular, since neuter
singular would be fleira.

3.3.4 Strong vs Weak Inflection

As seen in the example above, fleiri
is marked as having a strong inflec-
tion. In Icelandic, this is not correct, as
the strong inflection would have the root
flest (eg. flestir, flestar). This
error is based on the fact that the word is classified
as a determiner. This is also incorrect, since
fleiri is an adjective.

There were also cases where the <sta>
<vei> tags were not within the tag mapping from
IceNLP to Apertium. In some cases those tags
were not used in determining the correct tag to use,
causing their removal from the Apertium entry list,
for example on past participle verbs like &t 1udu.
But in instances where the tag was required, it was
added to the mapping list.

3.3.5 Missing lemmas

A large part of the error hunting was to hunt
down missing lemmas. Since the lemma informa-
tion used is from lt-proc, if the data is not mapped
correctly then IceTagger starts guessing what tags
the word should have been based on its neighbors.
But not using IceMorphy means that Lemmatizer
cannot be used to find the lemma of a word.

To solve this problem, one would either have
to go through each word where this would happen,
find the source of the bug and fix it, or try to find
the lemma within the original parsed data from It-
proc.

The second method was explored a bit before
finding the flaw in that approach. What if It-proc
does not have the correct lemma for the tag pro-
posed by IceTagger (e.g. IceTagger says that a
word is an adjective but the lemmas that It-proc
has are only for verbs)? A simple lemma guesser
was written and used for a while but then removed
when the number of actual errors went down.

Fixing the missing lemma problem was diffi-
cult; not due to the complexity of each individual
problem; but due to the number of different prob-
lems. Some were easily fixed by adding the miss-
ing tags in either the mapping file or within the is-
en language pair in Apertium. But others required
more extensive fixes.

An example of this was the word sig. This
problem started out as a missing lemma prob-
lem but then branched out into a larger translation
problem, since translating the word sig is depen-
dent on the gender.

Hann meiddi sig -> He hurt himself
HGn meiddi sig —-> She hurt herself
Pad meiddi sig -> It hurt itself

This was not handled correctly and took a
considerable amount of effort to get right, since
changes were needed within Apertium is-en lan-
guage pair.

3.4 IceNLPServer

An Apertium-IceNLP webservice had been cre-
ated to be used as a front end to the translation
service (Brandt et al., 2010). Since it used the
Apertium-IceNLP tool in a different way, some
changes were needed there.

Due to the quality of the code design of the
server, very little change was needed. But since
the mapping process now receives the data first,
then sends that data to IceTagger and that feature
request was not predicted when the server was cre-
ated, a few places needed change.

Since IceTagger is using a different tagging
function as mentioned above, the server needs to
be setup to handle the same configuration flag and
it needs to be added to the servers startup work-
flow.

4 Evaluation

To be able to compare these results with the pre-
vious results done by Brandt, the same evaluation
method was used. It consisted of randomly select-
ing 1000 sentences from a corpus and then filtering
them. For example sentences need to have three or
more words, have less than two unknown words,
are not tabular data etc. That filtering process re-
sulted in 350 sentences. Those sentences where
then translated with the pure Apertium is-en pair
and also with Apertium-IceNLP.

The test corpus came from the Icelandic news-
paper Morgunbladid. Roughly 1.5 million sen-
tences were used in the random selection process.

Minimal corrections where made to the sen-
tences to make them as grammatically correct as
possible. The difference between the fixed version
and the original translated version is the error per-
centage shown in Table 2. There are two types of
error percenteges. Word error rate (WER) where

Translator WER | PER
Apertium 42.8% | 23.8%
Apertium-IceNLP | 40.5% | 21.3%

Table 2: Testing results

the word in that particular spot is wrong and a
position-independent word error rate (PER) where
the error is only if a word isn’t supposed to be in
the sentence, so the position of a correct word does
not matter.

The tool used to calculate the errors is called
apertium—eval-translator and is a stan-
dard tool used within the Apertium communuty to
calculate these two error rates.

Only the differences between each translator
set can be directly compared. Our numbers are
not directly comparable to the ones obtained by
Brandt, because we use different test data and the
corrections are carried out by different people.

Here we see that the Apertium-IceNLP has a
WER of 2.2 percentage points lower and a PER of
2.5 percentage points lower than pure Apertium.

This shows that using IceTagger within the
Apertium translation system does increase the
translation accuracy from Icelandic to English.

5 Discussion and future work

Icelandic is morphologically very complex and
translating sentences directly might work in some
cases but most often the meaning is lost. Adding
IceTagger has increased the accuracy of the trans-
lation but would an Icelandic tagger with 100%
accuracy be enough to give the best translation?
I would think not, since many of the translation
errors are due to the multitude of Icelandic mul-
tiword expressions. These expressions need to be
collected and mapped to increase the accuracy sig-
nificantly.

Let’s look at an example from the testing sen-
tences.

Original > Haegt er ad bera saman.
Translation > Slow is carrying together.
Fixed Translation > You can compare.

This is a great example of direct translation
losing the meaning of a sentence. Phrases like this
one make translating Icelandic tough since these
errors cannot be fixed by higher tagging accuracy
or a larger tagged corpus. They might be fixed by
training the system with these kinds of phrases, but
that might only fix that particular phrase or you

might risk overfitting.

Icelandic is often about using the right word in
the right sentence, or else the whole sentence can
lose its meaning or be misunderstood. Fixing this
correctly might not be feasible but getting closer
might be by looking at what is causing those errors
and categorizing them by the type of the error.

6 Conclusion

In this article, I have described the Apertium-
IceNLP Icelandic to English translator and the
translation accuracy it displays and the work that
has been done to increase that accuracy by remov-
ing IceMorphy due to its lack of handling multi-
word expressions.

An Apertium stream parser and mapper to
the IceNLP tag format was created to allow use
of the Apertium morphological analyser as a first
part of the translation process. In the first article
by Brandt the translation pipeline started of with
IceMorphy and then continued over to IceTagger,
but here It-proc (Apertium’s morpho analyzer) was
used as an entry point.

I discussed the problems in mixing tagsets, the
information loss and the general timesink in fixing
related problems. Problems like combined tags in
the Apertium tagset and IceTagger relying on tag
frequency sorting when It-proc returns the tags in
an unsorted manner.

The result of this continued development of
Apertium-IceNLP show that it has a 2.2 percent-
age points lower word error rate and a 2.5 percent-
age points lower position independent word error
rate than the pure Apertium is-en language pair.

References

Brandt, Martha Dis, Hrafn Loftsson, Hlynur Sigurpors-
son, and Francis M. Tyers. 2010. Apertium-
IceNLP: A rule-based Icelandic to English ma-
chine translation system. In Proceedings of the
16th Annual Conference of the European Associa-
tion of Machine Translation, EAMT11, Reykjavik,
Iceland.

Forcada, Mikel L., Francis M. Tyers, and Gema
Ramirez-Sanches. 2009. The Apertium machine
translation platform: Five years on. In Proceedings
of the First International Workshop on Free/Open-
Source Rule-Based Machine Translation, Alacant,
Spain.

Ingason, Anton K., Sigrin Helgadéttir, Hrafn Lofts-
son, and Eirikur Rognvaldsson. 2008. A Mixed
Method Lemmatization Algorithm Using Hierachy

of Linguistic Identities (HOLI). In Nordstrom, B.
and A. Rante, editors, Advances in Natural Lan-
guage Processing, 6" International Conference
on NLP, GoTAL 2008, Proceedings, Gothenburg,
Sweden.

Loftsson, Hrafn and Eirikur Rognvaldsson. 2007a.
IceParser: An Incremental Finite-State Parser for
Icelandic. In Proceedings of the 16" Nordic Con-
ference of Computational Linguistics (NoDaLiDa
2007), Tartu, Estonia.

Loftsson, Hrafn and Eirikur Régnvaldsson. 2007b.
IceNLP: A Natural Language Processing Toolkit
for Icelandic. In Proceedings of Interspeech 2007,
Special Session: “Speech and language technol-
ogy for less-resourced languages”, Antwerp, Bel-
gium.

Loftsson, Hrafn. 2008. Tagging Icelandic text: A
linguistic rule-based approach. Nordic Journal of
Linguistics, 31(1):47-72.

Pind, Jorgen, Fridrik Magnusson, and Stefin Briem.
1991. Islensk ordtionibok [The Icelandic Fre-
quency Dictionary]. The Institute of Lexicogra-
phy, University of Iceland, Reykjavik.

