
Daemonizing and enhancing IceNLP for

the purpose of machine translation

Independent study

Reykjavík University

Hlynur Sigurþórsson

Fall, 2010

CONTENTS CONTENTS

Contents

1 Introduction 2

2 Apertium 2

3 IceNLP 4

4 Using IceNLP with Apertium 4

4.1 Daemonizing IceNLP . 5
4.1.1 IceNLPServer . 5
4.1.2 IceNLPClient . 7

4.2 Mapping Lexicon . 7
4.3 White space memory . 9

5 Scalability of IS-EN 9

5.1 Router . 9
5.2 Slave . 10
5.3 ARC . 10

6 Making IS-EN available online 10

7 Acknowledgements 12

8 Conclusion 12

1

2 APERTIUM

1 Introduction

This report describes my independent study on daemonizing and enhancing
IceNLP (Natural Language Processing Toolkit for Icelandic) for the purpose of
using it in Machine Translation (MT). The motivation for this study was to
use the outcome in an ongoing project funded by the Rannís Grant of Excel-
lence, "Viable Language Technology beyond English - Icelandic as a test case",
where one of the work packages consists of developing a rule-based MT system
from Icelandic to English (hereafter refereed to as IS-EN) using IceNLP and the
Apertium machine translation platform. During the development of the above
mentioned project the researchers encountered number of problems when inte-
grating IceNLP into Apertium. We have summarized these problems into two
categories:

1. Load delay : Many of the modules in IceNLP use number of large lexicons
in their processing. These lexicons are loaded into memory before pro-
cessing starts and are kept there until the processing terminates. Using
these modules unmodi�ed with Apertium would add intolerable delay to
the translation process where the lexicons would be reloaded each time
the translation system is used.

2. Output formation: The output from some IceNLP modules was not com-
patible with Apertium. For example, morphosyntactic tags produced by
the Part-Of-Speech (POS) tagger IceTagger1 needed to be mapped to the
tagset used by Apertium and some Icelandic multiword expression needed
special handling for Apertium.

In order to use modules from IceNLP in the Apertium translation pipeline, var-
ious enhancements were needed. First, we added a client-server functionality
into IceNLP, where the server stores all necessary lexicons in memory for reuse.
Second, we added a Mapping lexicon with various output mapping and forma-
tion rules that allow users to modify the output, both the formation and some
part of the results.

This report is structured as follows. In section 2 we will discuss the Apertium
translation platform, what it contains and how it operates and in section 3 we
will discuss the IceNLP toolkit. Then, in section 4, we will discuss the integra-
tion of IceNLP and Apertium and the modi�cation we did on IceNLP. In section
5 we will discuss the scalability of the IS-EN system and �nish by discussing a
website and a webservice that were developed for making our translation system
available for on-line demonstration.

2 Apertium

Apertium2 is a language independent Shallow-Transfer MT platform [9]. It
was initially designed for translation between related language pairs but has
also been adapted for other language pairs as well [10]. The whole platform
is open-source, both programs and data are licensed under the Free Software
Foundation's General Public Licence3 (GPL) and all the software and data for

1IceTagger is part of the IceNLP toolkit.
2http://www.apertium.org/
3http://www.fsf.org/licensing/licenses/gpl.html

2

2 APERTIUM

Figure 1: The modular architecture of the Apertium platform.

the 23 supported language pairs4 (including additional pairs under development)
are available in the Apertium repository.

The structure of Apertium has been described as a "Good-old 70's Unix
style" [9]. This description is derived from the structure of the Apertium trans-
lation pipeline, which consists of numerous small isolated applications (modules)
that are connected using Unix pipes. The text from the source language (SL)
is simply piped through these modules and the result will be the translation in
the target language (TL). Apertium consists of the following modules5:

• De-formatter : Escapes formatting information in the text, e.g. HTML
tags, so that only the text is considered.

• Morphological analyzer : Performs tokenization and morphological analysis
which for a given surface form returns all of the possible lexical forms
(analyzes) of the word.

• Part-of-speech tagger : POS tagger based on Hidden Markov models (HMM).
Given a sequence of morphologically analysed words chooses the most
likely sequence of POS tags.

• Lexical selection: A lexical selection based on constraint grammar [3] se-
lects between possible translations of a word based on sentence context.

• Lexical transfer : For an unambiguous lexical form in the SL, this module
returns the equivalent TL form based on a bilingual dictionary.

• Structural transfer : Performs local morphological and syntactic changes
to convert the SL into the TL.

• Morphological generator : For a given TL lexical form, this module returns
the TL surface form.

• Post-generator : Performs orthographic changes such as contractions and
apostrophisation.

• Re-formatter : Restores escaped formatting information.

For each language pair, Apertium needs a monolingual SL dictionary used
by the morphological analyzer, a bilingual SL-TL dictionary used by the lex-
ical transfer module, a monolingual TL dictionary used by the morphological
generator, and transfer rules used by the structural transfer module. Figure 1
depicts the structure of the Apertium platform.

4http://wiki.apertium.org/wiki/List_of_language_pairs
5List appears modi�ed from [8]

3

4 USING ICENLP WITH APERTIUM

3 IceNLP

IceNLP6 is an open source NLP (Natural Language Processing) toolkit for
analysing Icelandic text [7]. The toolkit is implemented in Java, and is licensed
under the Lesser General Public Licence7 (LGPL). Currently, IceNLP contains
the following modules8:

• Tokeniser : Performs both word tokenization and sentence segmentation.

• IceMorphy : A morphological analyser [4]. The program provides the tag
pro�le (the ambiguity class) for known words by looking up words in its
dictionary. The dictionary is derived from the

Icelandic Frequency Dictionary (IFD) corpus [12]. The tag pro�le for
unknown words, i.e. words not known to the dictionary, is guessed by
applying rules based on morphological su�xes and endings. IceMorphy
does not generate word forms, it only carries out analysis.

• IceTagger : A linguistic rule-based POS tagger [4] which uses morphosyn-
tactic tags from the tagset of the IFD corpus. The tagger uses IceMorphy
for morphological analysis and applies both local rules and heuristics for
disambiguation.

• TriTagger : A statistical POS tagger. This trigram tagger is a reimple-
mentation of the well-known HMM tagger described by Brants [1]. It is
trained on the IFD corpus.

• Lemmald : A lemmatiser [2]. The method used combines a data-driven
method with linguistic knowledge to maximise accuracy.

• IceParser : A shallow parser. The parser marks both constituent structure
and syntactic functions using a cascade of �nite-state transducers [6].

Evaluation of IceTagger's tagging accuracy is 92.51% for the whole tag
string9 [5]. This is the state-of-the-art tagging accuracy for tagging Icelandic
text.

Evaluation of IceParser's accuracy using F-measure10 shows that the F-
measure for constituents and syntactic functions is 96.7% and 84.3%, respec-
tively, using 509 randomly selected sentences from IFD [6].

4 Using IceNLP with Apertium

As we stated in section 2, the Apertium translation pipeline consists of small
independent modules that are linked using Unix pipes. This architecture allows
one to easily modify the translation pipeline by replacing modules of interest.

In IS-EN the aim was to use IceTagger, Lemmald and IceParser in the Aper-
tium pipeline (instead of the morphological module and the pos-tagger module).

6http://icenlp.sourceforge.net
7http://www.fsf.org/licensing/licenses/lgpl.html
8List appears modi�ed from [8]
9This accuracy number is obtained by integrating TriTagger with IceTagger. Evaluations

were based on the IFD corpus.
10The harmonic mean of precision and recall.

4

4.1 Daemonizing IceNLP 4 USING ICENLP WITH APERTIUM

The reason was twofold. First, Apertium contains a HMM-based POS-tagger.
Evaluations have shown that such taggers have lower accuracy when tagging Ice-
landic compared to IceTagger, the state-of-the-art POS-tagger for Icelandic [5].
Using a tagger with higher tagging accuracy should lead to better translation.
Second, the emphasis was to use existing tools to a large extent.

When this research began, Apertium did not contain any module for syn-
tactic analysis. It was a research question of interest whether adding IceParser
to the translation pipeline would yield a better translation. Since then, a con-
straint grammar module, VISL CG311, developed outside the Apertium project,
has been used in Apertium. This module can be used for syntactic analysis on
the input to improve the translation results. Despite that, it is still an interest-
ing research question whether VISL CG3 or IceParser yields a better translation
results in IS-EN.

Initially, IceTagger and Lemmald were placed unmodi�ed in the translation
pipeline using a simple tag-mapper from the IFD tagset to the Apertium tagset.
This was done by placing them at the front of the Apertium pipeline. As we
stated in the introduction, this added considerable delay to the translation pro-
cess due to the initial lexicon loading. The reason is that IceNLP was developed
to handle large inputs and write out large outputs such as corpora. In these
cases the time it takes to load the lexicon �les into memory becomes relatively
smaller than the time it takes to process the text resource and does not a�ect
users. This is di�erent when it comes to MT where the input text is usually
short, then the initial loading time becomes larger than the translation time.

For using IceNLP e�ciently with Apertium we had to eliminate this loading
delay and add number of enhancements. For this we implemented a daemonized
version of IceNLP that consists of client- and server applications that we call
IceNLPServer and IceNLPClient. We will now go through these applications
and discuss the modi�cations that we added to IceNLP.

4.1 Daemonizing IceNLP

The daemonized version of IceNLP consists of two applications: IceNLPServer
and IceNLPClient. The idea is as follows. IceNLPServer contains an instance of
the IceNLP toolkit, when started it stores all necessary lexicons �les in memory
and keeps them there during its execution. The server analyzes text, sent from
clients without reloading the Lexicon �les. We can then place IceNLPClient in
the Apertium pipeline without the abovementioned loading delay.

Clients do not request usage of particular module in IceNLP. Instead users
con�gure the output from the server using de�ned keywords. The server is aware
of what module to use to ful�ll the output requirements.

We will now discuss IceNLPServer and IceNLPClient in more depth both in
terms of implementation and usage. We will then discuss our Mapping Lexicon
and go through other modi�cation that were added to IceNLP.

4.1.1 IceNLPServer

IceNLPServer is the server part in the daemonized version of IceNLP and has
the role to process requests from IceNLPClient.

11http://wiki.apertium.org/wiki/Apertium_and_Constraint_Grammar

5

4.1 Daemonizing IceNLP 4 USING ICENLP WITH APERTIUM

The processing phase of the server can be divided into the following three
steps:

• Analyzing: When the server receives a request from a client, it start by
analyzing the input using the tools from IceNLP.

• Mapping: When the Analyze phases �nishes, the server goes through the
results and applies mapping rules that users can de�ne (see 4.2)

• Output generation: When the Mapping phase �nishes the server creates
the output reply that is sent back to the client.

IceNLPServer consists of the following modules:

• Con�guration: Parses the IceNLPServer con�guration �le and provides a
service layer to another modules for con�guration informations.

• Network thread : The main thread in the server. This thread accepts new
connections from IceNLPClients.

• Client thread : The network thread spawns a new client thread that handles
the communication between the server and the client.

• Output generator : Formats the output from the server using the mapping
lexicon described in 4.2

When the server is started it reads a con�guration �le. Through this con�g-
uration �le, users can alter most of the server functionality, such as networking
settings, output formation and IceNLP con�guration. The following list con-
tains some of the con�guration option that IceNLPServer provides.

• host : Sets the host name of the server.

• port : Sets the port that the server listens on.

• backlogSize: Set the queue backlog size for the server socket.

• IceTaggerLexiconsDir : Set the location of the IceTagger lexicon �les.

• tokenizerlexicon: Set the location of the tokenizer lexicon �les.

• OutputFormat : Set the formation of the server response to clients. For
Apertium this is set to: " ˆ [LEXEME][LEMMA][TAG]$". This means,
for each lexeme in a sentence the analyzed output will begin on aˆ sign,
followed by the the lexeme, the lemma and the POS tag with a $ sign at
the end. [LEXEME], [LEMMA], [TAG] are keywords and can be written
in any order. Other keywords are [SUBJ] (Subject) and [OBJ] (Object)
for syntactic purposes.

• PunctuationSeparator : Sets the separator between the tagging result and
the previous tagging result when a word is annotated as linked word. By
default the value for this is " ".

• UserIceTaggerWhitespaceBlocks: Uses the blocks that appear in the input
text in the output text. That is, keeps the format of the input text.

6

4.2 Mapping Lexicon 4 USING ICENLP WITH APERTIUM

• MappingLexicon: Location to a mapping lexicon �le. The format of this
�le will be described in section 4.2.

• TritaggerLexicon: Set the location of the IceNLP TriTagger lexicons.

• Tritagger : Flag for using TriTagger with IceNLP.

• debug : Flag for setting the server to debug mode. Shows more output.

• compiled_bidix : Set the location of a compiled Bilingual Dictionary. Used
for Apertium.

IceNLPServer was implemented under the is.iclt.icenlp.server package in the
IceNLP source repository12. The repository contains an example con�guration
�le for IceNLPServer13. We use that con�guration �le for our IS-EN MT system.

To start IceNLPServer, change directory to server/sh and execute the Run-
Server.sh script.

4.1.2 IceNLPClient

IceNLPClient is a small application that reads text from the standard input
and sends it to IceNLPServer for processing. The results from IceNLPServer
are then written to the standard output in the format that is con�gured in the
server.

The following listing is an example how IceNLPClient is used.

hlynur@piro :~/ i c e n l p / s e r v e r / sh$ echo "Hundurinn g e l t i r " |
. / RunClient . sh

^Hundurinn/hundur<n><m><sg><nom><def>$ ^ g e l t i r / ge l ta<vblex>
<actv><pri><p3><sg>$

Listing 1: Using IceNLPClient

In the above listing the server has the Apertium output format de�ned in the
con�guration list in section 4.1.1. When the client is used, it expects the host/-
port to connect to. This can be altered in the RunClient.sh shell script.

As we stated above, we use IceNLPClient in the Apertium pipeline. Figure
2 depicts the Apertium pipeline where IceNLPClient has been added to it.

IceNLPClient was implemented under the is.iclt.icenlp.client package in the
IceNLP source repository14.

4.2 Mapping Lexicon

A Mapping Lexicon was added to IceNLP to do various mappings on the output
generated by IceTagger. This was needed to mimic the functionality of the Aper-
tium morphological analyser/POS tagger. All mappings were implemented by
a single mapping �le with di�erent sections for di�erent purposes. We will now
go through these mapping sections and describe their meaning. The Mapping
lexicon the is used in IS-EN can be found in the IceNLP repository15.

12https://icenlp.svn.sourceforge.net/svnroot/icenlp/server
13https://icenlp.svn.sourceforge.net/svnroot/icenlp/server/configs/server.conf
14https://icenlp.svn.sourceforge.net/svnroot/icenlp/server
15https://icenlp.svn.sourceforge.net/svnroot/icenlp/core/dict/icetagger/otb.

apertium.dict

7

4.2 Mapping Lexicon 4 USING ICENLP WITH APERTIUM

Figure 2: The modular architecture of the Apertium platform using IceNLP
Client

• TAGMAPPING contains rules to map IFD tags to tags in another tagset.
The following listing is an example where a TAGMAPPING rule are used.

[TAGMAPPING]

...

tfhee <num><nt><sg><gen>

Here we are mapping the IFD tag "tfhee" to the Apertium tag
"<num><nt><sg><gen>".

• LEMMA is used to map tags regarding exceptions for a particular lem-
mata. The following listing is an example where LEMMA rules are used.

[LEMMA]

...

vera <vblex><actv> <vbser>

hafa <vblex><actv> <vbhaver>

The above entries show that after tag mapping, the tags <vblex><actv>
(verb, active voice) for the lemmata �vera� 'to be' and �hafa� 'to have'
should be replaced by the single tag <vbser> and <vbhaver>, respec-
tively. The reason is that Apertium needs speci�c tags for these verbs.

• LEXEME is used to map tags regarding exceptions for a particular lexeme.
The following listing is an example where LEMMA rules are used.

...

afar <adv> <preadv>

mjög <adv> <preadv>

• MWE contains rules to map multiword expressions to a single tag. Ice-
Tagger tags each word of a MWE, whereas Apertium handles them as
a single unit because MWEs cannot be translated word-by-word. The
following listing is an example where MWE rules are used.

[MWE]

...

að_einhverju_leyti <adv>

af_hverju <adv><itg>

8

4.3 White space memory 5 SCALABILITY OF IS-EN

4.3 White space memory

After the tokenizer had tokenized input text for IceNLP, the original format of
the text was lost. If the text contained multiple new lines or additional white
spaces between words then they were discarded. For keeping the original format
of the text when IS-EN was used we added white space memory into the IceNLP
tokenizer. Now, each lexeme remembers the spaces that came before them in
the text.

5 Scalability of IS-EN

One of the requirement was to make IS-EN accessible on-line for debugging and
demonstration, and as well to expose IS-EN as a web-service for external appli-
cation usage. One can see that neither our client/server solution, nor standalone
Apertium, does handle growing amounts of users in such context.

To meet this requirement, we implemented a scalable router/slave solution
where the router receives translation requests and routes them to available trans-
lation slaves. Each slave contains an instance of the Apertium platform, the is-en
language pair and IceNLPServer/IceNLPClient.

For communicating with the router we implemented a library which we call
ARC (Apertium Router Client) that is used to send and receive translations
from the router.

Note that there exist two similar scaling frameworks for Apertium, Apertium
SOA [11] and ScaleMT [13]. We decided to build our own solution from scratch,
because we were creating a "Frankenstein"16 language pair for Apertium and
such language pairs have never been used with either of the available solutions.
It would be interesting to try our language pair with these framework, but it
was out of the scope for this study.

We will now discuss our router/slave solution and how it is used.

5.1 Router

Router is a scalable solution, written in Java, to expose IS-EN on-line. The idea
is as follows. We have a single router that listens to incoming connections on
two ports, one for ARC clients that are sending translation requests and another
for incoming slaves which are able to serve translation requests.

The role of the router is to route incoming translation requests to slaves and
do so in some intelligent fashion to distribute the load between slaves. To start
the router, change directory to sh and run the RunRouter.sh shell script. If the
router starts normally then it will print the following on the screen:

>> IceNLP Router
[RouterRunner] : hostname s e t to 1 92 . 1 6 8 . 1 . 2
[S laveLis ten ingThread] : L i s t en ing on port 2525
[RequestListneningThread] : L i s t en ing on port 2526
[RequestListneningThread] : wa i t ing f o r connec t ions .

Listing 2: Starting the router

16System made of Apertium modules and modules from other systems[9].

9

5.2 Slave 6 MAKING IS-EN AVAILABLE ONLINE

This means that the router is listening for incoming slaves on port 2525 and
for translation requests on port 2526. To change the ports that the server is
listening on or setting the host name for the server, edit the RunRouter.sh shell
script or run the router with -help �ag.

The router can be con�gured to handle translation request itself if there are
no available slaves for translation.

5.2 Slave

The slave is a client that connects to the router and waits for translation com-
mands. When a translation arrives then the slave executes IS-EN and returns
the reply back to the router which is then returned back to the client that sent
the translation request. Note that it is not required that the slave is running
on the same machine as the router. The load can therefore be distributed over
number of machines.

To start a slave run the RunSlave.sh from the sh directory. Note that the
Slave.jar needs to communicate with Apertium and the is-en language pair.
Thus the machine that is running the slave must have an instance of Apertium.
This can be con�gured in the slave con�guration �le under the con�gs folder in
server17. If a slave starts normally then it will print the following on the screen:

[SlaveRunner] : connect ing to 192 . 1 6 8 . 2 . 1 : 2 5 25
[SlaveRunner] : ready .

Listing 3: Starting the router

This means that the slave is connected to router 192.168.2.1:2525 and is ready
to serve translation requests.

5.3 ARC

ARC is a Java library code which was developed for allowing other applications
to communicate with the router. Developers can include the server jar �le in
their project and use this library to connect to a router. Listing 4 is an example
of such usage.

NetworkHandler handler = new NetworkHandler (hostname , port) ;
S t r ing r e s = apertiumHandler . t r a n s l a t e (t r an s l a t i onText) ;

Listing 4: Using ARC in Java code

We also implemented a simple Java GUI which uses the ARC library. To run
the GUI, change directory into the sh folder and run the RunARCGui.sh shell
script.

6 Making IS-EN available online

For making IS-EN available on-line for debug and demonstration, we created a
form based website where users can enter text for translation and a simple web
service that users can use in their applications.

17https://icenlp.svn.sourceforge.net/svnroot/icenlp/server/con�gs/slave.conf

10

6 MAKING IS-EN AVAILABLE ONLINE

Figure 3: Screenshot of IS-EN web form.

Figure 3 shows screenshot of the website. It has been deployed on the the
nlp.cs.ru.is website18

We also implemented a web service that accepts HTML POST requests
which contain the Icelandic text string that one wishes to translate. This web
service returns a JSON object that contains the English translation. This web
service has been deployed on nlp.cs.ru.is as well.

This allows users using other languages then Java to communicate with IS-
EN over the internet. Listing 5 is an example of how this webservice can be
used with the Python19 programming language.

#!/usr /bin /python
coding=UTF−8
import u r l l i b , u r l l i b 2

Text to t r a n s l a t e .
t ex t = "Hundurinn g e l t i r "

Locat ion o f the webserv ice .
u r l = ' http :// nlp . cs . ru . i s /Apert iumService / t r an s l a t e '

Encode the parameters .
parameters = { ' text ' : t ex t }
data = u r l l i b . ur l encode (parameters)
r eque s t = u r l l i b 2 . Request (ur l , data)

This r eque s t i s sent in HTTP POST.
response = u r l l i b 2 . ur lopen (r eque s t)
data = response . read ()

Print out the t r a n s l a t i o n .
p r i n t data

Listing 5: Using IS-EN webservice with Python

18http://nlp.cs.ru.is/is-en.htm
19http://www.python.org/

11

8 CONCLUSION

Both the website and the webservice are using the ARC client for communicating
the router/slave.

7 Acknowledgements

Hrafn Loftsson and Martha Dís Brandt for a good collaboration on the IS-EN
project and #apertium community on the freenode irc server for late night chats
and informations on the Apertium platform.

8 Conclusion

We have described a Daemonized version of the IceNLP toolkit and modi�cation
that were added to it for the purpose of using it with the Apertium platform
for doing machine translation from Icelandic to English.

12

REFERENCES REFERENCES

References

[1] Thorsten Brants. TnT: A statistical part-of-speech tagger. In Proceedings of
the 6th Conference on Applied Natural Language Processing, Seattle, WA,
USA, 2000.

[2] A. K. Ingason, S. Helgadóttir, H. Loftsson, and E. Rögnvaldsson. A Mixed
Method Lemmatization Algorithm Using Hierachy of Linguistic Identities
(HOLI). In B. Nordström and A. Rante, editors, Advances in Natural
Language Processing, 6th International Conference on NLP, GoTAL 2008,
Proceedings, Gothenburg, Sweden, 2008.

[3] Fred Karlsson, Atro Voutilainen, Juha Heikkilä, and Arto Anttila. Con-
straint Grammar: A Language-Independent System for Parsing Unre-
stricted Text. Mouton de Gruyter, Berlin, 1995.

[4] Hrafn Loftsson. Tagging Icelandic text: A linguistic rule-based approach.
Nordic Journal of Linguistics, 31(1):47�72, 2008.

[5] Hrafn Loftsson, Ida Kramarczyk, Sigrún Helgadóttir, and Eiríkur Rögn-
valdsson. Improving the PoS tagging accuracy of Icelandic text. In
Proceedings of the 17th Nordic Conference of Computational Linguistics
(NODALIDA-2009), Odense, Denmark, 2009.

[6] Hrafn Loftsson and Eiríkur Rögnvaldsson. IceParser: An Incremental
Finite-State Parser for Icelandic. In Proceedings of the 16th Nordic Con-
ference of Computational Linguistics (NoDaLiDa 2007), Tartu, Estonia,
2007a.

[7] Hrafn Loftsson and Eiríkur Rögnvaldsson. IceNLP: A Natural Language
Processing Toolkit for Icelandic. In Proceedings of Interspeech 2007, Spe-
cial Session: �Speech and language technology for less-resourced languages�,
Antwerp, Belgium, 2007b.

[8] Hrafn Loftsson, Hlynur Sigurþórsson, and Francis M. Tyers Martha
Dís Brandt. Apertium-IceNLP: A rule-based Icelandic to English machine
translation system. Submitted, 2010.

[9] Gema Ramírez-Sánchez Mikael L. Forcada, Francis M. Tyers. The apertium
machine translation platform: Five years on. In Proceedings of the First
International Workshop on Free/Open-source Rule-Based Machine Trans-
lation, pages 3�10, 2009.

[10] Sergio Ortiz Rojas Juan Antonio Pérez Ortiz Mikel L. Forcada, Boyan
Ivonov Bonev. Documentation of the Open-Source Shallow-Transfer Ma-
chine Translation Platform Apertium. Technical report, Department of de
Llenguatges i Sistemes Informátics, Universitat d' Alacant, 2010.

[11] Pasquale Minervini. Apertium goes SOA: An e�cient and scalable service
based on the Apertium rule-based machine translation platform. In Pro-
ceedings of the First International Workshop on Free/Open-Source Rule-
Based Machine Translation, Alacant, Spain, 2009.

13

REFERENCES REFERENCES

[12] Jörgen Pind, Friðrik Magnússon, and Stefán Briem. Íslensk orðtíðnibók
[The Icelandic Frequency Dictionary]. The Institute of Lexicography, Uni-
versity of Iceland, Reykjavik, 1991.

[13] Víctor M. Sánchez-Cartagena and Juan Antionio Pérez-Ortiz. ScaleMT:
a Free/Open-Source Framework for Building Scalable Machine Transla-
tion Web Services. Prague Bulletin of Mathematical Linguistics, 93:97�106,
2010.

14

