HASKOLINN | REYKJAVIK
REYKJAVIK UNIVERSITY

Reykjavik University

- Computer Science -

Natural Language Processing

Final Project Report

Fall Semester 2013/2014

Christopher Dorge (Kennitala 080888-3929)

David Miiller (Kennitala 130389-3769)

1 Introduction

Intrinsic plagiarism detection is a very active field of research and deals with
identifying portions of text in a document, that might originate from another author.
The approach of intrinsic plagiarism detection is based on the assumption that every
author has a different writing style. Utilizing stylometric features like the average
sentence length, the frequency of certain characteristic words or the use of punctuation

in a text can be used to reveal stylistic variations in a suspicious document [7].

In contrast to intrinsic plagiarism detection being limited to the source document itself,
extrinsic plagiarism detection relies on a reference corpus. This means, that other
documents or even web search is utilized for identifying passages partly derived from
other documents [8]. Common methods for extrinsic plagiarism detection involve n-
gram based comparisons of the suspicious text and potential source texts or purely
string-based approaches, as the computation of the longest common subsequence of two

texts [2].

In this report, we experiment with an intrinsic method using the vector space model.
The aim is to analyze the impact of the source document language on the overall
detection results. Therefore we developed a program to detect plagiarism intrinsically,
which uses the same algorithm to classify suspicious parts inside of English and

German documents.

2 Vector Space Models and Related
Work

Several methods exist in the area of intrinsic plagiarism detection — see [9] and [4]. One
popular method is the Vector Space Model, where several characteristic features are
combined together into a single vector representing a portion of the text. The first
challenge is finding an appropriate sized chunk of the text [3] for further analysis. If the
selected chunk size is too large, shorter plagiarized passages may not stand out. On the

other hand, if the chunk size is too short a lot of false positives may be generated.

Having selected a sensible chunk size, the second challenge consists of selecting
appropriate features to include in the feature vector for every chunk. Thereafter, all of
the individual feature vectors can be compared to the document’s overall mean feature
vector, for the purpose of revealing outliers [1]. The main advantage of the Vector
Space Model is the flexibility of its approach, i.e. it is not limited to certain features. In
theory, every possible analysis method could be included in the vector calculation. The
disadvantage of this flexibility is, on the other hand, that not every additional feature

is beneficial to the overall detection rate.

In previous related work, research concerning Vector Space Models has been carried out
on the impact of using several different features on the overall detection performance
[3]. Furthermore, the appropriate size of the selected chunk / sliding window has been
analyzed in [1]. We are not aware of previous work in which the impact of the source

language on intrinsic plagiarism detection performance is examined.

3 Detecting Outliers

Every dimension inside the target vector for a single unit is represented by a certain
feature. A unit can be a sentence or a paragraph, depending on the setting for the unit

to evaluate.

To be able to compare those unit vectors, the mean vector of the document is
calculated by adding the vectors of all units and dividing by the total count of units.
The cosine similarity measure is then used to calculate the similarity of two vectors, i.e.

the cosine of the angle between a unit vector A and a mean vector B:

A-B _
AP T 3
i=1

similarity = cos(f) =

Having calculated all individual vectors and their (cosine) similarity to the documents

mean vector, outliers can be detected, for example using standard deviation coefficient

[6]:
cos(A, B) < B — €% stddeu

A chunk is considered to be plagiarized, if the cosine similarity between the analyzed
vector and the documents mean vector is smaller than the documents mean minus the
product of the standard deviation of all chunks and a (to be determined) optimal

constant epsilon.

4 Vector Components

The detection performance of an implementation utilizing the Vector Space Model
strongly depends on the individual features. If meaningless features are selected for the
vector and given high weights, the detection performance will decline. Thus, it is
imperative to use the most important features when constructing the vector and assign

sensible weights to them according to their importance.

We adapt and extend the approach described by Zechner et al. [1] with an augmented
feature set partly derived from Grieve [5] and Meyer zu Eissen and Stein [7]. Our

feature set consists of:
(a) Average word frequency class

For any document or unit, it is possible to rank words based on their total occurrence.
This ranking can be used to group words within frequency classes. The frequency class

of a word is defined by:
r'||'u.-i.-i|:) = U{);_r!l:rjr'r'l: u'vlfjl_..-"uf!f![u']}J

where occ(w*) is the absolute number of occurrences of the most frequent word within
a document and occ(w) is the number of occurrences of a specific word in the same text

[7]. Each calculated word frequency class becomes one component of the feature vector.

The value of this component is the amount of words belonging to this class within the

analyzed unit.
(b) Dictionary Analysis

The general usage of foreign words or the number of mistakes in a text can reveal
much about an author’s fingerprint. Wordlists are used to determine whether a given
token is part of a dictionary or not. Therefore, we add a feature which stands for the

count of words found in the wordlist inside the analyzed unit.
(c) Parts-Of-Speech Analysis

We use the Stanford Tagger [10] to tokenize the text and assign a part-of-speech (PoS)
tag to every token. Each possible tag in the underlying tagset is represented by a
dimension in the vector. The value of this component is the total amount of

occurrences of words with the given PoS tag inside the analyzed unit.
(d) Punctuation Analysis

The amount of punctuation tokens (e.g. comma, dot, colon, hyphen) that are found in

one analyzed chunk also receives a dimension in the vector.
(e) Word Frequency Analysis

The word frequency from a collection of commonly used words containing both stop
words (of, and, or, ..) and pronouns (I, me, he, her, myself ...) is included in the vector
as well. Zechner et al. [1] include the frequency of every word from the given collection

of stop words and pronouns in the vector as a single component.
(f) Average Word Length, Sentence Length

An important characteristic of an author’s personal writing style is the preferred
sentence length and the average word length within one chunk. This holds true
especially for languages like German, where infinitely long words can be produced by

compounding.

(g) Higher Level Language Features (Tenses, Active/Passive)

Authors tend to have a personal preference for a tense form, which they use commonly.

The same holds true for the use of the active/passive form.
(h) Chunking

The selection of a sensible chunk size is an important part of intrinsic plagiarism

detection [1]. Several approaches can be applied:

1) Fixed Amount of Characters
Using a fixed character count to chop the source document into chunks, for example

2000 characters. This ensures an equal amount of text for every chunk, but is very
likely to intersect sentences. One downside of intersecting sentences is the confusion of
the part-of-speech information, because certain tokens typically appear mostly at

certain positions in a sentence.

2) Fixed Amount of Sentences
Using a fixed amount of sentences for every chunk, for example one sentence. This

ensures coherent sentences, but could cause problems because the length of the chunks

are most likely different.

3) Using Paragraphs

Using whole paragraphs of the text as chunks. This approach is based on the
assumption that plagiarism typically does not occur on a sentence level, but rather in
semantic units like paragraphs. This comes with the same downside as in (2), because
paragraphs are going to vary in length. A shorter paragraph will then stand out and

may have a higher chance of producing a false positive.

5 Sliding Window Approach

To improve the detection, combining the previously described approaches (1), (2) or
(3) with a sliding window can be beneficial. For (1), the sliding window could ensure
that only whole sentences are used as units. For (3), k sentences around the current

sentence unit are taken into every analyzed chunk.

Our detection algorithm operates with various sliding window sizes starting from 4

units and ending at 7 units. The algorithm includes 4 units to the left and 4 units to

the right of the current sentence, if 4 is our sliding window size. The following example

shows this process with a sliding window size of 2 and using sentences as units:
Parameters: Sliding Window = 2, Units = Sentences

Source Text: Sentence 1. Sentence 2. Sentence 3. Sentence 4.
Sentence 5. Sentence 6. Sentence 7. Sentence 8.

Unit 1: Sentence 1. Sentence 2. Sentence 3. Sentence 4. Sentence 5.
Unit 2: Sentence 2. Sentence 3. Sentence 4. Sentence 5. Sentence 6.

Unit 3: Sentence 3. Sentence 4. Sentence 5. Sentence 6. Sentence 7.

The improvement of using a sliding window approach is the flattening of outliers. If a
sentence in a document is very short, it will most likely be detected as plagiarism right
away. By using a sliding window, those outliers are flattened to a certain extend. If 2
or more sentences in a row are plagiarized, the sliding window will more likely identify

them as outliers.

The flattening process is shown in the following 2 images:

Vector Space Derivation Window Size = 1

1.0

0.75

similarity 0.5

0.25

185 37.0 55.5 740
unit

Vector Space Derivation Window Size = 7

0.75

similarity 0.5

0.25

18.5 37.0 55.5

When using varying sliding window sizes, different units will be detected as outliers.

For example, a sliding window size of 4 might identify units <3, 9, 14> as
plagiarized, a sliding window of 5 will do so for units <3, 9, 15> and a sliding
window of 6 will identify <3, 8, 14> as plagiarized.

This is the point, where the parameter Sliding Window Percentage becomes

important. In our example above, we receive the following detection coverages:

- Unit 3: 100%
- Unit 8: 33%
- Unit 9: 66%
- Unit 14: 66%

- Unit 15: 33%

If we have a Sliding Window Percentage of 1.0, only outliers will be included that
are detected by every sliding window size. In our example, only unit 3 will be reported
as outlier. With a Sliding Window Percentage of 0.1, every outlier will be reported

that occurs in at least 10% of all sliding windows.

740

6 Corpus Generation

We originally planned to use the PAN Corpus!, which was recommended to us by a
research member of the International Competition on Plagiarism Detection®. Sadly, this
corpus did not contain German-German plagiarism, meaning German texts with
inserted parts of other German documents. As our main research aim is to analyze the
language dependence in intrinsic plagiarism detection, we definitely need to have
corpora with English-English plagiarism and with German-German plagiarism. Thus,

we had to create an own corpus.

6.1. Crawler

Our main source for German documents is “Project Gutenberg”. This portal contains
lots of German books from popular literature, which are available for free (Example:
“Der Proze” by Franz Kafka'). We crawl several pages from Projekt Gutenberg
randomly by varying the book id and the page number. This is possible, because the

URL’s of the books at Projekt Gutenberg are always structured in the same fashion:
http://gutenberg.spiegel.de/buch/<book id>/<page of book>

Every page contains approximately 2500 words.

95

The primary source for English documents is “Classic Reader™, which is comparable to
Projekt Gutenberg, as it also contains popular literature of many different authors. For

example, Bleak House by Charles Dickens is available at this URL:

http://www.classicreader.com/book/221/1/

! http://www.uni-weimar.de/en/media/chairs/webis/research/corpora/
2 http://pan.webis.de/

* http://gutenberg.spiegel.de/

" http://gutenberg.spiegel.de/buch /157 /2

5 http://www.classicreader.com/book/221/2/

http://gutenberg.spiegel.de/buch/%3cbook%20id%3e/
http://www.classicreader.com/book/221/1/
http://www.uni-weimar.de/en/media/chairs/webis/research/corpora/
http://pan.webis.de/
http://gutenberg.spiegel.de/
http://gutenberg.spiegel.de/buch/157/2
http://www.classicreader.com/book/221/2/

6.2. Methodology

Plagiarized documents are created by randomly inserting one or more sentences (up to
a whole paragraph) at a random position into the source document. Important aspects

of this process are:

1) The source document has to have a minimum length to be included into the
corpus — otherwise, determining the individual writing style of an author will
not be possible. In our test runs, 1500 words turned out to be a good number.

2) The length of the inserted plagiarized sentence / sentences also needs to exceed
a certain minimum. We found out, that 200 characters seem to be a good
number. This number appears to be realistic, considering that a single short
sentence with e.g. 5 words will most likely never be plagiarized exclusively.

3) The overall amount of inserted plagiarism can not exceed a certain percentage of
the source documents length. We selected a lower limit of 2% and an upper

limit of 10% as plagiarism insertion margin.

The generated plagiarized documents are saved in simple text files which can be easily

supplied as input documents to our intrinsic plagiarism detector.

6.3. Saving the Position of the Plagiarized Parts

After generating the corpus, the position of the plagiarized parts contained in the

documents needs to be kept. We decided to use a JSON file to store these positions.

An example of the structure is presented here:

"O0002.tXE": |
"plagiarizedSentences™: |
33,
34,
55,
L1

1 & A

[]

10 1.
"plagiarizedParagraphs™: |
12 a,

13 g

k]

F
oW
——

- 10 -

Here, the document “0002.txt” contains 4 plagiarized sentences. For the purpose of
analyzing the effect of using whole paragraphs as units compared to single sentences,

the paragraph numbers in which the plagiarism was inserted are also saved.

7 Pertforming the Evaluation

7.1. Evaluation Parameters

In in order to be able to analyze the whole generated corpus in one run, our aim was to
automatize the evaluation to a point, where no manual interaction of us is necessary

any more.

To achieve this, the program needs to vary a lot of input parameters, that all change

the detection results. Those input parameters are briefly explained in the next section.

7.1.1 Unit Definition

To be able to identify semantic units as “plagiarism block” and in order to compare the
detection performance of a sentence based approach to the paragraph based approach,
we made our algorithm capable of dealing with paragraphs as units. This was done

because plagiarism is very likely to happen on paragraph level instead of sentence level.

To conclude, this parameter triggers if sentences or paragraphs are used as units (see

section “Vector Components”).

7.1.2 Word Level Normalization

The ordinary method in Vector Space Model based Intrinsic Plagiarism Detection
algorithms just counts all occurrences of a certain feature regardless of the sentence
length. If a sentence contains 4 pronouns, the number 4 is registered for the PoS-tag

“Pronoun” in this unit.

- 11 -

We added an optional normalization mechanism, which is triggered by this parameter.
When Word Level Normalization is activated, we divide the counted feature number

by the words in the unit.

This way, one pronoun in a unit with 10 words yields the same value (1/10) as a unit

with 4 pronouns and 40 words length (4/40).

7.1.3 Epsilon

A unit is considered to be plagiarized, if the cosine similarity between the analyzed
vector and the documents mean vector is smaller than the documents mean minus

the product of the standard deviation of all unit and the constant epsilon.
cos(A, B) < B — € % stddev

This constant influences the detection dramatically, because it determines the threshold
of a unit being reported as plagiarized. As suggested by Halvani [6], epsilon should be

a to determined “small constant”.

7.1.4 Feature Weights

Each of the vector space model features (Average Word Frequency, Average Word
Length, Dictionary Analysis, POS Analysis, Punctuation Frequency, Sentence Length,
Stop Word Frequency, Active/Passive, Tense) can be assigned a weight to balance its

importance in the detection process.

If we assign a weight of 0 to one of the features, it will not be considered at all. On the
other hand, assigning a weight higher than the weight of the other features balances

the detection towards this feature.

The challenge here is identifying the best balance of weights for all the features.

- 12 -

7.2. Evaluation Setup

To estimate the quality of the achieved results we had to evaluate the outcome of our
different runs. Precision and recall are based on an understanding and a measure of
relevance. To calculate those two values, we had to find the TP (true positives), FP
(false positives), FN (false negatives) and TN (true negatives) by checking every unit if

it was reported as outlier and if this allocation was correct.

At first, we set all the relevant previously described parameters for our evaluation run

and start by iterating over every document in the corpus.

The evaluation itself is performed within evaluateDocument(). After that, the
plagiarized units of the documents are then received from the JSON document created

by the corpus generator.

The following pseudo algorithm illustrates the setup used for performing an evaluation

run:

- 13-

36 SetEvaluationParameters(...):

38 for each document in corpus

339 H{

40 var detectedOutliers = evaluateDocument()

41 var realCutliers = parseJsonDocumentWithRealOutliers (document)
42

43 for each unit in document

44 [H {

45 if (unit is in detectedOutliers)

a6 [H {

47 if (unit is in realCutliers)

42 truePositive++

49 else

50 falsePositive++

51 - }

52 else

53 H {

54 if (unit is in realOutliers)

55 falseNegative++

56 else

S7 trueNegative++

58 a }

59 - }

&0 =1

6l

(- calculatePrecision(truePositive, falsePositive):
63 calculateRecall (truePositive, falseNegative);

64 calculateAccuracy(truePositive, falsePositive, trueNegative, falseNegatiwve):;

Precision in the topic of plagiarism means the fraction of achieved suspicious units that

are plagiarized and is calculated as follows:

TP

Precision = j_'_P—|——_F"_P

Recall in our case means the fraction of achieved plagiarized units that are successfully

retrieved and is calculated as follows:

TP
TP+FN

recall =

Initially we wanted to evaluate the accuracy of our results, which is the percentage of

units that are classified correctly.

- 14 -

TP+ TN
TP+ FP+TN + FN

aCcCuracty =

By looking at the results of our first evaluation runs, we determined that the usage of
accuracy as quality indicator is not feasible. Since our training and test documents only
contain few plagiarized sentences, but much more non-plagiarized sentences, the
accuracy was high in such cases when our detection algorithm could not find any or

less suspicious parts.

Therefore we decided to discard the utilization of the traditional accuracy measure and
use the Fl-measure instead, which represents the harmonic mean of precision and recall

and computes better results in situations where the minority class is more important:

precision - recall

Fi=2. —
! precision + recall
The results of our evaluation runs are saved in a big CSV file to be able to analyze the

reported results later on.

7.3. Varying the Parameters

One big “side challenge” is identifying the best combination of parameters to achieve a
good overall detection result. Varying all the input parameters by hand individually is
a very cumbersome task, so we set up an architecture consisting of several nested for-
loops. Those for-loops iterate over every sensible parameter range to identify the best

combination.

-15-

//fare we using paragraphs

for (int useParagraphs = 0; useParagraphs <= 1; useParagraphs++)

ffdivide factor by the word number

for (int wordLewvel = [; wordLevel <= 1; wordLevel++)

/{factor for cosine similiarity

for (doukle epsilon = 0.5; epsilon <= 1.0; epsilon 4= 0.5)

Jipercentage of sliding window occurences, until we treat it as a plagiate

for (doukle outliersOccurrence = 0.1; outliersCccurrence <= 1.0; outliersCccurrence += 0.45)

//4 entries in feature vector

for (doukle AverageWordFregquency = 12; AverageWordFregquency <= 25; AverageWordFreguency 4= 12
J//1 entry in feature wector

for (doukle AverageWordLength = 50 AwverageWordLength <= 100 AwverageWordLength += =0)

//1 entry in feature vector

for (doukle Dictionary = 50; Dictionary <= 100; Dictionary += 50}

S/ (num of different pos) entries in map -> 13

for (doukle Pos = 2; Pos <= 2 Pos 4= <)

ff1l entry in feature wector

for (double Punctuation = 50; Punctuation <= 100; Punctuation 4= 350)

/{1 entry in feature vector

for (doubkle Sentencelength = 50; Bentencelength <= 100; Sentencelength 4= :50)
/7473 entries for ewvery stop word

for (doukle StopWord = C0.12: StopWord <= 0.22; StopWord 4= 0.11)

//1 active/passive entry in the feature wvector

for (int activePassive = (0.3 activePassive <= 1.0; activePassive += 0.Z%)
//1 tense entry in the feature wvector
for (doukble tense = 0.5; tense <= 1.0; tense += 0.53)
{
SetParameters({ ... };
(Precision, Recall, Fl) = EvaluatelAllDocuments0fCorpus (...)
SaveBResultsAndParamsTol3V({ ...)
}

As shown, we use 13 nested for loops to iterate over sensible ranges for all available

input parameters. In the setup which is shown here, we perform
2 ¥ 2% 3 % 3% (2~9) = 18932

iterations to evaluate all possible combinations. In every iteration, the whole corpus is
evaluated and the Recall, Precision and Fl-measure are saved alongside with the used

parameter combination.

The sensible parameter ranges of the loops were determined by the number of entries
in the feature vector. We have - for example - 4 Average Word Frequencies entries in
the feature vector. To ensure a comparable influence of every analysis method on the
overall feature vector, we set the lower parameter boundary to 50% and the upper
boundary to 100%. This means that for our example Average Word Frequencies with 4

entries, the lower boundary is 50 / 4 ~ 12 and the upper boundary is 100 / 4 ~ 25. By

_ 16 -

applying this selective weighting mechanism, we guarantee to put equitable emphasis
on every feature. Otherwise, the evaluation would be heavily biased towards analysis

methods with multiple feature vector entries.

7.4. Detection Improvement and Setup

On a generated corpus containing 100 documents, 80 documents were picked for
training. Conclusively, 20 documents are saved for the test. This setup is the same for

the English and the German corpus.

Afterwards, all the 18932 parameter combinations are evaluated on both the English

and the German corpus®.

The evaluation result on the whole “language corpus” for every parameter combination
is appended to a CSV file together with the used setup. This enables us to detect the

most effective parameter set afterwards:

1 time;truePositiveTotal;falsePositiveTotal;trueNegativeTotal; falseNegativeT A
otal;precisionTotal;recallTotal;accuracylotal ;useParagraphs;wordLevel ;ep3ai
lon;outliersfccurrence; AverageordFrequencyinalysis; AverageWordLengthinaly
gig;Dictionarydnalysis; Posfnalysis; Punctuation®fnal ysis; Sentencelengthinaly
3ig;S5topHordinalysis

[%]

3 1225088949, 4;165,375;19;0.023662639053254437,;0.1735130434 7226086, 0.6731793
S9e08923823;0;0;0.5;0.1;12_.0;50.0;50.0;4.0;50.0;50.0;0.12

[

12850889¢64;4;165;375;19;0.023668¢c33053254437,;0_17351304347826085,;0.6731753
960923€23;0;0;0.5;0.1;12_.0;50.0;50.0;4_.0;50.0;50.0;0_2255333555533335338

U =]

1285088972;5;171,;3659;128;0.028405090909090902;0.2173591304347282602; 0. 66425824
014209592;0;0;0.5;0.1;12_0;50.0;50_.0;4_0;50.0;100.0;0_.12

12850885982;5;171,;365;128;0.02840503030530530908;0_21735130434782c08;0_c542584
014209592;0;0;0.5;0.1712_0;50_0;50_0;4_0;50_0;100.0;0_.225959555555955552

7.5. Creating the Deviation Table

Theoretically, we could have proceeded by selecting the best parameter combination

and running it on the testing corpus right away. However, having all this data at hand,

5 As a sidenote, one complete run for both corpora took 55 hours on a Quad-Core Intel i7 (4 * 3.2 GHz)
with 8 gigabytes memory.

17 -

we decided to do a complete visualization of both corpus runs on top of that before

continuing with the evaluation on the test corpus.
Thus, we implemented a script with the following capabilities:

1) Show the average Precision, Recall and F1-measure for all the iterations on the
corpus.

2) Display the improvement (or deterioration, respectively) for every parameter.
This is done by calculating the Precision, Recall and F1-measure of all the runs
with a certain parameter and comparing them with the averages for the whole
corpus. By doing this, we get the percental improvement or deterioration with
respect to the average.

Those tables help us to evaluate, whether a single parameter has a more satisfying

impact on both languages or not.

_ 18 -

For the German corpus, we received the following results:

Precision Recall F1 Condition

+40.52% +68.96% +5661% wuseParagraphs=10

-4952% -68B96% -5661% useParagraphs =1

-5899% -5927% -5796% wordLevel =0

+58.99% +59.27% +57.96% wordLevel=1

+24 51% +4096% +2817% epsion=035

-24 51% -4096% -2817% epsilon=1

+19.42% +383% +2655% outliersOccmrence =0.1

+3.13% -645% -156% outliersOccurrence = 0.55
-2255% -3183% -2498% outliersOccurrence = 1

+1.01% +0.73% +1.01% AverageWordFrequencyvAnalysis = 12
-101% -073% -101% AverageWordFrequencvAnalvsis = 24
+6.58% +3567% +6.55% AverageWordLengthAnalvsis = 50
-6.58% -567% -6355% AverageWordLengthAnalvsis = 100
+10.52% +10.75% +1041% DictionarvAnalvsis = 50

-1052% -10.75% -1041% DictionarvAnalysis = 100

+022% -033% -001% PosAnalysis =4

-022% +033% +001% PosAnalysis=8

-097% -107% -106% PunctuationAnalvsis = 50

+097% +107% +106% PunctuationAnalysis = 100
-1748% -1564% -17.19% Sentencel engthAnalvsis = 50

+17 48% +1564% +17.19% SentencelengthAnalysis = 100
+0.65% +027% +036% StopWordAnalysis =012

-065% -027% -036% StopWordAnalysis = 0.23

-6.71% -568% -671% UseActivePassive =0

+6.71% +568% +6.72% UseActivePassive =1

Note, that we used only Active / Passive detection as higher-level NLP feature for
German, because Tense detection was not feasible (see section “Problems” for further

details).

- 19 -

The results for the English corpus are the following:

Precision
+49.95%
-49 953%
-58.61%
+58.61%
+24 38%
-24 38%
+18.78%
+2 81%
-21 58%
-0.36%
+0.36%
+6.64%
-6.64%
+10.4%%
-10.49%
-0.08%
+0.08%
-1.46%
+1.46%
-17.41%
+17 41%
-0.79%
+0.79%
+3.38%
-3.38%

Recall
+68.97%
-68.97%
-58.9%
+58 9%
+41.63%
-41 63%
+39.23%
-6.69%
-32 54%
+0.67%
-0.67%
+5.05%
-5.05%
+11.67%
-11.67%
-1.17%
+1.17%
-1.82%
+1.82%
-15.08%
+15.08%
-0.79%
+0.79%
+3.51%

-3.51%

F1
+56.71%
-56.71%
-57.58%
+57.58%
+28.49%
-28.49%
+26.55%
-1.56%
-24.99%
-0.07%
+0.07%
+6.49%
-6.49%
+10.88%
-10.88%
-0.18%
+0.18%
-1.43%
+1.43%
-16.95%
+16.95%
-0.63%
+0.63%
+3.47%
-3.47%

Condition
useParagraphs = ()
useParagraphs = 1

wordLevel =0
wordLevel =1
epsilon =05
epsilon = 1

outliersOccurrence = 0.1
outhersOccurrence = 0.55
outliersQcemrrence = 1
AverageWordFrequencvAnalysis = 12
AverageWordFrequencyAnalysis = 24
AverageWordLengthAnalysis = 50
AverageWordLengthAnalysis = 100
DictionarvAnalysis = 50
DictionaryAnalysis = 100

PosAnalysis = 4

PosAnalvsis = 8

PunctuationAnalysis = 50
PunctuationAnalysis = 100

Sentencel engthAnalvsis = 50
SentencelengthAnalvsis = 100
StopWordAnalvsis =012
StopWordAnalysis = 0.23

UseTenses =10

UseTenses =1

Note, that we used only Tense detection as higher-level NLP feature for English,

because Active / Passive detection was not feasible (see section “Problems” for further

details).

- 90 -

Overall, we received higher average Precision, Recall and Fl-measure values for the

German corpus.
German Corpus

e Average Precision: 6.5%
e Average Recall: 41.6%
e Average F1: 9.2%

English Corpus

e Average Precision: 5.4%
e Average Recall: 29.2%
e Average F1: 6.9%

Interestingly, some parameter settings (e.g. using sentences as units instead of
paragraphs) show a positive impact on both corpora. Contrary, other settings (e.g.
putting higher emphasis on the average word frequency analysis) show an improvement

for the German corpus but worsen the evaluation for the English corpus and vice versa.

Speaking about the “higher level” NLP features, the active/passive feature seems to
deteriorate the overall detection results (for German) whereas the tense feature

improves the results the evaluation on the English corpus.

Furthermore, the influence of the Stop Word Analysis for our result seems to be
negligible and the Part of Speech Analysis only has a small impact. Going in greater
detail here and examining the influence of certain parameter combinations could be the
subject of a further elaboration and might lead to very interesting results. However,

this will not be part of this report.

7.6. Identifying the Best Parameter Combination

We proceeded by identifying the highest values for precision, recall and F1-measure for

both corpora.

921 -

German corpus:

Maximum precision: 25.1%
Maximum recall: 96.2%
Maximum F1: 36.2%

Run on the German corpus with best precision:

Precision: 25.1%
Recall: 52.5%
F1: 33.9%

Run on the German corpus with best recall:

Precision: 14.3%
Recall: 96.2%
F1: 24.9%

Run on the German corpus with best F1:

Precision: 23.3%
Recall: 82.5%
F1: 36.2%

English corpus:

Maximum precision: 27.8%
Maximum recall: 71.7%
Maximum F1: 36.7%

Run on the English corpus with best precision:

Precision: 27.8%
Recall: 40%
F1: 32.8%

99

Run on the English corpus with best recall:

Precision: 12.6%
Recall: 71.7%
F1: 21.4%

Run on the English corpus with best F1:

Precision: 26%
Recall: 62.2%
F1: 36.7%

The best recall for the German corpus is much higher than for the English corpus
(96.2% vs 82.5%), whereas the best precision is almost the same (25.1% vs. 27.1%). In
terms of the combined Fl-measure, both languages also perform very similarly (36.2%
vs. 36.7%).

Interestingly, the average Fl-measure of the English corpus is lower than for the
German corpus (9.2% vs. 6.9%) but the overall highest Fl-measure of 36.7% can be
found in the English corpus.

We now continued by identifying the parameter combination that led to the best F1-

measure for both languages:

Best parameter combination for the German corpus (F1: 36.2%)

useParagraphs = 0

wordLevel = 1

epsilon = 0.5

outliersOccurence = 0.55
AverageWordFrequencyAnalysis = 24
AverageWordLengthAnalysis = 100
DictionaryAnalysis = 100
PosAnalysis = 4
PunctuationAnalysis = 50
SentenceLengthAnalysis = 50
StopWordAnalysis = 0.12
UseActivePassive = 1

~ 93

Best parameter combination for the English corpus (F1: 36.7%)

useParagraphs = 0

wordLevel = 1

epsilon = 0.5

outliersOccurrence = 0.1
AverageWordFrequencyAnalysis = 24
AverageWordLengthAnalysis = 50
DictionaryAnalysis = 50
PosAnalysis = 4
PunctuationAnalysis = 50
SentenceLengthAnalysis = 100
StopWordAnalysis = 0.23
UseTenses = 0

As expected, the best combinations resemble the deviation table almost entirely.

7.7. Testing on unseen Documents / Conclusion

The determined best parameter combinations are now tested on the 20% unseen
documents, to ensure we have not overfitted the classifier and actually achieved

representative results.

For comparison, the values in parenthesis show the maximum value from the training

corpus.

Run on the German Test corpus with the best parameter combination:

Precision: 16.5% (23.3%)
Recall: 68.1% (82.5%)
F1: 26.6% (36.2%)

Run on the English Test corpus with the best parameter combination:

Precision: 17.4% (26%)
Recall: 58.4% (62.2%)
F1: 26.8% (36.7%)

924 -

Both Fl-values drop by ~10% on the test corpus compared to the training corpus. It
seems like 80 documents have not been enough to train a robust parameter
combination - we expected the detection performance of the test run to be closer to the

training run.

Zechner et al. [1] achieve a similar precision on the PAN competition corpus (19.7%),
but have a lower Fl-score (22.9%) because of their lower recall (27.2%). However,
comparing the results one by one is not sensible, because the PAN corpus is structured

and organized in a different way to our corpus.

8 Problems

8.1 Validity of the results using the Vector Space Model

Our results show that intrinsic mechanisms using vector space models are not satisfying
to be used as a general method for detecting plagiarism. This correlates with the high
amount of occurrences of false positives in the evaluation. The fundamental
assumption, that a plagiarized chunk inside a text will be always mapped as an outlier
in a similarity chart of all chunks in comparison to the mean is not correct. Moreover,
unplagiarized units vary a lot in their composition of features. Therefore. a mechanism
using the standard deviation to detect suspicious chunks may misjudge and classify a

not plagiarized unit as suspicious.

The sliding window approach with its ability to flat the similarity graph has the
drawback to hide units, which are plagiarized. This property is perhaps negligible,
because the advantage to flat outlying regular units prevails but it is definitely a point

to be remarked.

8.2 Detecting the Active/Passive Voice

For the English language, the Stanford Core NLP” project is available. Core NLP

comes as a 250MB jar-file and can be used to detect additional features of sentences

" http://nlp.stanford.edu/downloads/corenlp.shtml

_ 95 -

http://nlp.stanford.edu/downloads/corenlp.shtml

and produce parse trees. Detecting passive sentences is relatively straight forward,
because the parse tree contains a “nsubjpass” dependency, if a sentence is in passive
voice®. However, Stanford Core NLP is known for being exceptionally slow. Tagging
performance is slowed down from ~0.2s per page to 7-10s per page, because the parse
tree needs to be generated for every sentence. Manually detecting the passive voice in
English (in order to speed up the detection process) does not seem to be feasible for our
project’. This is why we only included active/passive detection in our feature vector

when evaluating for the German corpus.

For the German language, we can not use Stanford Core NLP, because it only comes
with parse models for English. However, detecting the German Passive Voice manually
is generally easier, because it is usually built by a form of “werden”, an optional object

followed by the “Partizip II” or the infinitive form.

8.3 Detecting the Tense

Tense detection in English is relatively simple using the following algorithm presented

by the paper “N-gram-based Tense Models for Statistical Machine Translation”™.

® http://nlp.stanford.edu/downloads/dependencies manual.pdf
9 http://writingcenter.unc.edu/handouts/passive-voice/

0 http://nlp.suda.edu.cn/~zhxgong/paper/emnlp2012.pdf

- 96 -

http://nlp.stanford.edu/downloads/dependencies_manual.pdf
http://writingcenter.unc.edu/handouts/passive-voice/
http://nlp.suda.edu.cn/~zhxgong/paper/emnlp2012.pdf

Algorithm 1 Determine the tense of a node.

Input:
The TreeNode of one parse tree. lea fnode;
Output:
The tense, tense:
1: tense = “UNK"
2: Obtaining the POS tag lpostag from lea fnode;
3: Obtaining the word lword from lea fnode;
4: if (lpostag in [*VEP", “VBZ"]) then

5 tense = “present”

6: else if ([postag == “V BD"]) then

7: tense = “past”

8: else if (lpostag == “AM D"]) then

9: if (lword in [*will”, “1I", “shall”]) then
10: tense = * future”

11: elseif (lword in [“wowld”, “could"]) then
12: tense = “past”

13: else

14: tense = “present”

15: endif

16: end if

17: return tense;

In the field of research, German Tense Detection has not been covered widely. We did
not find a paper dealing with this special topic and there no pre-defined algorithms. As
previously mentioned, Stanford Core NLP is only usable with the English language and
thus can’t help us here. Furthermore, the PoS which the Stanford Tagger supplies
when tagging for the German language (using the NEGRA corpus!) are very general
and do not help us. This is why we only included tense detection in our feature vector

when evaluating for the English corpus.

' http://www.coli.uni-saarland.de/projects/stb378 /negra-corpus/negra-corpus.html

_97 -

http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/negra-corpus.html

9 References

Zechner, M.; Muhr, M.; Kern, R.; Granitzer, M. 2009. External and Intrinsic
Plagiarism Detection Using Vector Space Models. In Proceedings of the
SEPLN’09 Workshop on Uncovering Plagiarism, Authorship and Social
Software Misuse.

Chong, M. 2013. A Study on Plagiarism Detection and Plagiarism Direction
Identification Using Natural Language Processing Techniques.

Stein, B.; Lipka, N.; Prettenhofer, P. 2011. Intrinsic Plagiarism Analysis. In
Journal Language Resources and Evaluation, Volume 45 Issue 1, March 2011,
Pages 63-82.

Seaward, L.; Matwin, S. 2009. Intrinsic Plagiarism Detection using Complexity
Analysis. In Proceedings of the SEPLN’09 Workshop on Uncovering
Plagiarism, Authorship and Social Software Misuse.

Grieve, J. 2007. Quantitative Authorship Attribution: An Evaluation of
Techniques. In Literary and Linguistic Computing, pp. 251-270.

6. Halvani, O. 2011. Towards Intrinsic Plagiarism Detection.

7. Meyer zu Eissen, S.; Stein, B. 2006. Intrinsic Plagiarism Detection, In

10.

Advances in Information Retrieval: Proceedings of the 28th FEuropean
Conference on IR Research.

Chong, M.; Specia, L.; Mitkov, R. 2010. Using Natural Language Processing
for Automatic Detection of Plagiarism. In Proceedings of the 4th International
Plagiarism Conference (IPC 2010).

Stamatatos, E. 2009. Intrinsic Plagiarism Detection Using Character n-gram
Profiles. In: %rd PAN Workshop. Uncovering Plagiarism, Authorship and
Social Software Misuse.

Toutanova, K.; Klein, D.; Manning, C.; Singer, Y. 2003. Feature-Rich Part-of-
Speech Tagging with a Cyclic Dependency Network. In Proceedings of HLT-
NAACL 2003, pp. 252-259.

_ 98 -

http://nlp.stanford.edu/~manning/papers/tagging.pdf
http://nlp.stanford.edu/~manning/papers/tagging.pdf

