Tagging and parsing German using Spejd

Andreas Vollger
Reykjavik University
Reykjavik, Iceland
andreasv10@ru.is

Abstract

Spejd is a newer tool for morphosyn-
tactic disambiguation and shallow pars-
ing. Contrary to other shallow parsing
formalisms, the rules of the Spejd gram-
mar allow explicit morphosyntactic dis-
ambiguation statements, independently of
structure building statements. With Spejd
it is possible, that a single grammar rule
may contain structure building operations
as well as morphosyntactic disambigua-
tion operations. The formalism is Java
based and available under the GNU li-
cense. Furthermore Morphy, which offers
morphosyntactic analysis and synthesis, is
used to derive the input data for Spejd.

1 Introduction

There were two observations, which motivated the
work on the formalism. First, that morphosyntac-
tic disambiguation and shallow parsing in general
should be performed in parallel, rather than in se-
quence.

Morphosyntactic disambiguation focuses on
word structure, their smallest elements, called
morphemes. Prefixes and suffixes are examples of
morphemes, they are called affixes. There are a
lot of wordstems for possible correct affixes. Of-
ten these affixes give information about the gram-
matical use of the word like gender. An affix
mostly has several possible meanings, such that
morphosyntactic analysis offers ambiguous infor-
mation. An additional tool has to process the data
and disambiguate the information.

Shallow Parsing or chunking is the analysis of
sentences. Each sentence has constituents like
noun groups or verb groups. Shallow parsing
does not take care of the sentence structure, but
rather on structure of the defined groups. to con-
clude shallow parsing focuses on predefined sen-

tence segments, whereas full parsing focuses on
the whole sentence structure.

The second observation, it should be possible
to encode both the disambiguation and parsing
within a single rule, because they often implic-
itly encode the same linguistic intuitions. The for-
malism originally abbreviated to SPADE, which
means Shallow Parsing and Disambiguation En-
gine. Due to the existence of an earlier system, the
name was abbreviated to # and the acronym Spejd
was used.

The formalism itself connects several regu-
lar grammars - in other words cascades them.
Each of these grammars is expressed by a rather
complex single rule which specifies morphosyn-
tactic disambiguation as well as structure build-
ing operations. Morphy (Morphy, 2010) is a
closed source morphosyntactic analyser for Ger-
man, which helps to derive the Spejd input and
later on checks against the solution of the rules.
Morphy offers different formats, for example an
XML like output format, which differs a lot from
the Spejd expected input format. There is also the
possibility to detect sentence breaks.

For analysis a German fourth class dictate is
used (Diktat, 2005) for several reasons. First,
dictates from lower classes include names much
more often and Spejd has problems with detecting
names, so it is a source of possible errors. A sec-
ond reason is that sentences of higher classes are
possibly too nested to show that Spejd can do the
expected work. If there are more specialised and
optimized rules it is possible to test Spejd on more
difficult texts, but for that aim it is a decent choice.

In this paper the used sentence is “Die Katze
fangt die Maus.”, translated into english "The cat
catches the mouse.”. The sentence offers several
possibilities to show in an easy way how and what
Spejd can do.

2 Related work

Syntactic parser differ in their assumption of input.
Either they assume morphosyntactically disam-
biguated input or non disambiguated input. Gen-
erally ambigous input is expected in deep parsing
systems which are based on unification, whereas
fully disambiguated input is usually expected in
shallow or partial parsers. There are some shallow
parsing systems which allow disambiguation and
parsing, for example (Neumann, 2000) or (Mari-
mon, 2000). Some other approaches like (Karls-
son, 1995) introduced a formalism for dependency
parsing and disambiguation. These assume, that
every word has assigned its possible role in a lex-
icon. While processing some of these roles are
rejected. However, this method is a pure disam-
biguation formalism.

3 Procedure

After getting a brief overview on the available
Spejd papers the next step was trying to figure out
how Spejd and the tagset in combination with the
ruleset work, due to incomplete documentation. A
good starting point is the Spejd config file, where
one get a brief overview of the expected files and
options combined with some lines of documenta-
tion. For that reason the first part was to alter exist-
ing rules and make them work in the expected way
and to get a feeling how Spejd proceeds. After al-
tering Left, Match and Right parts, the next step
was to work with some Match functions, which
wasn’t as easy as expected. At that point one has a
brief feeling on how Spejd works and can proceed
with the own text due to the fact that the sample is
given in Polish, but still works.

The next part is to set up another working ex-
ample, in that case in German, by creating a valid
IPIPAN xml file. Based on this working exam-
ple, new rules can now be created, processed
and later on improved. On change, it is recom-
mended to document every single rule, for subse-
quent changes could destroy the whole rule pro-
ceeding.

4 Formalism

Spejds needs a pre-defined tagset as part of
the configuration. Therefore a new tagset with
attributes e. g. for number, gender and case was
built.

number = SIN PLU
gender NEU FEM MAS
case NOM GEN DAT AKK

The tagset file contains part of speech informa-
tion, which are necessary for the rules that will be
applied on the input. A possible part of speech sec-
tion looks like the following one. The attributes in
box brackets are optional and should be located at
the end of the part of speech entry.

PRO = number person personal
[possesiv]

ART = case number gender
[definit]

SUB = case number gender

This tagset definition requires, that one input
word whose type is "PRO” (pronoun) needs at
least one attribute for number, gender and case. A
definition attribute for possesive pronouns is op-
tional. The word classes from Morphy are listed
in (Morphy - word classes, 2010). The abbrevia-
tions in capital letters are attributes from the Mor-
phy output and Spejd input which cannot be cho-
sen arbitrarily, but are also defined in (Morphy -
word classes, 2010).

A rule is defined to have at least Rule, Match
and Eval part. The Rule part is a string identifier
and can be named freely. It is the only entry in the
definition which does not end with a semicolon.
The Left, Match and Right part of the rule is han-
dled in the same way, but the Match part is obliga-
tory. Each of these three parts can be modified by
regular expression quantifiers. The Eval part de-
scribes the methods performed when rules match.
There are several possible functions which are de-
tailed later. Comments can be added by using the
hash character #.

Rule: "ART_SUB"

Left: ;

Match: [pos™"ART"] [pos ™ "SUB"];
article followed by noun
Right: ;

Eval: unify(case number

gender, 1, 2);

The rule above finds a sequence of two tokens in
which the first token is an article and the second a
noun. Interpretations of case, number and gender
attributes of both tokens are retained when they
do agree, else they are rejected. By using double

tildes the rule checks against disambigous input.

If for example a noun can only be a noun and no

other part of speech type, all other morphosyntac-

tic interpretations of the token are nominial. By

using one tilde there exists a nominial interpreta-

tion of the token with the part of speech tag SUB.
Possible Eval functions are:

e agree
e unify
e delete
o leave
e add

e set

e word
e group

For the current approach not all functions are
needed. The most often used functions are de-
scribed here.

agree(category ..., token ...) - checks the gram-
matical categories of the specified tokens. It is
allowed to use several numbers of arguments for
category and token.

unify(category ..., token ...) - retains those inter-
pretations of the tokens which agree in specified
category. Only works if agree works, otherwise
nothing changes.

leave(condition, token ...) - retains only the in-
terpretation which matches specified condition.

delete(condition, token ...) - remove all inter-
pretations of given token matching specified con-
dition.

group(name, syntactic head, semantic head) -
group all tokens matching specified conditions.
Additionally a syntactic and semantic head is
specified, but currently unused.

S Parsing

While using several functions within a single rule
it is necessary to document every single step. Sub-
sequent changes can cause errors in fact of chang-
ing token numbers. If the previous rule is altered
by adding a possible adjective between article and
noun, the tokens in the Eval part also have to
change, otherwise it could cause an error.

The proceeding when parsing German is visu-
alised in figure 1.

Morphy

morphy2spejd.pl

XML input tagset
Spejd —— configini — rules
XML output

Figure 1: system architecture

Rule: "ART_SUB"
Left: ;
Match: [pos ™ "ART"

]
[pos ™ "ADJ"] x
[pos™"SUB"];

article followed by noun
Right: ;
Eval: unify(case number

gender, 1, 3);

The first step is to derive the information from
Morphy’s morphological analyser. Morphy deliv-
ers different output formats and options. This out-
put offers too many information, thus it needs to be
processed further to bring it in the expected Spejd
XML scheme. Because there are some problems
while processing umlauts, they have to be con-
verted. Furthermore Morphy offers possibilities
for analysed words, which are marked with an as-
terisk. For processing the words, these entries are
unnecessary and can sometimes be discarded, usu-
ally if they are not at sentence beginning.

@

Die

*der PRO PER NOM SIN FEM
*der PRO PER NOM PLU ALG
*der PRO PER AKK SIN FEM
*der PRO PER AKK PLU ALG

*der PRO DEM AKK SIN FEM
x*der PRO DEM NOM SIN FEM
+der PRO DEM NOM PLU ALG
*der PRO DEM AKK PLU ALG
+der ART DEF NOM PLU MAS
x*der ART DEF AKK PLU MAS
*der ART DEF NOM SIN FEM
x*der ART DEF AKK SIN FEM
*der ART DEF NOM PLU FEM
x*der ART DEF AKK PLU FEM
*der ART DEF NOM PLU NEU
+der ART DEF AKK PLU NEU
@

Katze

Katze SUB NOM SIN FEM
Katze SUB GEN SIN FEM
Katze SUB DAT SIN FEM
Katze SUB AKK SIN FEM

@

faengt

fangen VER 3 SIN PRAE NON

When processing the morphy output a perl
script converts the plain text into the expected xml
format. This is done by some rather complex reg-
ular expressions. It is necessary to notice, that
the first abbreviation in capital letters is a part of
speech definition of the word, all following abbre-
viations are attributes. Additionally the xml frame
is added so the output is a valid IPIPAN xml file.

<?xml version="1.0" encoding=
"UTF-8"7?>

<!DOCTYPE cesAna SYSTEM
"xcesAnalPI.dtd">

<cesAna xmlns:xlink="http://
www.w3.0rg/1999/x1ink"
type="pre_morph"
version="IPI-1.2">

<chunkList xml:base="text.xml">

<chunk type="p" xlink:href=
"#dvlhdl">

<chunk type="s">

<tok>

<orth>Die</orth>

<lex><base>der</base><ctag>

PRO:PER:NOM:SIN:FEM

</ctag></lex>

<lex><base>der</base><ctag>

PRO:PER:NOM:PLU:ALG

</ctag></lex>

<lex><base>der</base><ctag>
PRO:PER:AKK:SIN:FEM
</ctag></lex>
<lex><base>der</base><ctag>
PRO:PER:AKK:PLU:ALG
</ctag></lex>
<lex><base>der</base><ctag>
PRO:DEM:AKK:SIN:FEM
</ctag></lex>
<lex><base>der</base><ctag>
PRO:DEM:NOM: SIN:FEM
</ctag></lex>
<lex><base>der</base><ctag>
PRO:DEM:NOM:PLU:ALG
</ctag></lex>
<lex><base>der</base><ctag>
PRO:DEM:AKK:PLU:ALG
</ctag></lex>
<lex><base>der</base><ctag>
ART:DEF :NOM:PLU:MAS
</ctag></lex>
<lex><base>der</base><ctag>
ART:DEF:AKK:PLU:MAS
</ctag></lex>
<lex><base>der</base><ctag>
ART:DEF :NOM:SIN:FEM
</ctag></lex>
<lex><base>der</base><ctag>
ART:DEF:AKK:SIN:FEM
</ctag></lex>
<lex><base>der</base><ctag>
ART:DEF:NOM:PLU:FEM
</ctag></lex>
<lex><base>der</base><ctag>
ART:DEF :AKK:PLU:FEM
</ctag></lex>
<lex><base>der</base><ctag>
ART:DEF:NOM:PLU:NEU
</ctag></lex>
<lex><base>der</base><ctag>
ART:DEF :AKK:PLU:NEU
</ctag></lex>

</tok>

<tok>

<orth>Katze</orth>
<lex><base>Katze</base><ctag>
SUB:NOM:SIN:FEM</ctag></lex>
<lex><base>Katze</base><ctag>
SUB:GEN:SIN:FEM</ctag></lex>
<lex><base>Katze</base><ctag>

SUB:DAT:SIN:FEM</ctag></lex>
<lex><base>Katze</base><ctag>
SUB:AKK:SIN:FEM</ctag></lex>
</tok>

<tok>

<orth>faengt</orth>
<lex><base>fangen</base><ctag>
VER:3:SIN:PRAE:NON</ctag></lex>
</tok>

</chunk>
</chunk>
</chunkList>

The generated IPIPAN like xml file can now be
handled by using the following command.

java —Jjar spejd.jar input.xml

It is also possible to batch all xml files in a di-
rectory by not specifying an xml file at the end of
the statement. Spejd throws exceptions if part of
speech definitions or attributes are not defined. In
case to not lose any information actually unused
entries have to be stored as dummy entries in a
single attribute like the following entry. Another
way of processing is to remove all unused entries
via an regular expression in the perl script.

temp = PRP KON KJ1

The Spejd output could look like the example
below.

<?xml version="1.0"
encoding="UTF-8"?>

<!DOCTYPE cesAna SYSTEM
"xcesAnalPI.dtd">

<cesAna xmlns:xlink=

"http://www.w3.0rg/1999/x1ink"

type="pre_morph"
version="IPI-1.2">
<chunkList xml:base="text.xml">
<chunk type="p"
xlink:href="#dvlhdl">
<chunk type="s">

<group id="a8"
rule="ART_SUB_VER_ART_SUB"
synh="a2" semh="a2"
type="ART_SUB_VER">

<group id="a6" rule="ART_SUBR"
synh="a2" semh="a2"
type="ART_SUB">

<tok id="al">
<orth>Die</orth>
<lex><base>der</base><ctag>
PRO:PER:NOM:SIN:FEM</ctag></lex>
<lex><base>der</base><ctag>
PRO:PER:AKK:SIN:FEM</ctag></lex>
<lex><base>der</base><ctag>
PRO:DEM:AKK:SIN:FEM</ctag></lex>
<lex><base>der</base><ctag>
PRO:DEM:NOM: SIN:FEM</ctag></lex>
<lex><base>der</base><ctag>
ART:DEF:NOM: SIN:FEM</ctag></lex>
<lex><base>der</base><ctag>
ART:DEF:AKK:SIN:FEM</ctag></lex>
</tok>

<tok id="a2">
<orth>Katze</orth>
<lex><base>Katze</base><ctag>
SUB:AKK:SIN:FEM</ctag></lex>
</tok>

</group>

<tok id="a3">
<orth>faengt</orth>
<lex><base>fangen</base><ctag>
VER:3:SIN:PRAE:NON</ctag></lex>
</tok>

</group>
</chunk>
</chunk>
</chunkList>

The first recognised new entries compared to
the previous xml file are the grouping tags. In ev-
ery Eval part it is possible to group the rules. Espe-
cially for debugging and better readability the xml
files it is a good way to show, which rule matches.
Otherwise no grouping tag would be written to
the xml output. Furthermore the rule attribute of
each group tag offers information on which rule
matched, so one can check whether a rule matched
in the expected way. An additional type attribute
offers information on the group name (first at-

tribute of the group function).

The matched rules in the example are
ART_SUB and ART_SUB_VER_ART_SUB.
ART_SUB is a extended function of the rule
above and ART_SUB_VER_ART_SUB is a rule
for sentences with structure ART_SUB, followed
by a verb, followed by ART_SUB. The first two
parts of the rule have to match in number and
are grouped with ART_SUB_VER. Additionally
the German grammar defines that in this special
sentence structure the first ART_SUB combination
is in accusative case and second is nominative
case, so the rule only leaves these cases.

In detail it looks like:

Rule "ART_SUB_VER_ART_SUB"

Left: ;

Match: [type="ART_SUB"]
[pos ™ "VER"]
[type="ART_SUB"];

Right: ;

Eval: unify (number, 1, 2);

4
group (ART_SUB_VER, 1, 1);
leave (case ™ "AKK",1);
leave (case”™ "NOM", 3) ;

A problem still existing is that the leave method
does not perform as expected. Leave only pro-
ceeds on the noun in Match: [type="ART_SUB”]
and does not change the article case.

6 Evaluation

The tested sample text (Diktat, 2005) includes 81
words. Morphy provides 513 morphosyntactic dif-
ferent entries. After Spejd processed the xml file,
it contains 244 different entries, which means a re-
duction of more than 50%, while only applying a
few rules. This means, that every single entry has
3 morphological tags. On deeper observation one
can see that some combinations are fraught with
problems, but there is no solution. The issue is that
an arcticle in front of a noun can also be a pronoun
or verb. Hence there are more morphosyntactic
possibilities for the noun, for example 44 possi-
bilities for a single adjective. By including an ex-
pression for excactly this combination, the hit ratio
in the text could be increased by more than eight
percent, this means about 2.5 tags per word.

7 Conclusion

The approach has shown, that it is possible to dis-
ambiguate sentences with Spejd. By using a pro-

totypical implementation of rule- and tagset it was
shown, that Spejd works for German texts and
concerning the defined rules very well. By im-
proving the existing rules and adding new rules
it should be possible to reach nearly full disam-
biguation. Furthermore, rules have to be well doc-
umented an validated because the rules are not
easy to read. Also if new attributes are added to
an existing rule, problems can occur when having
unchanged item numbers in the eval functions be-
cause these do not change dynamically. Although
using any kind of reference, they are still hard
coded, which is cause for possible errors.

References

Neumann, G., Braun, C., Piskorski, J. 2000. A divide-
and-conquer strategy for shallow parsing of German
free texts. In: Proceedings of the 6th Applied Nat-
ural Language Processing Conference, Seatle, WA,
ACL.

Marimon, M., Porta, J. 2000. PoS disambigua-
tion and partial parsing bidirectional interaction.
In: ELRA: Proceedings of the Third International
Conference on Language Resources and Evaluation,
LREC 2000.

Karlsson, F., Voutilainen, A., Heikkild, J., Anttila,
A. 2000. Constraint Grammar: A Language-
Independent System for Parsing Unrestricted Text.
Mouton de Gruyter, Berlin.

Leizius, W. Morphy. http://www.wolfganglezius.de/
doku.php?id=cl:morphy. last visited: 01.12.2010.

Leizius, W. Morphy. http://www.wolfganglezius.de/
lib/exe/fetch.php?media=cl:wklassen.pdf. last vis-
ited: 01.12.2010.

Diktat, 4.Klasse. http://www.notelplus.de/BilderS12-
PU-Aufg/PU-Realsch4-2005/Diktat.pdf. last vis-
ited: 01.12.2010.

Buczynski, A., Przepirkowski, A. 2008. An Open
Source Tool for Partial Parsing and Morphosyn-
tactic Disambiguation.. In: Proceedings of LREC
2008.

Buczynski, A., Wawer, A. 2008. Shallow parsing in
sentiment analysis of product reviews.. In: Proceed-
ings of the Partial Parsing workshop at LREC 2008,
pp. 14-18.

