
Hochschule Darmstadt

- Department of Computer Science -

Intelligent Bot

an interactive man-machine communication system for

incoming international students

for attainment of the academic degree of

Bachelor of Science (B.Sc.)

Presented by

Emmanuel Günther

Advisor: Prof. Dr. Bettina Harriehausen-Mühlbauer

Co-advisor: Dr. Hrafn Loftsson

Declaration of authorship

I certify that the work presented here is, to the best of my knowledge and belief, origi-

nal and the result of my own investigations, except as acknowledged, and has not been

submitted, either in part or whole, for a degree at this or any other university.

Dreieich, February 7, 2013

Signature

2

Abstract

This work deals with the topic Natural Language Processing (NLP). The task is to create a bot

program, which returns an intelligent answer to the questions asked. Incentive for this work

is the idea of creating an information system that can be used by exchange students to get

answers to unresolved questions or more information on the host institution.

In preparation for this work, a program was developed that uses tokenization, spelling correc-

tion, keyword identi�cation, the creation of base forms of the keywords and the identi�cation

of possible synonyms for working with a given question. Then it compares the keywords and

synonyms with the keywords of questions and their answers of a previously given database.

This comparison is done by weighting the input question with the questions in the database

under usage of the Vector Space Model and returning the answer with the highest weighting.

It is also ensure that if an appropriate answer is not found within the database by using the

previously mentioned method of weighting, suitable information will be sought on the internet.

This is done by looking for pages and subpages of a pre-de�ned address, which were indexed

before and will be searched for keywords.

This paper describes the implementation and use of technologies for these aspects of the pro-

gram and concentrates more precisely on the pros and cons of these in comparison to previously

applied technologies and alternative approaches. Furthermore the results of user testing are

described.

3

Abstract

Diese Arbeit behandelt das Thema Natural Language Processing (NLP). Die Aufgabe besteht

darin, ein Bot Programm zu erstellen, welches auf gestellte Fragen eine intelligente Antwort

zurückliefert. Anreiz für diese Arbeit gibt die Überlegung, ein Informationssystem zu kreieren,

welches von Austauschstudenten genutzt werden kann, um ungeklärte Fragen beantwortet oder

weitere Informationen zur Gasthochschule zu bekommen.

Im Vorfeld dieser Arbeit wurde ein Programm entwickelt, welches mit Hilfe von Tokenisierung,

Korrektur von Schreibfehlern, Keywortidenti�kation, der Bildung von Basisformen der Wörter

und der Erkennung möglicher Synonyme eine gestellte Frage bearbeitet. Es vergleicht diese

Keywörter und Synonyme dann mit Keywörtern von Fragen und deren Antworten in einer

zuvor gegebenen Datenbank. Dieser Vergleich wird durch Gewichtung der Ausgangsfrage mit

den Fragen in der Datenbank unter Verwendung des Vector Space Models durchgeführt und

die Antwort mit der höchsten Gewichtung zurückgegeben.

Es wird auch dafür gesorgt, falls die Datenbank keine tre�ende Antwort auf die Frage durch

die zuvor genannte Gewichtung �ndet, dass auÿerhalb des Programmes nach einer möglichen

Hilfestellung oder Information im Internet gesucht wird. Dies geschieht durch die Suche nach

Seiten und Unterseiten einer bestimmten, vorher angegebenen Adresse, welche zuvor indiziert

wurden und eine Suche nach Keywörtern durchgeführt wird.

Diese Arbeit beschreibt die Umsetzung und die Nutzung von Technologien für diese einzelnen

Teilbereiche des Programms und schildert genauer, welche Vor- und Nachteile es bei diesen gibt

im Vergleich zu den zuvor eingesetzten Technologien und Alternativen. Des Weiteren werden

auch die Ergebnisse eines Benutzertests beschrieben.

4

Contents

Titlepage 1

Declaration of authorship 2

Abstract 3

Contents 5

Figures 7

Tables 8

1 Introduction 9

2 Background 11

3 Design 13

4 Architecture 15

4.1 Tokenizer . 16

4.2 Spell checker . 16

4.3 Keyword extraction . 17

4.4 Lemmatizer . 19

4.5 Synonym resolution . 21

4.6 Question ranking . 21

4.7 Find answer . 23

4.8 Web search . 24

4.9 Update web search data . 24

5

Contents

4.10 Con�guration �le . 26

4.11 Database . 28

5 User evaluation 30

5.1 Target User Group . 30

5.2 User Evaluation Framework . 30

5.2.1 Goal for User Evaluation Sessions . 30

5.2.2 User Selection . 31

5.2.3 Interview Process . 31

5.2.4 Test Locations and Settings . 31

5.3 Results of the User Evaluation . 31

6 Conclusion 33

Bibliography 35

Abbreviations 37

Appendices 38

A.1 Appendix A: Penn Treebank Tagset . 38

A.2 Appendix B: User Testing Guidelines . 40

A.3 Appendix C: Statistical results of user evaluation 41

A.3.1 Personal Information . 41

A.3.2 General Information . 45

A.3.3 student-Bot . 49

6

Figures

4.1 System Architecture Flowchart . 15

4.2 Flowchart of the architecture of the UpdateEngine 25

4.3 Con�guration File Example . 28

4.4 Database Structure Example . 29

A.1 Test User Age Diagram . 41

A.2 Test User Sex Diagram . 42

A.3 Test User Nationality Diagram . 43

A.4 Test User Computer Skills Diagram . 44

A.5 Quick Information Diagram . 45

A.6 Trust Bot Information Diagram . 46

A.7 Write Additional E-Mail Diagram . 47

A.8 Write Still E-Mail Diagram . 48

A.9 Answer Quickly Diagram . 49

A.10 Satisfy Information Diagram . 50

7

Tables

4.1 Cosine Similarity Formular [ABC+] . 22

4.2 Inverse Document Frequency [ABC+] . 23

4.3 Cosine Similarity Complete Formular [ABC+] 23

5.1 Analysed Answers Table . 31

A.1 Penn Treebank Tagset part 1 . 38

A.2 Penn Treebank Tagset part 2 . 39

A.3 Participation Information Sheet . 40

A.4 Test User Age Table . 41

A.5 Test User Sex Table . 42

A.6 Test User Nationality Table . 43

A.7 Test User Computer Skills Table . 44

A.8 Quick Information Table . 45

A.9 Trust Bot Information Table . 46

A.10 Write Additional E-Mail Table . 47

A.11 Write Still E-Mail Table . 48

A.12 Answer Quickly Table . 49

A.13 Satisfy Information Table . 50

8

1 Introduction

In most international o�ces the sta� receives a lot of e-mails from incoming students and

potential students which want to study abroad with questions regarding university related

issues. Most of these questions range from how to apply at the university to o�ered courses

and questions concerning the life in and around the university. Some members of the faculty

answer these e-mails by using prede�ned text blocks, which they copy in email responses. This

method saves time, but it is still very time consuming, because of the amount of incoming

e-mails every day. The process of answering those e-mails takes up to several hours a day.

The same problem of answering e-mails exists at the international o�ce of the department

of computer science at the University of Applied Science in Darmstadt. The international

representatives get many e-mails from exchange students with questions concerning university

a�airs and information they would like to have before arriving. In most cases many incoming

exchange students ask the same questions or the same kind of questions.

More and more systems were introduced in the last years to the market providing a direct

electronic answer to those who have questions. These systems give users the possibility to

type in a question and provide an answer or advise the user about how to �nd the needed

information.

For the problem of answering a lot of e-mails from students or potential students that kind

of a system would be very helpful and could prevent faculty sta� members of replying to so

many emails. In order for this system to be able to give answers on questions from incoming

students, several goals are de�ned.

The �rst goal for the system is to be easily integratable and usable on every university en-

vironment worldwide. In order to achieve this goal, the system should be implemented in a

generalized way to easily provide the necessary data and con�guration parameters - e.g. prede-

9

1 Introduction

�ned answers and the name of the database. The second goal is to get a wider range of available

information; therefore the system should not only have a database to search for information

and give an answer to the user. A second source will be available within the program as well -

the biggest database on earth - the internet.

The general purpose of the system is to make having to write emails to university personnel

unnecessary in most cases.

The starting point for developing the program was a previous development done by a student

group project of the NLP master course and background information on other systems working

in the problem area.

10

2 Background

The project system of the NLP master course was a bot, which could answer questions of

incoming students and potential students that want to study abroad. This bot is a Java

Servlet program and runs on an Apache Tomcat web server. The bot �rst processes the given

question in the �eld of natural language processing. It tokenizes the question into single words

and the unnecessary words are �ltered out by using a list of "stop words". The remaining

words are then taken as the keywords for the question.

The keywords are then run through a lemmatization and synonyms are created. The keywords

and synonyms are ranked against the keywords in the database using the vector space model.

The answer of the thus found best matching question in the database is then returned to the

user if it has a value higher than a previously de�ned threshold.

If no question was found in the database, the system performs a web search on speci�ed web

pages using the SearchBlox web service. If the SearchBlox web search returns no results, the

user is provided with the means of sending an email directly to a previously de�ned sta�

member.

One other system is the Jabberwacky AI which is using contextual pattern matching techniques

to �nd the most appropriate response on a given text of a user. The system stores all questions

and user responses in a self-learning database. The Jabberwacky AI does not use any other

external source of information but its own database.

"The 'general AI' of Jabberwacky stores everything everyone has ever said, and �nds the most

appropriate thing to say using contextual pattern matching techniques. In speaking to you it

uses just that learnt material, and borrows a little bit of your intelligence as it learns more.

With no hard-coded rules, it relies entirely on the principles of feedback." [Jab]

11

2 Background

The self-learning function of the Jabberwacky AI needs a lot of time to learn enough in order

to answer questions appropriately. But there is another bot on the internet. Her name is called

"Alice". This bot uses the Arti�cial Intelligence Markup Language (AIML) as its database

including pattern-based knowledge.

"The Arti�cial Intelligence Markup Language is a derivative of XML (Extensible Markup Lan-

guage) [...]. Its goal is to enable pattern-based, stimulus-response knowledge content to be

served, received and processed on the Web and o�ine in the manner that is presently possible

with HTML and XML." [Wal]

"Alice" also has a self-learning function which is not really useful for the design of an intelligent

question and answer bot because it can't use users to get information and saving them to its

database. The users which will using the program want to get more information they do not

know. Most of the other bots are using pattern matching for matching the given question or

answer to a response in the database. The vector space model gets better results than pattern

matching and is better suitable for di�erently worded questions with the same answers. That

is why the vector space model is the better suited solution for the planned program.

New design ideas for developing a system for giving information and answers to exchange

students are described in the next chapter.

12

3 Design

With the new design, based on the group project of the natural language processing course,

two major changes are introduced to the initial system. The �rst one is changing the keyword

extraction. The NLP group used an extraction of "stop words" from the list of word tokens.

The �stop word� list contains only English words and is thus only applicable if the question

and answer system is used in English. In order to design a generalized system that can be run

on a wider range of systems, the extraction of keywords should not be based on a hardcoded

deletion of stop words. There is a much better way of getting keywords in a more general way

then just matching them against a stop words list.

With using a part-of-speech tagger (POS Tagger) the system analyzes the question the user

sends and marks all words with their matching tag. It is then easy to delete all unnecessary tags

as keywords and only the useful and meaningful keywords remain in the keyword pool. The

used API for pos tagging is the POS Tagger from the Stanford Natural Language Processing

Group. It uses the Penn Treebank English POS tag set for tagging the words. For a generalized

system the pos tagger has also the advantage of also being able to work wiith a wider range of

laguages such as Englisch, Arabic, Chinese and German.

The SearchBlox web service that the initial system uses in not applicable for an usage with a

generalized multilingual system. The web service also has a limitaion of the free requests per

day and is only con�gurable through the web page of the service. It would be a better to have

all con�guration parameters in one place and not scattered in many places.

In order for the program to work as intended, we need a service that has the same web searching

capabilities as SearchBlox. The SearchBlox web services uses the Apache Lucene API for

indexing and searching web pages.

The second major change to the initial design is the integration of the Apache Lucene API

13

3 Design

directly into the system, so a prede�ned wep page can be searched with it. To get all the data

from a web site, the system gets also a web crawler to mine the data from the web site and �nd

links to all of the other pages of that web site. In order for the system to get the information

within a website, a web crawler is used to mine the data and �nd links to all pages within the

given website. A second Java Servlet is included that updates the system with the information

gathered from data mining and indexing the web page. PDF documents can also be indexed

and searched by the crawler thus allowing the gathering of a broader range of information.

To avoid inputting settings within di�erent �les and services, only one con�guration �le will be

created. This text �le is contained within the system and is read upon the start of the servlet.

The con�guration includes all settings of the program � for example the URL of the web page,

the document �le formats mined by the web crawler and prede�ned answers.

This new system design approach enables better integrating options within a wider range of

di�erent environments compared to the system developed by the project group of the natural

language processing master course.

The new system design and architecture is described in detail within the next chapter of this

paper.

14

4 Architecture

The following �owchart shows the system architecture. All requests are processed in the order

de�ned by this architecture.

Figure 4.1: System Architecture Flowchart

The working process of the system starts with the tokenization of the question.

15

4 Architecture

4.1 Tokenizer

A Tokenizer is a program that disassembles plain text into logical sequences, which are called

tokens. The Tokenizer gets the question as a string and breaks it into a word list. In general a

Tokenizer is program to disassemble plain text into logical sequences which are called tokens.

The tokenization process removes all punctuation marks as those are not relevant for the ques-

tion rank. Then the question string is split into single word tokens which are listed in a Java

ArrayList. All word tokens are then transformed into lowercase words, so the word list contains

only lowercase tokens and thus avoiding token repetitions because of case di�erences. The thus

created word token list is then forwarded to the spell checker.

4.2 Spell checker

The spell checker used for the implementation uses a list of all words from the database con-

taining questions and answers. When a spell check for a word is done, the complete list is

searched for the most similar word. This search method is done using Levenshtein distance and

Keyboard Proximity for measuring similarities.

The Levenshtein distance is a string metric that calculates the di�erences between two words.

To calculate the distance, the single-character edits that are required to get to the second word

from the �rst one are counted. A smaller distance number means that the words are more

similar.

The Keyboard Proximity method is based on the fact that a large percentage of spelling mistakes

are typographical errors that occur because of typing slips on the keyboard. The input words

are tested by changing single characters with ones that are placed nearby on the keyboard.

By using these two methods, a search is performed for the most similar word in the database

of all single words, contained in the question and answer database.

If a word is found, the word token and the found word are converted into lowercase letters; if

both words are equal then the user has inputted the word in the right spelling. In this case the

word is wrapped in the "<plain>" and "</plain>" tags. If the two words don't match after

16

4 Architecture

the conversion in lowercase, the found most similar word is wrapped in the "<suggestion>" and

"</suggestion>" tags to indicate that the method has generated a suggestion for the word.

After getting these strings the spell checker uses the word in case the tags are "<plan>" and

"</plain>" and also uses the word wrapped with the tags "<suggestion>" and "</sugges-

tion>".

The now correct spelled word tokens are forwarded to the keyword extraction with the pos

tagger.

4.3 Keyword extraction

A keyword extraction is made because to get a better impact on the ranking process without

using unnecessary word tokens as keywords.

The keyword extraction is using a pos tagger developed by the Stanford Natural Language

Processing Group. A pos tagger is in general a software which reads a text in any language

and assigns and marks the words or tokens with their part of speech. For example noun, verb,

adjective. The pos tagger from the Stanford Natural Language Processing Group is a log-linear

part of speech tagger which uses the Penn Treebank POS tag set.

For working with the pos tagger the word token list is rebuilt into a string. For building

this string the single word tokens of the list are appended to a word string. The pos tagger

could only tag words within one string. The method to work with a list of word tokens wasn't

implemented yet.

The returned string is now splitted into single word objects. To do this the words and their

tag name are saved to a list of word objects where a word object contains the word string and

the tag name. From this list all the word objects are removed which contain a not useful tag

for a keyword. The list of not useful tags were de�ned with a list of stop words. Therefor a list

of stop words was tagged by the pos tagger before. The list of removable word tags consists of

tags which was more than one time in the tagged stop word list.

17

4 Architecture

The complete stop word list:

able, about, across, after, all, almost, also, am, among, an, and, any, are, as, at, be, because,

been, but, by, can, cannot, could, dear, did, do, does, either, else, ever, every, for, from, get,

got, had, has, have, he, her, hers, him, his, how, however, i, if, in, into, is, it, its, just, least,

let, like, likely, may, me, might, most, must, my, neither, no, nor, not, of, o�, often, on, only,

or, other, our, own, rather, said, say, says, she, should, since, so, some, than, that, the, their,

them, then, there, these, they, this, tis, to, too, twas, us, wants, was, we, were, which, while,

who, will, with, would, yet, you, your

The result for the list of removable word tags are :

• CC

• IN

• DT

• RB

• VBP

• VB

• MD

• VBZ

• VBD

• PRP

• PRP$

• WRB

• VB

• LS

A complete list of the Penn Treebank tag set is found in the appendix.

18

4 Architecture

Example of the keyword extraction:

Initial question: What is the deadline for foreign students?

Question after POS tagging: What_WP is_VBZ the_DT deadline_NN for_IN foreign_JJ

students_NNS

Resulting keywords after removing not useful tags: What, deadline, foreign, students.

The remaining keywords are forwarded to the Lemmatizer.

4.4 Lemmatizer

A Lemmatizer is a program which generates the lemma of a word. A lemma is called the lexical

root or the base form of a given word.

"Lemmatization is the process of reducing an in�ected spelling to its lexical root or lemma

form. The lemma form is the base form or head word form you would �nd in a dictionary."

[Mor]

In the English language the base form for a verb is de�ned as the simple in�nitive form of the

verb. An example for this is the gerund form "striking" and the past form "struck" which are

both forms of the lemma "to strike". For a noun the base form is the singular form of the word.

An example for this is the plural word "mice" which is a form of the lemma "mouse".

In English the most spellings can be lemmatized without using any di�erent rules than the

regular rules of the English grammar. But there are irregular forms which don't follow these

regular rules. Therefor has to be a special handling. For example the word "axes" which

has four answers possible as a lemma. The possible lemmas are the singular noun "axe", the

singular noun "axis", the verb "to ax" or the verb "to axe". In this case the part of speech

information of the word has to be known to distinguish more complicated examples.

This system is using the English Lemmatizer of the "MorphAdorner" project for getting the

word lemmas. The Lemmatizer searches �rst with a spelling pair which includes the word and

the NUPOS part of speech tag. If there is a matching entry found in the word lexicon the

lemma will be returned as speci�ed. If there is no matching entry in the word lexicon the

19

4 Architecture

English Lemmatizer will use a combination of irregular forms and grammar rules to determine

the lemma of the given word.

For example for the word striking the pair is (striking, vvg). The spelling pair is not found in

the word lexicon. Then the NUPOS tag is converted to one of the following major word classes.

Major word classes used by the lemmatizer:

• adjective

• adverb

• compound

• conjunction

• in�nitive-to

• noun, plural

• noun, possessive

• preposition

• pronoun

• verb

The example (striking, vvg) with the NUPOS gerund tag vvg maps to the verb word class.

The lemmatizer now checks the spelling pair (striking, verb) against the list of irregular forms.

If there is no matching with the irregular forms list the lemmatizer uses rules of detachment.

The example is matching the rule for "CVCing CVCe" with says that our word is matching a

consonant which is followed by a vowel, followed by a consonant and followed by "ing" at the

end of the word. Therefor the replacement is to keep the consonant, the vowel and the second

consonant but replace the "ing" with an "e".

The result for the example striking is that striking is lemmatized to strike.

If all words of the previous extracted keywords are lemmatized in this process the lemmas of

all words are forwarded to determine their synonyms.

20

4 Architecture

4.5 Synonym resolution

In language some words have synonym words which have the same meaning or assertion but

they are di�erent words. Therefor the system is using the Java API for WordNet Searching

which is using the WordNet database to retrieve the synonyms and their tagged de�nitions. For

getting a ranking weight for the synonyms the WordNet stores for this reason a tag counter.

The ranking weight is de�ned as follows:

Be r a rank with a given word w for which pair a set of n de�nitions d is found. The formula

D := {(di, ti)} is the assignment to a tag counter of all de�nitions where t is the tag counter

number of the corresponding de�nition. S := {(sj , di)} describes all applicable synonyms s

which are corresponding to these de�nitions and �nally the value tmax be the highest tag

counter which is found in D.

Then the resulting rank for synonyms is calculated as follows:

R := {(sj , ri) | (sj , di) ∈ S ∧ ri = r ·
(

ti
tmax

)x
}, x ∈ [0, 1]

The ranking ri of a synonym sj is calculated by multiplying the old rank r of the given word

with a factor between 0 and 1. The tag counter of the synonyms meaning and the highest

tag counter are building these factor between 0 and 1. The factor for decreasing towards 0 is

adjusted with the exponent x.

For x = 1 the formula ri = r ·
(

ti
tmax

)1
= r · ti

tmax
. Choosing x = 0 will lead to ri = r, since

r ·
(

ti
tmax

)0
= r ·1 = r. So if the new ranking weights ri are to stay close to the original ranking

weight r, then a value close to 0 will be appropiate for x.

As result a HashMap with the word as key and the weight as value is returned from the synonym

resolution process. These HashMap is than forwarded to the question ranking process.

4.6 Question ranking

The question ranking process is using the vector space model to represent the question and

answer documents as a vector. The similarity between the vector of the list of keywords and

21

4 Architecture

synonyms of the given question and the vector of keywords from the questions for one answer

are calculated with the cosine similarity.

"In the vector space model of information retrieval, documents and queries are represented

as vectors of features representing the terms (words) that occur within the collection" [JM08]

In general the vector space model has the following representation of a document vector and a

query vector:

document vector: ~dj = (w1,j , w2,j , w3,j , ..., wn,j)

query vector: ~q = (w1,q, w2,q, w3,q, ..., wn,q)

The formula for calculating the cosine similarity the question ranking process is using is de�ned

as follows:

similarity = cos(θ) =
A ·B
‖A‖‖B‖

=

n∑
i=1

Ai ×Bi√
n∑

i=1

(Ai)2 ×
√

n∑
i=1

(Bi)2

Table 4.1: Cosine Similarity Formular [ABC+]

A and B are two vectors, representing the query (A) and one document (B), where each

dimension is a frequency of one term.

But the raw frequency is not su�cient to distinguish the documents and the process for ranking

is using the inverse document frequency as factor to the base vector.

"The second factor is used to give a higher weight to words that only occur in a few documents.

Terms that are limited to a few documents are useful for discriminating those documents from

the rest of the collection, while terms that occur frequently across the entire collection aren't

as helpful." [JM08]

22

4 Architecture

Therefor the formula for calculating the inverse document frequency is as follows:

idfi = log
N

ni

Table 4.2: Inverse Document Frequency [ABC+]

In that fomular the number of documents is N and the number of documents where the term

i occurs is ni .

The whole cosine similarity formula including the inverse document frequency is as follows:

similarity =

n∑
i=1

Ai ×Bi × idf 2
i√

n∑
i=1

(Ai × idfi)2 ×
√

n∑
i=1

(Bi × idfi)2

Table 4.3: Cosine Similarity Complete Formular [ABC+]

The similarity of the documents is the probability for one answer to be related to the query.

This process of calculating the ranking of an answer to the given question is a list of answer

and probability pairs which is forwarded to the �nd answer process.

4.7 Find answer

The list of answer and probability pairs is now processed to �nd the best matching answer

with analyzing the probability value to each answer. For the probability value is a prede�ned

threshold set which de�nes a minimum value for the probability of an answer. The threshold

is set to a value of 0.5 . With this threshold value the system has a minimum probability. The

process is searching in the list of answer and probability pairs for the highest probability and

returns this answer as result assumptive the threshold value is not undershot.

If the process �nds no answer which has a probability higher than the minimum threshold the

initial question will be forwarded to the out of scope web search.

23

4 Architecture

4.8 Web search

The web search is using the Apache Lucene API for indexing and searching. The keywords

for searching on the web site are extracted on the same way than described in section 4.3.

After that if the list of keywords size is smaller than 4 the keywords will be appended to one

string. If the list of keywords size is greater than 3 the keywords will group to a size of two in

a single string. For example if the list of keywords has a size of 6 the generated keyword pairs

in one string will be 1 and 2, 2 and 3, 3 and 4, etc. All of the keywords are separated with one

whitespace.

Then will be searched for every entry in the list of keywords. The search is executed on every

link saved in a list of strings which were found with the UpdateEngine. The result of every

search of one link is saved in a list of URL objects which contain the URL as a string and the

weight. If this list contains already a link the weight will be updated to the new weight value

but only if the new weight value is higher than the old weight value.

The result is then sorted after the weight from higher to lower values and a prede�ned number

of links beginning with the highest weight value are returned to the user. The number of links

which are returned to the user is con�gured in the con�guration �le. For more information see

section 4.10.

To update the data for searching the system has a second Servlet called the "UpdateEngine".

4.9 Update web search data

The system has implemented a second Servlet for updating the data of the web search. This

second servelt is using a Web Crawler to mine the data of a web page and search for new links

on a web site. The data is indexed and saved with the Apache Lucene API.

24

4 Architecture

Figure 4.2: Flowchart of the architecture of the UpdateEngine

"Lucene is a high performance, scalable Information Retrieval (IR) library. It lets add indexing

and searching capabilities to your applications." [MHG10]

The Web Crawler is getting the web site URL from the con�guration �le where it shall search

on. The Web Crawler can search for di�erent URL styles which are also con�gured in the

con�guration �le.

The di�erent URL styles are:

• htm/html: URLs which are ending with an htm or html �le ending

• php: URLs which are ending with a php �le ending

• pdf: URLs which are ending with a pdf �le ending to include pdf �les into the search

process

• "/": URLs which are ending with a slash sign or have no ending like the endings above

To let the Web Crawler working politely there is also a validation of every url which is searched

for in the robot.txt �le. To disallow the Web Crawler searching on a web page url the robot.txt

�le has to contain these lines:

25

4 Architecture

• a line with a speci�ed user agent name, the two values are "student-Bot" or "*"

• url entries after "Disallow:"

The text data of every found web page is forwarded to the Apache Lucene API to index the

data and save this data to an index. The data for every found web page has to be converted to

a di�erent format to search rapidly and don't have to search with a slow sequential scanning

process.

"To search large amounts of text quickly, you must �rst index that text and convert it into

a format that will let you search it rapidly, eliminating the slow sequential scanning process.

This conversion process is called indexing, and its output is called an index." [MHG10]

The index data of the update process is saving into a temporary folder named "indexFiles2" to

let the system be still working while the update process is running. When the update process

�nished the indexing the folder "indexFiles" with the previous index data is deleted and the

temporary folder is renamed into the name of this folder.

The index data is saved in a �le to prevent the system to search every time the Servlet is started

or restarted. The web search is using these index �les. A text �le containing all the links the

Web Crawler has found to reload all the link names saved in the index data after restarting the

Servlet.

All the con�guration parameters for the web search and indexing are set in the con�guration

�le which is described in the next section.

4.10 Con�guration �le

The student-Bot also has a con�guration �le in which the main con�guration options could be

set. The con�guration �le is an easy way to con�gure the main con�guration options without

having to change the code and to easily adjust the system to �t into di�erent environments.

When the Servlet is starting the con�guration �le is loaded and changes to the con�guration

�le will only be changed in the student-Bot program if the Servlet will be restarted.

The con�guration �le contains the following options that could be set:

26

4 Architecture

databaseFilename

For this value the �lename of the question and answer database can be set.

websiteURL

With this value the address of the website for the Web Crawler can be set. If you set more

than one address the addresses must be separated with an "`;"'.

linkEndings

Here you can set the link endings of the address or �les for the Web Crawler which you want

to add to the web search.

maxNumberDisplayed

Here you can set the number of displayed results of the web search to the user.

enableRobot

Here you can set if the Web Crawler is using the robot.txt �le to work more polite or if he is

ignoring it and search for everything.

debugWebcrawler

Here you can set if you want to have the debug output of the Web Crawler.

tagDictionary

Here you can set the name of the tag dictionary �le for the POS tagger.

websearchAnswer

Here you can set the answer which is provided before the link results of the web search.

lastGivenAnswer

Here you can set the last answer which will be given to a user if no answer will be found in the

database and the web search result is empty.

The values for "tagDictionary", "websiteURL", "databaseFilename" and "lastGivenAnswer"

must be set and for "linkEndings" a minimum of one. Otherwise the system will not work.

27

4 Architecture

Figure 4.3: Con�guration File Example

4.11 Database

For the data of the questions and answer database the �le type is set to a JSON �le type.

For reading the �le the Jackson Java JSON Processor library is used. The structure is a

List<Map<String, Object� where the key for the answer is "answer" and for the questions

is "questions". The answer is saved as Map<String, String> object and the questions as a

Map<String, List<String� object. The data for one answer is saved in a QuestionAndAnswer

object containing the answer as string and the questions as List<String>.

During reading the database and saving the QuestionAndAnswer objects the keywords for

the questions are extracted as described in section 4.3. The keywords are also saved in the

QuestionAndAnswer object to only generate them once on starting the program.

28

4 Architecture

Figure 4.4: Database Structure Example

29

5 User evaluation

The user evaluation was conducted to test the system on giving right answers or information

to the asking user and to �nd errors and mistakes in the logical behavior of the system.

5.1 Target User Group

The initial user group was international students. In this group are incoming students which

are undergraduate and graduate students. It is not important whether they are only attending

a single semester or a full year because the target user group for the system is all incoming

students which are studying abroad.

5.2 User Evaluation Framework

5.2.1 Goal for User Evaluation Sessions

The primary outcome of the test sessions is to �nd errors and mistakes in the program and

in general get to know whether users would trust the answers returned from the program.

In connection with this trust the user has not to write an additional e-mail to somebody for

answering their question. This would be the program main task to relieve the people which are

answering many e-mails with questions from incoming students.

30

5 User evaluation

5.2.2 User Selection

The user selection criteria for the tests are based on the de�ned target user group (see 5.1).

The number of users was at least 10 people to get a meaningful statement about the program.

5.2.3 Interview Process

The structure of the user evaluation process is a preset structured process across all interviews.

The test user have to follow two tasks which are stated in the "User Testing Guideline" (see

A.2).

5.2.4 Test Locations and Settings

The test settings for the entire test users are the same. All test users have to use a browser to

open the web page of the program and ask their questions. The locations for this evaluation

were the University of Applied Science in Darmstadt and the Rekyjavík University in Iceland.

5.3 Results of the User Evaluation

The result of the user evaluation is okay. Altogether the program answered 87 questions which

were asked by the test users. From these questions the program answered 12 questions correct

and 40 questions wrong. The rest of the total value of questions were questions which are not

in the database and the program made a web search or answered the last answer and found no

appropriate information at the web search.

correct answers wrong answers not known answers total answers

12 40 35 87

Table 5.1: Analysed Answers Table

On this evaluation 10 people participated with the test and asked the program questions and

�lled in the questionnaire. All of the test users were between 20 and 30 years old and from

many nationalities. Most of them mark their computer skills as good or very good.

31

5 User evaluation

Many of the test users asked questions about general purposes like chatting with a person and

not asking a bot questions were they want information about. Another test user asked only

keywords to let the program search every time on the web site for information.

In general purpose the statistic of answering the question if they want to receive information

quickly. All of them want to receive information quickly from within 2-3 hours to within 4-7

days. But most of them want to receive them within 2-3 hours. On the question whether they

would trust information received from a bot the result of the survey says that most of the test

users would be neutral against this statement.

Also for writing an additional e-mail most of the test users said that they would write an

additional e-mail to a person responsible for foreign matters after they get information from a

bot. They said for the question if they would write still an e-mail if they got information from

a bot that they would write that e-mail also.

Most of the test users were satis�ed with the speed of answers the program gaves but nearly all

of them were not really satis�ed with the given answers. More details on the statistical results

of the user evaluation are in chapter A.3 of the appendix.

With this result of the user evaluation the program and the database could be improved and

the weak spots can be identi�ed.

32

6 Conclusion

After analyzing the results of the user evaluation the program is working but has also its prob-

lems. One problem is that the program answers many questions wrong in the user evaluation.

Nearly half of the asked questions were answered wrong. But this is depending on the database.

The database gives the possibility to specify more than one possible question for one answer. In

the test scenario the database has some answers with more than one possible question and some

with only one possible question. Therefor it could be that an answer with only one possible

question has a higher similarity likelihood value than an answer with more than one question.

This occurs by having less keywords in a single question answer than in an answer with more

than one question.

Preventing the program before making those mistakes the minimum number of questions match-

ing to an answer should be more than two questions in the database. All of the answers should

be having at least this number of questions. That would prevent the ranking and similarity

likelihood value not to be higher than an answer with only one question.

Also the test users asked many questions which were not part of the provided information in the

database. To give a good database the provided information (questions and answers) should

be wide ranged and at least the most common questions asked by incoming exchange students.

Within those questions there should be also answers to questions which are not information

about the university but information about public transportation and accommodation.

To have all the necessary information in the database there should be a survey conducted to

determine the most needed information and questions an incoming exchange student has.

The second negative thing as result of the user evaluation is that the users were not really sure

about trusting the information a bot program would return to them. In some cases this could

33

6 Conclusion

be a cultural problem and in other cases it could depend on how good the returned information

are. To spread no unrealiable information the database of the program should be as good as

possible. The information in the database could also be improved and more information added

while the program is running. A self-learning variant of the information database is not possible

for this environment.

The program has also its good features. It is providing information very quickly to the users.

Most of the test users wanted to have the information quickly and not have to wait very long

to get them. That is also an advantage for incoming exchange students to make their plans

before going to the foreign country faster.

The combination of a static database of question and answers information and the information

of a whole web page is very good. The test user gave good feedback on this functionality

and were very satis�ed with the information. But this depends on how good the provided

information on the web page are.

All things considered the program "student-Bot" is working to answer questions and can relieve

the sta� of international o�ces in answering the questions of many incoming exchange students

and potential students which want to study abroad.

34

Bibliography

[ABC+] Arnreich, Daniel, Bär, Björn, Contag, Daniel, Fahlbusch, Georg, Gimbel, Stephan,

Greppmeier, Christian, Liepelt, Thomas, Luthmer, Arne, Neef, Tobias, Neupärtl,

Michael, Noll, Walter, Oelmann, Simon, Rihm, David, Rudat, Sascha, Rühl, Ludwig

Jean, Sturm, Alexander, Turba, Tobias, and Vogel, Jan: Fbi bot.

[Ali] Alicebot. www.alicebot.org. last visited on 22.01.2012.

[Jab] Jabberwacky. http://www.jabberwacky.com. last visited on 20.01.2012.

[JM08] Jurafsky, D. and Martin, J.H.: Speech and language processing, 2008.

[Luc] Apache lucene api. http://lucene.apache.org/core/. last visited on 20.01.2012.

[MHG10] McCandless, M., Hatcher, E., and Gospodneti¢, O.: Lucene in Action. Manning

Pubs Co Series. Manning, 2010, ISBN 9781933988177.

[Mor] Morphadorner lemmatizer. http://morphadorner.northwestern.edu/

morphadorner/lemmatizer/. last visited on 17.01.2013.

[PDF] Apache pdfbox java library. http://pdfbox.apache.org/. last visited on

20.01.2012.

[TKMS03] Toutanova, Kristina, Klein, Dan, Manning, Christoph, and Singer, Yoram:

Feature-rich part-of-speech tagging with a cyclic dependency network. http://nlp.

stanford.edu/~manning/papers/tagging.pdf, 2003. last visited on 14.01.2013.

[Wal] Wallace, Richard: Arti�cial intelligence markup language (aiml). http://www.

alicebot.org/TR/2005/WD-aiml/. last visited on 22.01.2012.

[Wora] Wordnet - a lexical database for english. http://wordnet.princeton.edu. last

visited on 18.01.2012.

35

www.alicebot.org
http://www.jabberwacky.com
http://lucene.apache.org/core/
http://morphadorner.northwestern.edu/morphadorner/lemmatizer/
http://morphadorner.northwestern.edu/morphadorner/lemmatizer/
http://pdfbox.apache.org/
http://nlp.stanford.edu/~manning/papers/tagging.pdf
http://nlp.stanford.edu/~manning/papers/tagging.pdf
http://www.alicebot.org/TR/2005/WD-aiml/
http://www.alicebot.org/TR/2005/WD-aiml/
http://wordnet.princeton.edu

Bibliography

[Worb] Java api for wordnet searching. http://lyle.smu.edu/~tspell/jaws/index.

html. last visited on 20.01.2012.

36

http://lyle.smu.edu/~tspell/jaws/index.html
http://lyle.smu.edu/~tspell/jaws/index.html

Abbreviations

API Application programming interface is a speci�cation intended to be used as an interface

by software components to communicate with each other.

Java Java is a object-oriented programming language developed by Sun Microsystems.

NLP Natural Language Processing.

pos part of speech.

Servlet Servlet is a Java programming language class used to extend the capabilities of a server.

URL Uniform Resource Locator is called the address of a web page on the internet.

37

Appendices

A.1 Appendix A: Penn Treebank Tagset

Tag Description

CC Coordinating conjunction

e.g. and,but,or...

CD Cardinal Number

DT Determiner

EX Existential there

FW Foreign Word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List Item Marker

MD Modal

e.g. can, could, might, may...

NN Noun, singular or mass

NNP Proper Noun, singular

NNPS Proper Noun, plural

NNS Noun, plural

PDT Predeterminer

e.g. all, both ... when they precede an article

POS Possessive Ending

e.g. Nouns ending in 's

PRP Personal Pronoun

e.g. I, me, you, he...

PRP$ Possessive Pronoun

e.g. my, your, mine, yours...

RB Adverb

Most words that end in -ly as well as degree words like quite, too and very

RBR Adverb, comparative

Adverbs with the comparative ending -er, with a strictly comparative meaning.

RBS Adverb, superlative

RP Particle

Table A.1: Penn Treebank Tagset part 1

38

Appendices

Tag Description

SYM Symbol

Should be used for mathematical, scienti�c or technical symbols

TO to

UH Interjection

e.g. uh, well, yes, my...

VB Verb, base form

subsumes imperatives, in�nitives and subjunctives

VBD Verb, past tense

includes the conditional form of the verb to be

VBG Verb, gerund or persent participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

e.g. which, and that when it is used as a relative pronoun

WP Wh-pronoun

e.g. what, who, whom...

WP$ Possessive wh-pronoun

WRB Wh-adverb

e.g. how, where why

Table A.2: Penn Treebank Tagset part 2

39

Appendices

A.2 Appendix B: User Testing Guidelines

Table A.3: Participation Information Sheet

40

Appendices

A.3 Appendix C: Statistical results of user evaluation

A.3.1 Personal Information

Age

22 and lower 23 24 25 26 and higher total

3 1 2 1 3 10

Table A.4: Test User Age Table

Figure A.1: Test User Age Diagram

41

Appendices

Sex

male female total

8 2 10

Table A.5: Test User Sex Table

Figure A.2: Test User Sex Diagram

42

Appendices

Nationality

Czech Republic Finland India Indonesia Netherlands Pakistan Spain Vietnam total

1 1 2 1 1 2 1 1 10

Table A.6: Test User Nationality Table

Figure A.3: Test User Nationality Diagram

43

Appendices

How would you assess your own Computer Skills?

none low moderate good very good total

0 1 0 7 2 10

Table A.7: Test User Computer Skills Table

Figure A.4: Test User Computer Skills Diagram

44

Appendices

A.3.2 General Information

I want to receive information quickly

within 2-3 hours within 1 day within 4-7 days within 2 weeks within 1 month total

5 3 2 0 0 10

Table A.8: Quick Information Table

Figure A.5: Quick Information Diagram

45

Appendices

I would trust a bot about information

1 - strongly disagree 2 3 4 5 - strongly agree total

1 2 5 1 1 10

Table A.9: Trust Bot Information Table

Figure A.6: Trust Bot Information Diagram

46

Appendices

After getting an answer from a bot I would also an additional e-mail to a

person responsable for foreign matters

1 - strongly disagree 2 3 4 5 - strongly agree total

0 2 3 2 3 10

Table A.10: Write Additional E-Mail Table

Figure A.7: Write Additional E-Mail Diagram

47

Appendices

After getting an answer from a bot I would still write an e-mail to a person

1 - strongly disagree 2 3 4 5 - strongly agree total

0 3 5 0 2 10

Table A.11: Write Still E-Mail Table

Figure A.8: Write Still E-Mail Diagram

48

Appendices

A.3.3 student-Bot

The bot answers quickly

1 - strongly disagree 2 3 4 5 - strongly agree total

1 1 2 3 3 10

Table A.12: Answer Quickly Table

Figure A.9: Answer Quickly Diagram

49

Appendices

How satis�ed were you with the returned answers or information?

1 - strongly not satis�ed 2 3 4 5 - strongly satis�ed total

3 3 4 0 0 10

Table A.13: Satisfy Information Table

Figure A.10: Satisfy Information Diagram

50

	Titlepage
	Declaration of authorship
	Abstract
	Contents
	Figures
	Tables
	Introduction
	Background
	Design
	Architecture
	Tokenizer
	Spell checker
	Keyword extraction
	Lemmatizer
	Synonym resolution
	Question ranking
	Find answer
	Web search
	Update web search data
	Configuration file
	Database

	User evaluation
	Target User Group
	User Evaluation Framework
	Goal for User Evaluation Sessions
	User Selection
	Interview Process
	Test Locations and Settings

	Results of the User Evaluation

	Conclusion
	Bibliography
	Abbreviations
	Appendices
	Appendix A: Penn Treebank Tagset
	Appendix B: User Testing Guidelines
	Appendix C: Statistical results of user evaluation
	Personal Information
	General Information
	student-Bot

