Intelligent Writing Support for
Second Language Learners of
lcelandic Using Web Services

Gudmundur Orn Leifsson

Faculty of Industrial-, Mechanical Engineering, and Computer Science

University of Iceland
2013

INTELLIGENT WRITING SUPPORT FOR
SECOND LANGUAGE LEARNERS OF
ICELANDIC USING WEB SERVICES

Gudmundur Orn Leifsson

60 ECTS thesis submitted in partial fulfillment of a
Magister Scientiarum degree in Computer Science

Advisor
Hrafn Loftsson

Faculty Representative
Hjalmtyr Hafsteinsson

M.Sc. committee
Eirikur Rognvaldsson

Faculty of Industrial-, Mechanical Engineering, and Computer Science
School of Engineering and Natural Sciences
University of Iceland
Reykjavik, August 2013

Intelligent Writing Support for Second Language Learners of Icelandic Using Web Ser-
vices
Intelligent Writing Support for L2 Learners

60 ECTS thesis submitted in partial fulfillment of a M.Sc. degree in Computer Science

Copyright (© 2013 Gudmundur Orn Leifsson

All rights reserved

Faculty of Industrial-, Mechanical Engineering, and Computer Science
School of Engineering and Natural Sciences

University of Iceland

Hjardarhagi 2-6

107, Reykjavik, Reykjavik

Iceland

Telephone: 525 4000

Bibliographic information:
Gudmundur Orn Leifsson, 2013, Intelligent Writing Support for Second Language Learn-
ers of Icelandic Using Web Services, M.Sc. thesis, Faculty of Industrial-, Mechanical

Engineering, and Computer Science, University of Iceland.

Printing: Haskélaprent, Falkagata 2, 107 Reykjavik
Reykjavik, Iceland, August 2013

Abstract

There are no ICALL (Intelligent Computer-Assisted Language Learning) applica-
tions for second language learners of Icelandic. This project aims to build a web
service that facilitates ICALL applications and a website that highlights grammat-
ical errors in free written texts. The website, Writing Support, was created for
this purpose. Writing Support utilises a module in the web service for analysing
texts and marking grammatical errors in them. It analyses and annotates Icelandic
texts with the IceNLP toolkit and sends a TCF (Text Corpus Format) document
to Writing Support which uses it to display a web page that highlights grammatical
errors. Grammatical error detection in IceNLP was improved, and new types of
error detection implemented. Two evaluations of the grammatical error detection
were conducted. Participants wrote sentences describing two pictures. Participants
in the first evaluation were 13 intermediate learners of Icelandic and in the second
evaluation 26 beginners of Icelandic language. The first evaluation resulted in 76%
precision and recall, and in the second evaluation the precision was 64.5% and recall
43%. Bad sentence structure of second language learners and spelling errors were
probable causes of the poor accuracy of the grammatical error detection. The par-
ticipants thought that Writing Support helped them in writing Icelandic, but the
current precision and recall is too low to be utilised in second language teaching.

Utdrattur

Pao eru ekki til nein greind forrit sem stydja vid tungumalanam (e. Intelligent
Computer-Assisted Language Learning, ICALL) hja beim sem eru ad laera islensku
sem annad tungumal. Verkefnid snyst um ao bua til vefpjonustu sem styour greind
tungumalanamsforrit og vefsidu sem merkir malfraedivillur { frjalsum texta. I peim
tilgangi var vefsidan Rithjalp (e. Writing Support) buin til. Rithjalp notar einingu i
vefpjonustunni til ad greina texta og merkja malfraedivillur { honum. Hun greinir og
merkir islenskan texta med IceNLP-hugbtinadinum og sendir TCF (e. Text Corpus
Format) skra a4 Rithjalpina sem notar hana til ad mynda vefsidu bar sem bent er &
malfraedivillur. Malfraedivillugreining IceNLP var baett og greiningar & nyjum villum
bunar til. Tveer kannanir voru gerdar til ad meta malfraedivillugreininguna. I peim
lystu patttakendur tveim myndum i texta. I fyrri kénnuninni voru 13 medalgodir
islenskunemendur, en 26 byrjendur i peirri seinni. Nidurstada fyrri kénnunarinnar
syndi 76% nakvaemni og griphlutfall, en i peirri seinni var nakveemni 64% og griphlut-
fall 43%. Sleem uppbygging setninga hja peim sem laera islensku sem sitt annad mal
og stafsetningavillur voru liklegir orsakavaldar 6nakveemni vid villugreiningu. Patt-

takendum fannst Rithjalp hjalpa peim a0 skrifa islensku, en ndkvaemni og griphlutfall
er of lagt 1 niverandi mynd til pess ad unt sé ad nota vid kennslu 1 islensku fyrir
utlendinga.

vi

Contents

1 Introduction
1.1 Project Goal
1.2 Structure of the Thesis
2 Background
2.1 Computer-Assisted Language Learning
2.2 Icelandic Online o
2.3 Intelligent Computer-Assisted Language Learning
2.4 Natural Language Processing
241 TceNLP . . . 0
2.4.2 Tokeniser
243 IeeTagger e
244 HMM+ICE4+HMM
245 IceMorphyo
246 IceParser.
2.5 Text Corpus Format
3 Project Description
4 System Development
4.1 Text Corpus Format Generator
4.2 Error Detection L
4.2.1 Noun phrase agreement
4.2.2 Agreement between a subject and its complement.
4.2.3 Agreement between a subject and averb
4.2.4 Case of an object governed by a preposition
4.2.5 Case of an object governed by averb
4.2.6 Auxiliary verberror. o oL
4.2.7 Spelling mistakes o0
4.3 TceNLP Web Service
4.3.1 Input Requests,
4.3.2 Switch
433 Filter.
4.3.4 TIceNLP Lexical Analysis
4.3.5 Decoding tags

23

25
25
31
34
36
38
38
39
41
41
42
44
44
45
48
49

vil

Contents

4.3.6 Stanford Part-Of-Speech tagger
4.4 Writing Support Website 0oL
4.4.1 Text Corpus Format to HTML
4.4.2 Loggers e
4.5 TceNLP Website
4.6 IceNLP Daemon. e
4.6.1 Output Format Requests
4.6.2 Exercise Generator
4.6.3 Remove Plain Text Brackets
Evaluation
5.1 Writing Support: First Evaluation
5.1.1 Participants
5.1.2 Materialso
5.1.3 Procedureo
514 Results.
5.1.5 Conclusion.
52 Load Test e
5.2.1 Materialso
5.2.2 Method
5.2.3 Results without handling concurring requests
5.2.4 Results while handling concurrent requests
52.5 Conclusion.
5.3 Writing Support: Second Evaluation
5.3.1 Participantso
5.3.2 Materialso
533 Results.
534 Conclusion.

6 Discussion and Conclusion

Bibliography

viil

61
61
61
62
63
63
67
68
68
69
69
70
71
72
72
72
73
78

79

83

1 Introduction

Language learning has mainly been focused on drill-and-practice exercises for de-
cades. This is true both for language learning with and without assistance of comput-
ers. With the rise of artificial intelligence, linguistic processing tools now can facili-
tate exercises that comprise more varied tasks than drill-and-practice. They can for
instance help students with free written texts. Software that detects grammatical er-
rors in free written texts does not exist for second language learners of Icelandic. The
project described in this thesis is about making an Intelligent Computer-Assisted
Language Learning (ICALL) website that facilitates second language learning of
Icelandic by highlighting particular grammatical errors in free written texts. This
website uses web service that carries out the linguistic analysis needed.

Icelandic is a morphologically rich language. That makes detecting the morpholog-
ical properties of words, and annotating phrases and syntactic functions difficult.
How well errors can be detected was unknown using the current state of Icelandic
Natural Language Processing (NLP) tools, i.e. the IceNLP toolkit.

The website and the web service are made as part of the project A System Archi-
tecture for Intelligent Computer-Assisted Language Learning’ (funded by NordPlus
Sprog 2011-2013) to develop an architecture and a language learning program us-
ing it. The project is a collaboration between Reykjavik University, University of
Iceland, and University of Gothenburg.

1.1 Project Goal

The aim of this project is twofold. First, building a platform based on web ser-
vices that is capable of facilitating many distinct language learning programmes;
and second, to use that platform to develop an intelligent writing support which
highlights grammatical errors for second language learners of Icelandic. This thesis
investigates the feasibility of creating such a platform and error detection.

A detection of grammatical errors is implemented as part of IceNLP. A web service
is created containing IceNLP to allow requests to be made to do lexical analysis,

1 Introduction

including marking grammatical errors. A website is created for second language
learners. The system is evaluated for accuracy of the grammatical detection, and
how the language learners react to the system.

The thesis investigates whether it is possible to create a system that highlights gram-
matical errors in texts of second language learners of Icelandic that facilitates their
learning in a productive manner, using a platform that supports various language
learning methods.

1.2 Structure of the Thesis

Chapter 2 discusses language learning and how computers have been used in relation
to it. It mentions how NLP started, and how NLP affected language learning with
examples. Section 2.4 goes in details into various parts of IceNLP which are impor-
tant and are used in this project for detecting grammatical errors. The project is
described in chapter 3 without technical details. The technical details of the prod-
ucts of this project are discussed in chapter 4. The error detection mentioned above
is explained in Section 4.2, including how errors are detected, coded, and marked.
The web service that provides the error detection is detailed in the same chapter,
going through all of its functionality and how it is used. The website that allows
second language learners to enter free written texts and submit them to the gram-
matical error detection is discussed in Section 4.4, named Writing Support after the
name of the website. In the following chapter it is shown how the web service can
be used in the same way to mimic the functionality of the old IceNLP website. The
website utilises functionalities of the web services, but has its own methods and
functions.

Chapter 5 is about evaluation of the web services, how accurate the grammatical
error detection is, and how participants in the evaluation perceived it. Two evalu-
ations were conducted with second language students, first in 2012 and then again
in 2013. Each part is discussed in separate sections, both having a conclusion sub-
section. The last chapter, chapter 6 Discussion and Conclusion, is contains over all
conclusions of the thesis in broader terms. It also discusses the problems, solutions,
and future work of the project in regard to error detection, improve student learning,
and possible improvements to the web service that facilitates the language learning
website that we built.

2 Background

2.1 Computer-Assisted Language Learning

Any form of language learning which is carried out using a computer, is called
Computer-Assisted Language Learning (CALL). The material of CALL is often
student-centred and interactive which facilitates independent learning of the student.
It can be in the form of drill-and-practice programs or websites, with corpora' or
concordances?, and a varying degree of interactivity (Wijayadharmadasa, 2012).
These drill-and-practice programs are, as the word indicates, a repetitive practice
of specific skills and helps memorisation of the learning material.

CALL has been accused of embodying old ways of understanding teaching and learn-
ing which is caused by lack of interaction between different disciplines, such as soft-
ware developers, psychology, pedagogy, and other academic disciplines (Sanders,
1995). Both online and offline CALL material has been created for facilitating chil-
dren’s first language acquisition of Icelandic, such as the CD-ROM "Stafakarlarnir”
and number of web browser based sites hosted by The National Centre for Educa-
tional Materials (NCEM). For second language acquisition of Icelandic there are few
available options of which Icelandic Online (see Section 2.2) is the most prominent.

One of the first notable CALL applications was made in 1959 by the University of
linois with Control Data Corporation. It was called Programmed Logic/Learning
for Automated Teaching Operation (PLATO) and was designed to teach Russian.
PLATO used drill-and-practise exercises which included vocabulary and translation
tests. Early CALL applications were influenced greatly by the learning material
that was made for schools at the time, not utilising the flexibility which software
was capable of. Those applications were made with exercises as they were in the
textbooks (Beatty, 2003). This means that the questions and answers were pre-
programmed. If there were too few questions the students could memorise the
questions and answers, learning the program but not the language skill.

!Corpora is a large set of text, usually machine-readable to enable computerised searchability, as
discussed in McEnery and Hardie (2011).

2Concordance is an alphabetised list of critical words with their immediate context such as a list
of words that are practised in vocabulary exercises.

2 Background

Drill-and-practice CALL applications dominated the period around 1960-1980, but
then less restricted CALL applications, such as games and simulations, started to
emerge. Today those CALL applications coexist in education systems that rely more
on books for language learning than CALL, and the same type of exercises are in
CALL applications as are in the textbooks (Bax, 2003), but with more pleasing
graphical interfaces.

2.2 lcelandic Online

The main internet resource for learning Icelandic for second language learners has
been Icelandic Online (IOL; http://icelandiconline.is) since it opened its first web
course in 2004. Today about 90,000 registered users have access to the web site
(Volodina, Borin, Loftsson, Arnbjornsdottir, and Leifsson, 2012b). IOL has four
courses, numbered from 1 to 4, which are open for anyone free of charge on their
web site. However, students must register before accessing the learning material.

The web site is a pedagogically driven CALL application. The first two courses
introduce the student to the structure and lexicon of the Icelandic language by the
means of 40 pre-programmed objects of learning. Therefore, the courses are limited
to vocabulary and grammatical exercises. With the launch of courses number 3 and
4, which were targeted towards immigrants, authentic videos, texts and interactivity
were introduced onto the web site (Volodina, Loftsson, Arnbjérnsdottir, Borin, and
Leifsson, 2012a).

In one of the courses, the second language learners of Icelandic in IOL send teachers
short written texts, and are given feedback by teachers. The teachers go through all
texts and mark all errors (i.e. spelling errors, feature agreement errors, case errors
in objects of verbs, etc.) by hand with special codes, which is highly labour intensive
(Volodina et al., 2012b).

2.3 Intelligent Computer-Assisted Language
Learning

The integration of NLP (see Section 2.4) tools into CALL has added a new intelli-
gence to CALL application. This combination of NLP and CALL is called Intelligent
Computer-Assisted Language Learning, or ICALL for short. It allows for more dy-
namic content for the learner than pre-programmed finite number of exercises.

2.3 Intelligent Computer-Assisted Language Learning

With the inception of Artificial Intelligence (AI), a phrase coined by John McCarthy
in 1956, the need for NLP arose for the need of human interaction with computers
(Beatty, 2003). The start of ICALL, however, was when AI was combined with
CALL, and was called computer-assisted language instruction, incorporating Al
techniques (CALI-AI). The main goal of CALI-AI was to enrich teaching software
with enough AT to replicate how a teacher would teach languages. CALI-AI intro-
duced NLP to CALL which enabled the software to check syntax of student texts
for errors, and it provided more sophisticated feedback for drill-and-practice exer-
cises (Bailin, 1988), which is what ICALL is. ICALL is therefore the combination of
various Al tools such as NLP tools with CALL. Those tools are the intelligent part
of ICALL, which is a term which was coined at the end of 1980s while ICALL still
was a relatively small field with few software implementations (Bailin and Levin,
1989).

The NLP tools from Al allow those static pre-programmed exercises, from the earlier
era of CALL, to be more dynamic. The tools would then in turn be able to generate
both questions and answers for fill-in-the-gap and other forms of drill-and-practice
exercises. An example of this is a tool that selects a sentence based on the learner’s
abilities from a corpora, and creates a question out of it. The answer to that question
would then be generated by an appropriate NLP tool.

The reason why pre-programmed exercises are still being developed today could be
that it is simple to make fill-in-the-gap and multiple choice exercises. If the de-
veloper is a teacher those drill-and-practice type of exercises are simple to make
from a programming perspective. If the developer is a competent programmer,
but not a competent teacher, it is difficult to think of other types of learning ma-
terial. In the drill-and-practice exercises grammar, synonyms, syntax, and extra
unexpected do not cause problems. However, when students are allowed to write
relatively freely about a given subject those problems are a problem, making drill-
and-practice exercise an irresistible choice (Beatty, 2003). Furthermore, the field
of computer science has shown lack of interest in joining CALL research projects,
leaving CALL researchers to do the work of computer scientists, which can result in
an unsatisfactory outcome. The reason appears to be a lack of challenge from the
perspective of programming (Wijayadharmadasa, 2012).

Here are few examples of modern ICALL applications.

e Tagarela® is an intelligent web based workbook for second language learners of
Portuguese according to Amaral, Cunha, Meurers, and Ziai (2010). Tagarela
offers individualised feedback for incorrect sentences written by students in
production (sentence building) exercises. This feedback tells the student the
probable cause of the error and possibly even which word caused the error.

http://sifnos.sfs.uni-tuebingen.de/tagarela/index.py /main

2 Background

This is achived by processing the text by various NLP-tools.

e E-Tutor? facilitates second language learning of German since its first imple-
mentation in 1999. It is a non-commercial German tutor on the web, consisting
of a suite of open source tools written in the PHP server-side scripting lan-
guage. E-Tutor offers the student sentence building, reading comprehension,
and essay writing, where the student’s progress is tracked and used for feed-
back. The feedback system prioritises which errors are displayed, depending
on the student’s past performance, and as well as the activity type which the
student engages in (Heift, 2010).

e Robo-Sensei is a proprietary online application for learning Japanese. It con-
sists of introduction, grammar, dialogue, vocabulary, Kana/Kanji, and tutor
modules. Tutor is an NLP driven stand-alone program where students are
allowed to produce their own sentences, receive comprehensive feedback on
the nature of students’ errors, and get points for writing correct Japanese sen-
tences. If a student fails to write a sentence correctly three times, it produces
the correct answer if the student wants to see the answer (Nagata, 2010).

The tutor module originated in 1997 when the project was named Banzai.
Its processing is done with the NLP-tools listed by Nagata (2002), "a lexi-
con, a morphological generator, a word segmentor, a morphological parser, a
syntactic parser, an error detector, and a feedback generator."

2.4 Natural Language Processing

Natural Language Processing (NLP) is a field of computer science which deals with
the processing and analysing of natural languages. The main purpose of NLP is
to detect characteristics of words, such as part-of-speech, and to determine the
structure of texts (Manning and Schiitze, 1999).

NLP was originated by people like Chomsky (1959), who recognised that it was
possible to characterise languages which can be generated by grammars with state
machines, and others who worked on formal language theory in 1950s. In 1960s the
first functional NLP systems arose as part of Al, and in 1970s computer emulated
robot acquired natural language understanding of simple instructions. Data-driven
methods for part-of-speech tagging, parsing and attachment ambiguities, and se-
mantics came in 1980s which became the dominant method of those tasks in 1990s
(Jurafsky, Martin, Kehler, Vander Linden, and Ward, 2000).

www.e-tutor.org

2.4 Natural Language Processing

Most NLP toolkits include a parser, a part-of-speech tagger, a text segmentator, and
a morphological analyser. Text processing is often accomplished by first carrying
out morphological analysis and part-of-speech tagging followed by a grammatical or
syntactical analysis. After a text has been processed with NLP tools, a program can
take its output and perform further specialised processing. Those tasks can vary,
and NLP can be found in online automated assistants for customer service, speech
recognition, artificial intelligence, grammar checkers, machine translation, automatic
summarisation, sentiment analysis of online texts, and more applications.

2.4.1 lceNLP

IceNLP? is an NLP toolkit for the Icelandic language. It consists of different com-
ponents for processing and analysing Icelandic, such as a tokeniser, a part-of-speech
tagger, a morphological analyser, and a syntactic analyser (Loftsson and Rognvalds-
son, 2007b). IceNLP is written in Java and is an open source project, licensed
under the GNU Library or Lesser General Public License (LGPL). IceNLP is in
three forms: a core, a daemon (Sigurborsson, 2010), and web service. The core in-
cludes the modules which are described below and can be run as a client on a local
computer. The daemon is in two parts, a server and a client, where the server uses
the processing done by the core of IceNLP to transmit results to the client. The
web service is an Apache Tomcat® web application, which utilises IceNLP’s core
functions to generate feedback for the user.

2.4.2 Tokeniser

The first tool in IceNLP, which most texts will go through, is the tokeniser. It can
receive a plain text and outputs tokens separated with white spaces, where a token
is the smallest useful semantic unit or element of a sentence. Consider what we get
from inserting "Hér kl. 14:30 voru syndir munir fra 20. 6ld, potti bad kal’!" ("Here
at 14:30 o’clock were shown exhibitis from 20th century, it was considered ’cool’!")
into the tokeniser.

Hér k1. 14:30 voru syndir munir fra 20. 61d , poétti pad ’ kal ’ !

Shttp:/ /sourceforge.net /projects/icenlp/
Shttp://tomcat.apache.org/

2 Background

2.4.3 IceTagger

The annotation of words with part-of-speech (POS) tags is the function of a tagger.
A POS tag is an encoding of the word’s class and morphological features such as case,
number, and gender. POS taggers can be rule-based, can use probabilistic, or even
neural network models to decide POS tags of words (Schmid, 1994). All of those
models tackle the problem of ambiguity of words, where a word can have multiple
possible POS tags, and disambiguate the words to select the most appropriate tags
according to context. Because of this, solving ambiguity is the most problematic
task in POS tagging.

The input which is to be tagged by IceTagger has to be a tokenised text. First
IceTagger looks up the possible tags for each token in a lexicon, generated from
the Icelandic Frequency Dictionary (IFD) corpus (Pind, Magnusson, and Briem,
1991). IFD contains close to 600,000 words from various sources, which have been
POS tagged mechanically and then corrected manually. If the token is found, a
string of possible tags is assigned to it, otherwise it is marked as unknown. Those
unknown tokens will be assigned a set of tags from IceMorphy (see Section 2.4.5),
which analyses the suffixes of the unknown tokens and assigns appropriate tags
accordingly. This means that a word could have been assigned multiple tags, which
then are systematically removed, one by one by local rules with a window of two
words on each side of the target word. This disambiguation uses 175 local rules
initially and then applies heuristic global rules after that. The last step, global
heuristics, performs grammatical function analysis, forcing feature agreement, and
guesses prepositional phrases, removing inappropriate tags from each word. If there
still is more than one POS tag left, there is a default rule to select the word’s most
frequent tag to annotate the word with (Loftsson, 2008).

The Icelandic POS tagset is large, as the language is morphologically rich. Accord-
ing to Kramarczyk et al. (2009) the IDF corpus has about 700 distinct tags, making
accurate POS tagging harder for languages with smaller tagsets. The tag output
by IceTagger consists of letters, each representing a different morphological feature
in Icelandic. The first letter of the tag determines the word class which is followed
by a string of letters, each representing the word’s morphosyntax which is unique
to each word class. Consider "sméi hesturinn drekkur vatn" (the small horse drinks
water) as an example of a tokenised string. The tagged output from IceTagger for
this string is :

Sméi lkenvf hesturinn nkeng drekkur sfg3en vatn nheo

2.4 Natural Language Processing

Smdi has the POS tag "lkenvf" where the letters represent l-adjective, k-masculine,
e-singular, n-nominative, v-weak declension, and f-positive form. The tag for hes-
turinn "nkeng" translates to n-noun, k-masculine, e-singular, n-nominative, and g-
suffixed definite article. The verb drekkur has the following tags: s-verb, f-indicative
mood, g-active voice; 3-third person, e-singular, and n-present tense. Vain is tagged
n-noun, h-neuter, e-singular, and o-accusative.

Every letter in the POS tag represents a single morphological feature within each
word class, but the letters may represent the same or different features for each word
class. This can be seen when comparing the POS tags of the adjective smdi and the
verb drekkur in the example above. The POS tags of smdi and drekkur, lkenvf and
sfgden, share three common letters, e, n and f. The letter e has a shared meaning
in those tags, both words are singular. The n signals nominative case for smdi,
but present tense for drekkur. When word classes share a morphological feature the
representation remains the same for both. But when word class does not share a
morphological feature with others, then any letter can represent that feature. This
can be seen in the example where the f has a distinct meaning for both words. In
the POS tag for the word smdi it represents a positive form, but for drekkur it
represents that the mood of the word is indicative mood.

2.4.4 HMM+ICE4+HMM

HMM+ICE+HMM is a combination of IceTagger and TriTagger. TriTagger is a
re-implementation by Loftsson (2006) of the Trigrams’n’Tags (TnT) tagger devel-
oped by Brants (2000), which is based on a Hidden Markov Model (HMM). HMM
is a data-driven method used in POS tagging. The name Trigrams'n’Tags is de-
rived from that TnT is of a second order HMM, that is a trigram, and is a tagger.
TriTagger uses IceMorphy (see Section 2.4.5) to disambiguate unknown words in
this re-implementation. TriTagger can be applied before and after IceTagger at-
tempts to disambiguate the input further. This combination is called HMM+ICE;,
ICE+HMM, or HMM+ICE+HMM, indicating various combinations of IceTagger
(ICE) and TriTagger (HMM). When HMM+ICE is performed IceTagger creates a
tag profile for words and TriTagger eliminates the tags which imply an incorrect
word class, then a standard IceTagger is run in order to select the most probable
tag. This renders IceTagger to have a reduced tag profile for some words, mak-
ing it more probable a correct POS tag will be selected. This improvement showed
accuracy of 92.19%, an improvement from using IceTagger solely which had an accu-
racy of 91.59%. ICE-+HMM uses IceTagger initially for populating POS tag profiles
and then TriTagger disambiguates the words which IceTagger does not fully disam-
biguate. The combination of those two methods is HMM+ICE+HMM, and it has an
accuracy of 92.31% (Kramarczyk, Loftsson, Helgadottir, and Rognvaldsson, 2009).
In the IceNLP toolkit, IceTagger can be used with or without any combination with

2 Background

TriTagger as explained above.

2.4.5 IceMorphy

Some words are not in the lexicon IceTagger uses, and hence their tags need to be
guessed. IceMorphy deals with unknown words by three different methods, mor-
phological analysis, compound analysis, and ending analysis (Loftsson, 2008). Ice-
Morphy contains rules on inflection, and to which morphological classes each of the
inflection belongs. These rules are used by the morphological analyser to look up
endings of words and to assign the appropriate morphological class to it.

2.4.6 IceParser

IceNLP’s shallow parser, IceParser, annotates the input text in two modules, phrase
structure, such as noun and verb phrases, and syntactic functions such as subjects
and objects (Loftsson and Rognvaldsson, 2007a). IceParser’s input has to be of a
special format. It has to be of the same format IceTagger outputs as described above,
where every word is followed by its POS-tag. To differentiate the POS tags from
words in the string they are prefixed and suffixed by " (caret sign) and $ (dollar sign)
respectively. This is done only for internal processing within IceParser’s transducers.

Transducers

IceParser consists of 22 main finite-state transducers where each transducer’s output
serves as the input to the next one. Those transducers are written in JFlex’, which
is an open source lexical analyser generator. The transducers are written as rules in
a form of regular expressions in JFlex.

NounTag = {encodeOpen}n{Gender}{Number}{Case}{ArticleChar}?
{encodeClose}{WhiteSpacel}+

The example above shows a description of noun tags using a regular expression.
Tags are open and closed by ~ ({encodeOpen}) and $ ({encodeClose}) respectively,
which means a string like ""nken$" is a valid noun tag. POS tags are made up from
individual letters that signal, word class, gender, number, and case in the same order
as it is in the tag. The POS-tag-code’s individual letters have to be strictly in the
same order as they are defined in the rule, otherwise it is not accepted as a noun

Thttp://jflex.de/

10

2.4 Natural Language Processing

tag. Those variables in the expression above, with { and } brackets around them,
have been defined to accept an appropriate letter in a POS-tag code. The tag in
the example does not define an article, but the rule marks {ArticleChar} with a
question mark, signalling it need not to be in the code. Hence, ""nken$" is a valid
noun tag.

Noun = {WordSpaces}{NounTag}

The rule for what is a noun, is defined as any word that is followed by a valid noun
POS-tag as explained above. {WordSpaces} is defined as any word followed by any
number of white spaces.

With those two rules a transducer written in JFlex can manipulate the string that
matches a noun as defined by the rule above. This manipulation is coded in Java
which is the programming language IceNLP is written in. In order for IceNLP to
be able to run the transducers they have to be compiled. JFlex compiles the rules,
stored /written in flex files, and builds a non-deterministic state machine from them,
which then is transformed into a deterministic state machine. In order for a Java
application to be able to effectively execute the state machine, it transforms it into
a Java class, which then can be compiled by a Java compiler into an executable
program. This effectively allows a Java program to do complex string matching and
manipulation using less resources than a pure Java code would use.

There are two main modules that annotate the input text, phrase structure module,
and syntactic function module. Phrases are a single word or a group of words in
a sentence that form a single meaningful unit in the sentence’s syntax. If a phrase
is made up by more than one word it can contain more phrases. Every word in
a sentence belongs to a phrase within that sentence, and hence, every word in the
sentence is tagged by the phrase structure module. The tag is made up of two
letters, e.g. NP is a noun phrase and AP is an adjective phrase. The tag opens and
closes on each side of the target phrase with a | sign opening the phrase on its left
side, and | sign closing it on its right side.

The Icelandic sentence "Stori madurinn er gladur” ("The big man is happy’) con-
tains a single noun phrase, "Stéri madurinn" which is made up from a noun and an
adjective. This sentence is tagged by the phrase structure module accordingly:

[NP [AP Stéri AP] madurinn NP]
[VPb er VPb]
[AP gladur AP]

Functions or syntactic functions, are the functional relationships the phrases have
to each other in a sentence. A common example of this is a subject—verb—object

11

2 Background

relationship, as was seen in an example on page 8, "Smai hesturinn drekkur vatn"
("The small horse drinks water’). Similarly, in the example above "Stéri madurinn er
gladur" ("The big man is happy’) which is a subject-verb-complement. Complement
completes the meaning of a sentence, or complements a subject of a sentence. There-
fore, "gladur" ("happy’) is the complement of "Stoéri madurinn" ("The big man’) in
the example.

Functions are tagged in a different manner than phrases. Each type of function is
coded with letters up to four in length (i.e. OBJ, SUBJ, and COMP), and is prefixed
with an asterisk (*) sign to mark it being a function. In the same way phrases are
marked to open and close on left and right side of the target word or words, so are
the functions, but with { and } signs around the target phrase. Hence, the example
"Stori madurinn er gladur" ("The big man is happy’) will have two phrases marked
by functions:

{*SUBJ [NP [AP Stéri AP] madurinn NP] *SUBJ}
[VPb er VPDb]
{*COMP [AP gladur AP] *COMP}

The phrase structure module consists of 14 transducers, the syntactic function mod-
ule 8 (Loftsson and Rognvaldsson, 2007a), and 6 others which encode POS tags and
clean the code.

The sequence of transducers is important in order to detect phrases and functions
accurately according to the programmed rules. Consider the dependency chain of
Subject 1 transducer. Subjects in Icelandic are noun phrases in nominative case,
therefore we must previosly have run the transducer Noun phrase case. Noun phrase
case depends on, both Noun phrase 1 and Noun phrase 2, their duty is to detect all
noun phrases. Those two transducers depend on Tag encoder in order to identify
the word class of a noun phrase, and Noun phrase case to identify its case. The
order in which those transducers are carried out is therefore vital.

All transducers of IceParser are listed here below, with the name of the transducers
followed by its file name in parenthesis. They are briefly described as they were at
the start of this project, ordered in the same sequence as they are carried out in.
Preprocess:

e Tag encoder
Prefixes POS tags with a " sign and suffixes them with a § sign.

e Preprocess
Adds a white space after the last tag if needed.

Phrase module’s transducers:

12

2.4 Natural Language Processing

Foreign words (Phrase FOREIGN.flex)
Marks words, whose POS tag is ’e’, with FRW or FRWs. The ’e’ stands
for "erlent ord" (*foreign word’).

Multi word expressions (Phrase_ MWE flex)

Contains a lexicon to detect certain expressions like "allt { einu" ("all of a
sudden’) and "fyrst og fremst" (*first and foremost’). Expressions are marked
with MWE _AdvP, MWE AP, MWE _CP depending on whether the expres-
sions are adjectives, adverbs, conjunctions, respectively.

Multi word expressions 1 (Phrase. MWEP1 flex)

Contains a lexicon to detect and mark multi word preposition expressions
with MWE_PP that start with "fyrir", as in "fyrir handan" ("on the other
side of”).

Multi word expressions 2 (Phrase. MWEP1 flex)
Detects and marks the expressions that Multi word expressions 1 did not
mark, like "pratt fyrir" ("even though’).

Adverb Phrase (Phrase AdvP.flex)
Detects adverbs, conjunctions, subordinating conjunctions, and interjec-
tions and marks them with AdvP, CP, SCP, or InjP respectively.

Adjective phrase (Phrase AP.flex)

Finds an adjective phrase, that can include a previously marked adverb
phrase in front of an adjective, in the annotated text and marks the adjective
phrase with AP.

Adjective phrase case (Case_ AP.flex)
Adds the case of adjectives onto their AP annotations, such as APn for
adverb in nominative case.

Adjective phrases (Phrase APs.flex)
Groups and annotates two adjectives together with APs if there is a con-
junction between them.

Noun phrase 1 (Phrase_NP.flex)

Finds and marks the same phrases as are done in Noun phrase 2 that are
accompanied by additional words or phrases. As an example of this are words
that have a POS tag that indicates a personal pronoun with or without a
reflexive pronoun immediately after it, and a word tagged as a possessive pro-
noun followed by either adjective phrases and a noun, or both in the preceding
order.

Noun phrase 2 (Phrase NP2.flex)

All words with the following POS tags are annotated with NP: noun,
proper noun, article, title, numeral, personal pronoun, possessive pronoun,
indefinite pronoun, demonstrative pronoun, reflexive pronoun, and inter pro-

13

2 Background

noun tags. In addition words such as "hver" (*who’) and "hvada" ("what’) are
also marked with NP.

Verb phrase (Phrase_ VP flex)

Marks verbs with VP, VPi, VPb, VPs, VPp, and VPg. VP are all finite
verbs, which potentially can be followed by a marked adverb phrase and a
supine. VPi is an infinite verb with or without an infinitive marker before it
and a supine after it. VPs is a word tagged as a supine. If the last word for any
of the three last markings is a form of "vera" (’to be’) and "ordid" (’been’),
then it will be marked with VPb instead of VP, VPi, or VPs. Words with
POS tags that state the word is a verb that is in past participle are marked
with VPp. VPg are all words that have the POS tag ’slg’, which stands for a
verb in present participle with an active voice.

Noun phrase case (Case_ NP.flex)

Finds marked noun phrases and suffixes NP with a letter to indicate the
case, where n stands for nominative case, a for accusative case, d for dative
case, and g for genitive case. If the noun phrase contains an adjective, it has
already had its case marked by Adjective phrase case, the noun phrase mark
will have the same case suffix added. Otherwise the case is determined by the
POS tag in the same way Adjective phrase case did, but with a noun.

Noun phrases (Phrase NPs.flex)

If there is one or more proper noun followed by a noun phrase, where both
have the same case, then the phrases are surrounded by NPs markings. That
is also done to the aforementioned phrases only if they have either a noun
phrase marked with NPg or a pair of noun phrases where the first phrase is
NPn, NPa, or NPd and the latter noun phrase with NPg.

e Preposition phrase (Phrase PP .flex)

Marks preposition phrases.

Cleaning before function module:

e Clean 1 (Cleanl.flex)

Has three functions. The first function looks for a sequence of adverbial
phrases, and combines them within a single adverbial phrase marked with
AdvP. The second function searches for dative noun phrases that contain an
adjective phrase of a nominative case. The function moves the adjective phrase
outside of the noun phrase markings. The third function finds noun phrases
that contain two proper nouns, where the second noun is a qualifier, and splits
them into two noun phrases, one for each proper noun.

Functions module’s transducers:

14

2.4 Natural Language Processing

e Time expression (Func_ TIMEX flex)
Finds and marks temporal expressions with TIMEX markings.

e Qualifier (Func_ QUAL.flex)
All one or more noun phrases in a sequence that has been marked to be
of a genitive case are marked to be a qualifier.

e Subject 1 (Func_SUBJ.flex)
Marks noun phrases of nominative case with the code SUBJ indicating a
subject.

e Complement (Func_ COMP flex)
Uses a detected subject to locate a nominative noun or adjectival phrase
which is the subject’s compliment.

e Object 1 (Func_ OBJ.flex)
Marks noun and adjective phrases with OBJ, if they are of accusative,
dative or genitive case, and if they are related to a marked subject or stand
with a verb that acts upon the object.

e Object 2 (Func_OBJ2flex)

Marks undetected objects, such as the ones followed by a verb and a pre-
viously detected object, where the object and the noun phrase are not of the
same dative or accusative case. Also uses previously marked complements that
include verb past participle phrases to mark any none nominative case noun
phrases as objects. Previously marked subjects along verb phrases are used to
detect nominative objects. It also uses previously marked subjects followed by
a verb to mark complements if the following word is a nominative adjective.

e Object 3 (Func_OBJ3.flex)
Marks dative noun phrases as objects if they stand with a marked com-
plement that holds an adjective.

e Subject 2 (Func_SUBJ2.flex)
Marks all nominative noun phrases as subjects.

Post process:

e Clean 2 (Clean2.flex)
Removes cases of phrasal codes that have a case letter assigned to them.

e Phrase per line (Phrase Per Line.flex)
Writes the output out one phrase per line.

e Tag decoder (TagDecoder.flex)
Removes the "~ and $ signs from POS-tags.

15

2 Background

Each of the transducers for phrase modules and function modules surrounds the
word it detects with an appropriate tag. For instance, when the Noun phrase 1
transducer detects a word and immediately after it comes a POS-tag of a noun,
starting with 'n’, it surrounds the word and its POS-tag with "[NP" and "NP|" as
can be seen in this example for "bordar fisk" (’eats fish’):

bordar ~sfg3en$ [NP fisk “nkeo$ NP]

The case detector of noun phrases is then run and a letter is put at the end of a
noun phrase opening code, representing which case the noun phrase is. This is done
by examining the tag of the noun phrase, extracting the case, and injecting the
appropriate letter which represent the case in hand. Case is always the fourth letter
of a noun phrase’s POS-tag. In the POS-tag of fisk nkeo from the example above,
accusative case is coded as 'o’ for "polfall" in Icelandic, as POS-tags are coded in
Icelandic. The coding of phrases is in English, so when ’0’ is found in a noun phrase
the coding will suffix 'a’ for accusative case as seen here:

bordar ~sfg3en$ [NPa fisk ~“nkeo$ NP]

Functions such as subjects and objects are detected after the phrase module has
been executed. Functions’ code starts with {* then the type of function is indi-
cated which can be SUBJ, OBJ, QUAL, or COMP. Subjects and objects indicate
the position of verbs in a subject-verb-object phrase. In these kinds of relations, the
position of the verb is indicated on the function’s code via < or >, depending on
which side the verb is to that function. In the example below "bordar fisk" (‘eats
fish’), the object’s code includes a less than sign indicating the verb is on its left site.

bordar ~sfg3en$ {*0BJ< [NPa fisk ~“nkeo$ NP] *0BJ<} .

The rules, by which this is accomplished, are as follows. The NPAcc gets an ’a’
suffixed on the noun phrase code as seen above. NPAcc is defined as "Open-
NPa CloseNP" where open and closing of NP is "[NP" and "NP]|" respectively.
NP is defined as "OpenNP|adg| CloseNP", which means a, d, or g is suffixed on a
noun phrase opening code, indicating accusative, dative or genitive case. Absence of
a case letter is also a valid option. This NP is used when object is detected. Objects
are defined to be matched to "(FuncQualifierWhiteSpace+)? (NP|NPs|AP|APs)
(WhiteSpace+FuncQualifier)?" That is a qualifier may or may not be in front or at
the end of a noun phrase (NP) or an adjective phrase (AP). Similar rules are in all
transducers within function and phrase modules.

16

2.4 Natural Language Processing

Error marking

Before this project started, IceParser had a simple error detection of noun phrase
agreement. In that old version errors are marked by suffixing a question mark to
either the noun phrase or subject. The detection of the noun phrase agreement is
conducted within the Noun phrase 1 and Subject 1 transducers. Both transducers
detect disagreement with a function that compared case, gender, and number of
every word within noun phrases or subjects. If there is any disagreement the phrase
or function is marked as seen here:

{*SUBJ> [NP? [AP 1litlu lhfnvf AP] barnid nheng NP] *SUBJ>}

Outputs

IceParser has four output formats: plain text, plain text with one phrase per line,
XML and JSON. The last two are part of the daemon version of IceNLP, created for
Apertium-is-en (Brandt, Loftsson, Sigurborsson, and Tyers, 2011) which translates
Icelandic into English. Plain text output is compiled throughout IceParser’s process.
XML and JSON output formats are built from this plain text format via a special
output generator.

There are two ways in which [ceNLP generates output from IceParser’s output. The
former method is to take the plain text output and return it, with the possibility to
insert newline character after every period sign.

Plain:

{*SUBJ> [NP [AP Litla lhenvf] barnid nheng] } [VP
bordar sfg3en] {#0BJ< [NP fisk nkeo] } .

Phrase per line:

{*SUBJ> [NP [AP Litla lhenvf] barnid nheng] }
[VP bordar sfg3en]
{*0BJ< [NP fisk nkeo] 2

The second method to generate output is via a class named OutputFormatter, which
is part of IceNLP’s daemon. It takes in plain text output from the parser and creates
a tree out of it from each function, phrase, word and tag. That tree is then used to
make an XML or JSON output.

Example of XML output:

17

2 Background

<SENTENCE>
<FUNC> {*SUBJ>
<PHRASE> [NP
<PHRASE> [AP
<WORDS>
<WORD> Litla
<TAG>1lhenvf</TAG>
</WORD>
</WORDS>
</PHRASE>
<WORDS>
<WORD> barnid
<TAG>nheng</TAG>
</WORD>
</WORDS>
</PHRASE>
</FUNC>
<PHRASE> [VP
<WORDS>
<WORD> bordar
<TAG>sfg3en</TAG>
</WORD>
</WORDS>
</PHRASE>
<FUNC> {*0BJ&1t;
<PHRASE> [NP
<WORDS>
<WORD> fisk
<TAG>nkeo</TAG>
</WORD>
</WORDS>
</PHRASE>
</FUNC>
<WORDS>
<WORD> .
<TAG>.</TAG>
</WORD>
</WORDS>
</SENTENCE>

Example of JSON output:

"Parsed Text":{

18

2.5 Text Corpus Format

"Sentence'":{
"{*SUBJ>": {
"[INP":{
"[AP":{
"WORDS" : [{
"Litla": "lhenvf"
}]
1,
"WORDS": [{
"barnid": '"nheng"
1]
}
1,
"LVP":{
"WORDS": [{
"bordar": '"sfg3en"
}]
1,
"{*0BJ<": {
“[INP":{
"WORDS" : [{
"fisk": "nkeo"
}]
}
},
"WORDS": [{

]

2.5 Text Corpus Format

Text Corpus Format (TCF) is an XML-based format made to simplify the commu-
nication within the WebLicht® (E. Hinrichs, M. Hinrichs, and Zastow, 2010) tool
chain, where each tool adds a new layer. TCF contains annotations, such as part-
of-speech tags, lemmas, and tokens, in separate layers made by each tool (Heid and
Eckart, 2009). Most formats such as TEI®, MAF, and TIGER-XML' are difficult

8https://weblicht.sfs.uni-tuebingen.de
http:/ /www.tei-c.org/
Ohttp: //www.ims.uni-stuttgart.de/forschung/ressourcen /werkzeuge /TIGERSearch /doc/html/ Tiger XML.html

19

2 Background

to extend, but because of the layer structure of TCF, new types of annotations can
easily be added as new layers (Schmid, 2010). To extract each type of annotation, it
can be found inside of a single layer within a TCF document. Each layer is marked
in XML style open and close boundaries, making it only necessary to parse part of
the document in order to extract the relevant data from it. These boundaries can
be seen in the example below where a TCF input of an English tokeniser, contain-
ing the sentence "The small horse drinks water" has <text> and < /text> around it:

<?7xml version="1.0" encoding="UTF-8"7>
<D-Spin xmlns="http://www.dspin.de/data" version="0.4">
<MetaData xmlns="http://www.dspin.de/data/metadata">
<source>RU, Reykjavik University</source>
</MetaData>
<TextCorpus xmlns="http://www.dspin.de/data/textcorpus" lang="en'">

<text>The small horse drinks water</text>

</TextCorpus>
</D-Spin>

The English tokeniser could create a new layer and add it to the input in the output
as seen below:

<?7xml version="1.0" encoding="UTF-8"7>
<D-Spin xmlns="http://www.dspin.de/data" version="0.4">
<MetaData xmlns="http://www.dspin.de/data/metadata'">
<source>RU, Reykjavik University</source>
</MetaData>
<TextCorpus xmlns="http://www.dspin.de/data/textcorpus" lang="en">

<text>The small horse drinks water</text>

<tokens>
<token ID="t_0'">The</token>
<token ID="t_1">small</token>
<token ID="t_2">horse</token>
<token ID="t_3">drinks</token>
<token ID="t_4">water</token>
</tokens>

</TextCorpus>
</D-Spin>

A TCF document which would be created after running the above example through

20

a whole NLP tool chain might look like the following:

<7xml version="1.0" encoding="UTF-8"7>
<D-Spin xmlns="http://www.dspin.de/data" version="0.4">
<MetaData xmlns="http://www.dspin.de/data/metadata'">
<source>RU, Reykjavik University</source>

</MetaData>

2.5 Text Corpus Format

<TextCorpus xmlns="http://www.dspin.de/data/textcorpus" lang="en">

<text>The small horse drinks water</text>

<tokens>

<token ID="t_0">The</token>

<token ID="t_1">small</token>
<token ID="t_2">horse</token>
<token ID="t_3">drinks</token>
<token ID="t_4">water</token>

</tokens>

<sentences>

<sentence ID="s_0" tokenIDs="t_0 t_1 t_2 t_3 t_4"></sentence>

</sentences>

<POStags tagset="stanford pos tagger'>

<tag ID="pt_0O"
<tag ID="pt_1"
<tag ID="pt_2"
<tag ID="pt_3"
<tag ID="pt_4"
</P0OStags>

tokenIDs="t_0">DT</tag>
tokenIDs="t_1">JJ</tag>
tokenIDs="t_2">NN</tag>
tokenIDs="t_3">NNS</tag>
tokenIDs="t_4">NN</tag>

<parsing tagset="stanford parser'>

<parse>

<constituent cat="ROOT" ID="c_0">

<constituent cat="NP" ID="c_1">
<constituent cat="NP" ID='"c_2">
<constituent cat="DT" ID="c¢_3" tokenIDs="t_0"/>
<constituent cat="JJ" ID="c_4" tokenIDs="t_1"/>
<constituent cat="NN" ID="c_5" tokenIDs="t_2"/>

</constituent>

<constituent cat="NP" ID='"c_6">

<constituent cat="NNS"

</constituent>
<constituent cat="NP" ID="c_8">

ID="c_7" tokenIDs="t_3">

21

2 Background

<constituent cat="NN" ID="c_9" tokenIDs="t_4">

</constituent>
</constituent>
</constituent>
</parse>
</parsing>

<depparsing tagset='"stanford
multigovs="'"false">
<parse ID="d_0">
<dependency govIDs="t_2"
<dependency govIDs="t_2"
<dependency depIDs="t_2"
<dependency govIDs="t_2"
<dependency govIDs="t_2"
</parse>
</depparsing>

</TextCorpus>
</D-Spin>

22

depparser'" emptytoks='"false"

depIDs="t_0" func="det"/>
depIDs="t_1" func="amod"/>
func="root"/>

depIDs="t_3" func="dep"/>
depIDs="t_4" func="dep"/>

3 Project Description

The project, described in this thesis, is a part of the project A System Architecture
for Intelligent Computer-Assisted Language Learning’, whose aim is to develop an
open source architecture for ICALL applications, in order for future projects to
be able to reuse existing NLP tools and resources. Web service is to be created
in this project that makes the NLP tools readily available on requests (Volodina,
Borin, Loftsson, Arnbjornsdottir, and Leifsson, 2012b). The architecture has to be
language independent when it comes to the languages the NLP tools are designed for,
and the NLP tools have to be able to be plugged into the architecture. Additionally,
it attempts to build a platform which encourages reusability of NLP-tools. The
project is sponsored in 2011-2013 by NordPlus Sprog, and is a collaboration between
Reykjavik University, University of Iceland, and University of Gothenburg.

The architecture is based on web services, on the principles of Service Oriented
Architecture (SOA), where the user requests a text to be analysed or to provide
other services. IceNLP Web Service is an ICALL platform which was built by the
Icelandic team. IceNLP Web Service receives requests from users to perform analysis
of Icelandic texts utilising IceNLP. The Swedish team developed LAR spraket via
KorpusAnalys (Lirka). Lirka! is a web service that facilitates CALL (Volodina
et al., 2012b).

Distinct applications for language learners are constructed to test and demonstrate
the designed system architecture. The Swedish team provided Léarka. It has three
main features. Two of which are POS and syntactic relations training for linguists,
and one for language learners which trains vocabulary by multiple choice items.
The Icelandic team created Writing Support. Writing Support’s main purpose is in
facilitating second language learning by reducing the workload of teachers. Writing
Support is a website where second language learners of Icelandic can submit their
Icelandic texts to be error marked. The website submits their texts to IceNLP Web
Service for error marking and displays to the student the same text marked with
certain common errors made by second language learners (Volodina et al., 2012b).

This project tries to answer the question if it is possible to build an automated
error marking mechanism for the Icelandic language, in such a way that is useful to

Thttp://spraakbanken.gu.se/ws/larka

23

3 Project Description

language learners. By that, the workload of teachers hand marking written texts in
IOL is hopefully reduced.

Writing Support, through IceNLP Web Service, relies on the IceNLP toolkit in or-
der to detect certain grammatical errors in Icelandic texts. Some errors are readily
detectable in IceParser. An error detector analyses a parsed text to check for gram-
matical errors. Therefore, to avoid duplication of work, injecting the error detector
into IceParser allows the error detector to detect and mark error simultaneously to
IceParser’s processing. Second language learners of Icelandic must be able to sub-
mit and receive feedback with certain errors marked on a website in a format easily
understood by students.

The contribution of this thesis to the project is to provide the aforementioned archi-
tecture and a system that finds grammatical errors of second language learners of
Icelandic in free writing exercises. The architecture of the platform required it to be
easily accessible and support ICALL for any language. This platform has functions
to analyse text with IceNLP, give human readable explanations of annotations that
IceNLP outputs in plain text formats, and perform English language POS tagging.
In order to highlight grammatical errors IceNLP had to be improved. A grammat-
ical error detection and marking was implemented for this purpose, in addition to
error codes to distinguish the error types. As part of this project the ability for
IceNLP to output TCF was added. It is important in communication with external
applications.

A new application called Writing Support is built to facilitate second language learn-
ing of Icelandic, by highlighting grammatical errors in free written texts. This ap-
plication is constructed in the form of a website accessible to anyone with internet
connection. In addition, the former IceNLP website was changed from being a server
side JavaServer Pages, which creates the website, to be a website which makes re-
quests to IceNLP Web Service for analysing texts.

The error detection is evaluated by having second language learners of Icelandic
write short essays about a given subject, utilising this new Writing Support system
to help them to avoid common grammatical errors. The accuracy of the grammatical
error detection is a vital part of the evaluation.

24

4 System Development

A web service that receives requests was created with the ability to analyse Icelandic
and English. This web service, called IceNLP Web Service, contains IceNLP. En-
hanced abilities in detecting and marking grammatical errors were added to IceNLP.
Writing Support, a website that facilitates second language learning of Icelandic, was
created and uses IceNLP Web Service for detecting grammatical errors. This website
reads TCF documents and converts them into a web page with a Perl script, creat-
ing an HTML and Java script code. Tools to read and write TCF were created in
addition to making a new layer inside TCF documents in order to hold information
about grammatical errors.

The TCF generator is the first subject of this chapter. Section 4.2 is about detection,
coding, and marking of errors. It includes subsections describing how different errors
are detected within IceNLP. Section 4.3 discusses the structure of IceNLP Web
Service, and how its modules allow requests to be made on the internet, e.g. to
analyse and detect grammatical errors in Icelandic texts. This web service can be
used by websites such as those in Sections 4.4 and 4.5. The first section describes how
the Writing Support website allows second language learners to enter free written
texts and submit them to grammatical error detection in IceNLP Web Service, and
the usage of TCF to highlight errors. The other section demonstrates how IceNLP
Web Service is used to mimic the functionality of the old IceNLP website. The
website utilises functionalities of the web services, but has its own methods and
functions. The IceNLP daemon is described in Section 4.6. It was used in one of
the two evaluations of the error detection of Writing Support before being replaced
by IceNLP Web Service.

4.1 Text Corpus Format Generator

A common data format is vital for communication between different modules that
could potentially be replaced. TCF was chosen for communication between client
and server, and within the modules on the server. IceNLP uses a plain text format
for its tool chain.

25

4 System Development

Multiple data models that are used for communication of web services and between
NLP tools exist. The reason why TCF is chosen rather than TEI, Tiger or JSON
is that TCF is simple and has every annotation needed for the project in its spec-
ification, with the exception of error annotation. An error marking layer could be
introduced to TCF by adding a new layer for errors. TCF could easily be incorpo-
rated into IceNLP as IceParser has an XML output that could be utilised to build
a TCF output.

In order to add a TCF output to IceParser’s existing type of outputs there were
two options, either to use the Java libraries from the WebLicht website, or write
the TCF writer from scratch. We chose the second option since a custom built code
is easier to adapt to requirements which are not known in advance, and is easy to
create utilising IceParser’s existing functions. The plan was to mark errors which is
a new type of annotation for TCF.

The XML output of IceParser is generated from its plain text output. The plain
text output is taken and split up where white spaces and new line characters are
found. This is turned into a list of words, tags, and annotations which the XML
generator uses to create layers. Each element in the list is a pair of content and an
identifier. The content is a word, tag, or annotation, but the identifier will tell the
XML generator which type of content it is: a word, words, a POS tag, a phrase, a
function, or a sentence. The XML generator recursively makes a tree of those layers,
creating lists, where each list contains data content as described and potentially a
sublist, as seen in the example of XML given in the output Section of 2.4.6.

The new TCF generator utilises everything the XML generator uses to create output.
The TCF generator goes recursively through the word lists, identifying each entry
in the word list and stores: functions, phrases, POS tags, and words. The data
collected from the lists are compiled in a variable as it will be represented in the
TCF layer it belongs to.

Token layer

We have a storage called token variable, which will hold the contents of the token
layer as seen in the example below. The example shows the contents of the token
variable. When a word is encountered the token variable will add a new line with
number of indents in accordance with the depth of the word in the tree. An iden-
tification number, prefixed by a ¢, is written in the token variable, along with the
token in a syntax according to the rest of the TCF output. The identification num-
ber comes from a counter which keeps track of how many tokens have been stored.
In the example below the contents of the token variable after encountering "Litla
barnid" ("The small child’) is shown:

26

4.1 Text Corpus Format Generator

<token ID="t1">Litla</token>
<token ID="t2">barnid</token>

Text layer

In the same way as the token layer has a variable which holds its contents, the text
layer has its own text variable. When a token is found it is added to the text layer,
which adds the encountered token to the text variable. The words are separated
with a single white space between them as seen in the example below. The example
shows what has been added to the text variable for the same input as in the previous
example.

Litla barnid

Part-of-speech layer

The POS layer is compiled in the same fashion as the token layer. There is a POS
variable which holds what will come in the POS layer as seen in the example be-
low. A line is added to the POS variable when a POS tag is encountered. The line
contains an identification number of the token and its POS tag. An identification
number indicates which token the POS tag belongs. It is the same token number
as is controlled by the function which forms the token layer. Here is an example in
accordance with the examples above:

<tag tokenIDs="t1">lhenvf</tag>
<tag tokenIDs="t2">nheng</tag>

Constituent layer

As with the above layers, the main bulk of the constituent layer is added one line
at a time in an appropriate string variable. The constituent layer differs from the
others in one regard. The TCF generator writes a new line into the variable in a
similar manner as with the POS tagging layer and the token layer, but as an open
XML tag. When it encounters any constituent it marks it with an identification
number, writing down its type, and the token identification number if it was a word.
The identification number for constituents is prefixed with a ¢ followed by a number

27

4 System Development

from its own counter, holding the number of constituents it has encountered. This
line is written as an open XML tag, but before it can be closed the rest of the
tree has to be gone through to see what is written when it opens and closes. This
can be seen in the example below where the three dots represent where additional
constituents could potentially appear within the current constituent.

<constituent ID="c4" cat="AP">
</constituent>

Words are the other type of constituents that are written into the variable by the
TCF generator. When a word is encountered it writes a closed XML tag, which
includes the constituent identifier, token identifier, and phrase type. As an example
of this we can use the example above and insert a word within the adjective phrase.

<constituent ID="c4" cat="AP">
<constituent ID="cb5" cat="AP" tokenIDs="t1"/>
</constituent>

Every time the TCF generator encounters a phrase it looks through its children in
the tree to determine if they contain a word.

Error layer

In order to be able to return a text with highlighted grammatical errors in the text
which the user inputs, it is essential to introduce an error layer to TCF. The er-
rors have their own identification number prefixed with e, and are associated with a
constituent in the constituent layer by the constituent’s identification number code.
The error type is written in code described in Section 4.2. An example of a line
from the contents of the error layer is the following:

<e ID="el" const="c3" type="Nn" />

Text Corpus Format example

After the list, described in section 4.1 above, has been fully gone through, the TCF
document is compiled from the previously stored variables described above. The
document is written out as seen in the example below, with each layer as described
above with appropriate tags opening and closing that layer.

28

4.1 Text Corpus Format Generator

<?7xml version="1.0" encoding="utf-8"7>

<D-Spin xmlns="http://www.dspin.de/data" version="0.4">

<MetaData xmlns="http://www.dspin.de/data/metadata'">
<source>RU, Reykjavik University</source>

</MetaData>

<TextCorpus xmlns="http://www.dspin.de/data/textcorpus" lang="is">
<text>Smau hesturinn drekkur vatn</text>

<tokens>

<token ID="t1">Smiu</token>
<token ID="t2">hesturinn</token>
<token ID="t3">drekkur</token>
<token ID="t4'">vatn</token>
</tokens>

<POStags tagset="ifd">

<tag tokenIDs="t1">lkfnvf</tag>
<tag tokenIDs="t2">nkeng</tag>
<tag tokenIDs="t3">sfg3en</tag>
<tag tokenIDs="t4">nheo</tag>
</P0OStags>

<parsing tagset="ifd">
<parse>
<constituent ID="c1" cat="SENTENCE">
<constituent ID="c2" cat="*5UBJ>">
<constituent ID="c3" cat="NP'">
<constituent ID="c4" cat="AP">
<constituent ID='"c5" cat="AP" tokenIDs="t1"/>
</constituent>
<constituent ID="c6" cat="NP" tokenIDs="t2"/>
</constituent>
</constituent>
<constituent ID="c7" cat="VP">
<constituent ID="c8" cat="VP" tokenIDs="t3"/>
</constituent>
<constituent ID="c9" cat="*0BJ<'">
<constituent ID="c10" cat="NP">
<constituent ID="c11" cat="NP" tokenIDs="t4"/>
</constituent>
</constituent>
</constituent>
</parse>
</parsing>

29

4 System Development

<errors>
<e ID="el" const="c3" type="Nn" />
</errors>

</TextCorpus>
</D-Spin>

As explained in Section 2.5 the TCF document contains layers in which different
type of information is collected. Within the <text> < /text> tags is the analysed
text with a single white space between tokens. The text in the example is "Sméu
hesturinn drekkur vatn" ("The small horse drinks water’) where the word "smau"
(’small’) is plural but the word "hesturinn" (’the horse’) is singular. The IceParser
output for this sentence is the following:

{*SUBJ> [NP?Nn? [AP Smau lkfnvf] hesturinn nkeng] }
[VP drekkur sfg3en]
{*0BJ< [NP vatn nheo] }

The tokens are all identified by a code. The word "hesturinn" is identified with ’t2’.
This will allow every layer to be able to refer to individual tokens. The following
layer is the POS layer indicated by the <POStags tagset="ifd"> </POStags> tags.
As seen here the tagset is based on the IFD (Icelandic Frequency Dictionary). The
POS tag "nkeng" belongs to token with the identity code ’t2’, that is "hesturinn".
Every POS tag is paired up with a token in this manner.

The next layer is the constituent layer, where every constituent has its own identity
code. The constituents are both the structure and the words of the sentence, but
not their tags. Constituent ’c6’ contains a noun phrase, as the category of the
constituent is marked to be '"NP’. This noun of the noun phrase is "hesturinn" as the
token identity code is 't2’. The entire noun phrase can be found in the constituent
layer marked ’c¢3’. The noun phrase opens and contains more constituents within it,
‘cd’, 'ch’, and 'c¢6’. ‘¢4’ is an adjective phrase indicated by being of category "AP’,
which holds the constituent ’c5’. ’c5’ is the adjective "Smau" identified by being
token ’t1’.

The disagreement within the noun phrase "Smau hesturinn" has been marked as
an error in the layer below in the TCF document, the error layer. The error with
code ’el’ is placed within ’c3’, that is the noun phrase "Smau hesturinn", to be
of error type 'Nn’ (see Section 4.2 for error codes). This error code refers to a
noun phrase disagreement in number, were the upper case letter stands for the error
being disagreement in a noun phrase and the lower case letter stands for an error in
number.

30

4.2 Error Detection

4.2 Error Detection

Before the project started, IceNLP solely marked disagreement within noun phrases
with a single question mark. The error detection has now been extended from that to
marking five different error types with an error code. Icelandic Online (IO) provided
a list of the ten most frequent elements in Icelandic which second language learners
make errors in:

e Noun phrase agreement.

e Agreement between a subject and its complement.

e Agreement between a subject and a verb.

e Case of an object governed by a preposition.

e (Case of an object governed by a verb.

e Topicalisation and permutation.

e Subject of an impersonal verb.

e Subjunctive mood in independent clauses and dependent clauses.
e Case in participles.

e Compound verb phrase with full or bare infinitive or participle.

The first five from this list were chosen to be implemented. Below are given examples
for each of the five errors, where the words in grey colour are irrelevant to the error
type. These errors will be discussed separately in this section. Noun phrase agree-
ment is when all words within a noun phrase agree in gender, number, and case. This
can be seen in the first example "litla barnid er svangt" (’the little child is hungry’),
where "litla barnid" is the noun phrase. The second example is about agreement in
gender and number, between a subject and its compliment. The example shows the
same noun phrase as before and the complement "svangt" (Chungry’). An example
of a disagreement of gender could be "litla barnid er svangur" where the noun phrase
is neutral but the complement is masculine. The third type requires agreement in
gender and number of the noun phrase and the verb "bordar" ("eat’) in the example.
The fourth error type addresses the case of a noun affected by a preposition, where
the preposition requires the noun to be of a certain case. In the example "litla barnio
bordar i eldhtsinu" ('the little child eats in the kitchen’) "{" is the preposition and
"eldhisinu" is the noun affected by it. The fifth error type is about case of an object
being affected by a verb. The example shows the verb "bordar" (‘eats’) preceding
the object "fisk" (*fish’), where "fisk" is in the correct case, governed by the verb.

31

4 System Development

1. Noun phrase agreement
Litla barnid er svangt.

2. Agreement between a subject and its complement.
Litla barnid er svangt.

3. Agreement between a subject and a verb.
Litla barnid boroar fisk.

4. Case of an object governed by a preposition.
Litla barnio boroar i eldhisinu.

5. Case of an object governed by a verb.
Litla barnio bordar fisk.

An error is marked by appending the error code at the end of the phrase bound
by question marks on each side. The code within the question marks a pair. The
first part of the pair tells which type of error it was, and the second part tells what
grammatical categories the error lies in. The first part, the error type, is a single
upper case letter N, C, V, P, and A which stand for the first five errors in the list
above in the same order as they appear. The second part of the code is a string of
lower case letters g, n, ¢, and p which stand for gender, number, case, and person
respectively. Here is an example of an error in gender agreement within the noun
phrase "Litli barnio" (*The little child’, where the case of ’little’ is masculine).

[NP?Ng? [AP Litli lkenvf] barnid nheng]

In the occurrence of multiple errors within a phrase, each error is represented in
a sequence between question marks. This can be seen by modifying the example
from above. By introducing a disagreement in number in addition to gender "Litli
bornin" ("Little children’, where the case of 'little’ is singular), we get the sequence
of NgNn, which signifies a disagreement within a noun phrase in gender and number,
as seen in the example:

{*SUBJ [NP?NgNn? [AP Litli lkenvf] bornin nhfng] }

At the end of the process of creating error detection for the five target errors, another
type of error connected with the use of the auxiliary verbs "geta" ("can’) and "hafa"
("have’), looked feasible to detect. The Icelandic verbs "geta", "hafa", and "fA" have
restrictions in usage that will be explained below where the detection of the auxiliary
verb error is described. In the error code the 'h’ does not signal a grammatical
category in Gh, but the first letter in "hafa", and the capital G stands for "geta'.
The entire list of possible error codes IceParser generates is:

e Ng, Nn, Nc¢, Np (noun phrase agreement)
e Vn, Vp (agreement between a subject and a verb)

e Oc (case of an object governed by a verb)

32

4.2 Error Detection

e Cg, Cn (agreement between a subject and its complement,)
e Pc (case of an object governed by a preposition)

e Gh (auxiliary verb error)

IceParser’s transducers detect grammatical patterns and place grammatical tags
(such as NP and SUBJ) around phrases and functions. Within the transducers a
particular sentence structure is matched by a regular expression and marked by the
appropriate grammatical tag. Part of that process is to indicate whether there are
grammatical errors or not.

Marking phrases or functions, to indicate an error, is accomplished by concatenat-
ing a list of errors, and then suffixing the NP tag with the error. In the example
in Section 4.2.1 about Noun phrase agreement, the error list is 'NgNn’. A question
mark is added in front and back of the error code to indicate that the following is
an error code. This will in turn make the error code *?NgNn?’. This error code is
then suffixed to the noun phrase tag as seen here:

[NP?NgNn?

Detection of errors is carried out at the same time as IceParser conducts parsing of
tagged text. As explained in Section 2.4.6 the transducers detect the different syn-
tactical categories and grammatical functions, and the transducers contain functions
that tag them appropriately. This can be seen in the Adjective phrase transducer
where an {AdjectivePhrase} is detected with a regular expression. When a match is
found, the opening and closing tags for adjective phrase is put around the matched
text, and the whole text is written out. Here in the example below AdjectivePhrase
is the regular expression, and will be discussed further. out.write will write out
everything that is within the parentheses. APOpen and APClose are the opening
and closing tags of Adjectives, but "text" is the text that matched the pattern of
the regular expressions.

AdjectivePhrase { out.write(APOpen + text + APClose) }

The regular expression of AdjevtivePhrase in the example above is the following.
An adjective phrase contains an optimal adverb phrase followed by an adjective.
An adjective is any word accompanied by an adjective tag provided by IceTagger.
Adverb phrases have already been marked with opening and closing adverb tags
by the Adverb Phrase transducer, as seen on the list of IceParser’s transducers in
Section 2.4.6 starting on page 12.

AdjectivePhrase = {AdverbPhrase}? {Adjective}
Adjective = {Word} {AdjectiveTag}
AdverbPhrase = {OpenAdvP} ~ {AdverbTag} {CloseAdvP}

33

4 System Development

4.2.1 Noun phrase agreement

The detection of noun phrase agreement is conducted within the Noun Phrase 1
transducer, and the detection of noun phrases is accomplished in a similar manner
as is with adjective phrases. In addition to the capability to detect noun phrases,
the Noun Phrase 1 transducer had a notable additional capability to detect gram-
matical errors. Before this project had started, IceNLP was capable of detecting
and marking disagreement within noun phrases and subjects. The method that was
used to detect the error was to check gender, number, and case of every word within
the noun phrase and compare each one to another, as long as there are two or more
tags. If a mismatch was found, the noun phrase labelled brackets were suffixed with
a single question mark as seen below in the example were "Litill hjolid" ("The small
bicycle’” where the case of ’small’ and ’bicycle’ are masculine and neuter, respec-
tively) has been annotated:

[NP? [AP Litill lkensf AP] hj61id nheng NP?]

The programming functions that detected the disagreement and marked the error
was located within the transducers Noun phrase 1 (Phrase NP.flex) and Subject
1 (Func_SUBJ.flex). Each of those transducers contained copies of code to detect
and mark the disagreement errors.

The current project expanded the error detection to detect more types of grammati-
cal errors and code to represent each type of error. The transducers detect a desired
pattern, and when found execute a function contained outside of the transducer,
not within it as was done before. The code was moved to a special error detection
and marking module. Minor changes were made. Instead of comparing every single
tag to one another the list of tags is only carried out once, skipping comparison of
tags if either of them does not have gender, number, or case. The list of tags in the
noun phrase is gone through one tag at a time, and the first tag which has gender,
number, and case is selected. Then after that the tag is compared to any following
tags which is encountered within the noun phrase. Fach time a mismatch is found
in gender, number, or case, the error is stored. At the end of the tag list the errors
are added to the noun phrase code.

The noun phrase agreement error detection is not conducted in Subject 1 any more,
only in Noun phrase 1. Limiting the detection to Noun phrase 1 does not reduce
the number of noun phrases checked for errors. In the transducer Noun phrases
1 all noun phrases that potentially have agreement errors are found. In order for
subjects to be detected, noun phrases have to have been marked. The list in Section
2.4.6, beginning on page 12, shows the order in which the transducers are carried
out. There it can be seen that Noun phrase 1 coming before Subject 1, discovers
all noun phrases. Noun phrase 2 detects single word noun phrases which Noun

34

4.2 Error Detection

ag #

1TEE T
211 env f
3:1 ensf
4,1 e\m) s £

Figure 4.1: The noun phrase agreement checking five POS tags from the noun phrase
"391 litla skemmtilegur falleg bornunum”.

phrase 1 has not labelled to be noun phrases. Those noun phrases can therefore not
contain disagreement. Hence, removing the error detection out of Subject 1 does
not reduce the scope of error detection. The example shown in Figure 4.1 holds five
POS tags from the noun phrase "3ji litla skemmtilegur falleg bérnunum" (*the 3rd
litle fun beautiful children’). This noun phrase is not consistent in gender, number,
nor case. The tags 'ta’, ’lvenvf’, ’lkensf’, "lvenst’, and 'nhfpg’ are compared in pairs,
tag number 2 and 3, 3 and 4, 4 and 5. The first tag does not hold gender, number, or
case and hence the first comparison pair is skipped. With this method, in contrast to
the original method of comparing every single POS tag, the number of comparisons
are less. For this example the old method would do six comparisons, ("("QH)), but
the new method only n, that is four comparisons.

Let us consider what happens if the Noun Phrase 1 transducer encounters a noun
phrase that contains both disagreement in gender and number like "Litlu 1j6tu hes-
turinn" ("Little ugly horse’). In this example "litlu" is plural and of neuter gender,
"ljotu" of same number and gender as "litlu", but "hesturinn" is singular and of
masculine gender. The POS tags of the words which the error detector would get
are then *"nhfn$’, ""nhfn$’, and '"nken$’, with the tag encoding in front and back of
the actual POS tag. The error detector extracts the POS tags by identifying the tag
encoding, then it compares the first tag to the second tag, and then the tag to the
third one, etc., as seen in the example below. In the comparison gender, number,
and case is extracted from two consecutive POS tags. If a mismatch is found in
gender, number, or case 'Ng’, 'Nn’, or 'Nc¢’ is added to the list of errors for this
phrase (see page 33 in section 4.2 for error codes). This list will be put together and
suffixed to the NP opening tag as an error code. The detector first compares the
first two POS tags, which are identical. Then the second and the third one >*nhfn$’,
and ’"nken$’. The letters that represents gender (’h’ and ’k’) and number (’f’ and
’e’) do not match between the two POS tags. From this first 'Ng’ is put on the list
of errors, and then 'Nn’ added to it, forming the sequence 'NgNn’. Finally the error
code is added to the NP tag with a question mark between as seen in the example
below after the transducer has finished.

[NP?NgNn] Litlu “nhfn$ 1jétu “nhfn$ hesturinn ~“nken$ [NP]

35

4 System Development

A difficult sentence for the noun phrase disagreement detection is for example
"Barnid & bla skyrta" ("The child owns a blue shirt’) where ’a blue shirt’ is nomi-
native but should be accusative. "Bla skyrta" agrees in gender, number, and case.

{*SUBJ [NP barnid nheng] }
[PP?Pc? & ao [NP?NgNnNc? [AP bla lhfosf] skyrta nven]]

The word "&" can either be the verb 'to own’ or the preposition on’. In the example
it was incorrectly detected as the preposition 'on’. The preposition dictates that the
noun that follows it is accusative. The adjective "bla" that follows "a" can either
be neuter, plural, and accusative or feminine, singular, and nominative. Therefore
the tagger chooses the former of those two set of tags. The second word in the noun
phrase cannot be tagged the same way and hence a disagreement in gender, number,

and case is detected.

4.2.2 Agreement between a subject and its complement.

When detecting a disagreement between a subject and its complement, both the
subject and complement must either have been discovered or being annotated by
IceParser. There are two transducer which fulfil that requirement. In the trans-
ducer Complement, a subject and a complement next to each other, with or without
a verb and an adverb, or a subject-verb-complement sequence are detected. Com-
plement also annotates a complement that follows a subject following a verb like
"Verdur hesturinn pyrstur?" ("Will the horse become thirsty?’) which is a verb-
subject-complement relationship as it can be seen in the output of the transducer
below. The second transducer that annotates complements following a subject is
Object 2.

[VPb Verdur ~sfg3en$ VPDL]
{*SUBJ< [NP hesturinn “nkeng$ NP] *SUBJ<}

{*COMP< [AP pyrstur ~lkensf$ AP] =COMP<}
? ~78

When the complement in those transducers is found, the input is sent to the error
module to be analysed. There the tags from the subject and complement are put in
two separate lists. Then the gender of the subject and the complement are compared,
if they disagree a Cyg is added to the error. The gender is determined by the first
noun in the phrase, if there is not a noun in the phrase the first tag which holds a
gender will be select. The same is done with number.

36

4.2 Error Detection

If the subject has multiple nouns, as in the sentence "Maodurinn og konan eru falleg”
("The man and the woman are beautiful’), the gender of the complement can be
neuter. When two or more words are in a noun phrase, which are of feminine gen-
der, they are referred to by the complement in plural number and feminine gender.
The same holds for masculine and neuter gender. When the nouns within the noun
phrase disagree on gender, they will be referred to with a neuter gender. There is
a separate mode for subjects with a single noun and multiple nouns. Noun phrases
having more than one noun are denoted by [NPs and NPs|, but noun phrases with a
single noun is denoted by [NP and NP|. Detection of which mode it is of is therefore
determined by the noun phrase labels NP and NPs.

{*SUBJ> [NPs [NP Madurinn ~nkeng$ NP] [CP og ~c$ CP]
[NP konan ~nveng$ NP] NPs] *SUBJ>}

[VPb eru ~sfg3fn$ VPbL]

{*COMP<?CgCn? [AP falleg ~lvensf$ AP] *COMP<}

When NPs is encountered as in the example above it sees two different genders,
and therefore demands a neuter gender of the complement as explained. If the
compliment is not of the gender that was expected, then an error, Cg, is stored as
explained above.

When a sentence has been incorrectly tagged or parsed the error detection can
fail. The example below shows how the subject can be incorrectly detected for
the erroneous sentence "bad er ljoshaero kona talar vid ungur drengur og hin er
brosandi" (’there is blond woman talks to young boy and she is smiling’). The
correct subject is "han" in "hin er brosandi", but "ungur drengur og hin" has been
erroneously marked the subject.

{*SUBJ> [NPs [NP [AP ungur lkensf] drengur nken]
[CP og ¢] [NP hin fpven]] }

[VPb?Vn? er sfg3en]

{*COMP<?7CgCn? [AP brosandi lvenof] }

The example shows "brosandi" marked to disagree in gender and number with the
subject. If the subject had been correctly marked, the error detection would correctly
not mark the complement. The subject was incorrectly marked is "ungur drengur”
in the sentence, as it should have been "ungan dreng". That is, "ungur drengur"
was incorrectly written in nominative but not accusative case. Subjects are in the
nominative case, just as "ungur drengur" and "hun" are. Therefore, "ungur drengur
og hun" were marked to be the subject, meaning the compliment was expected to
be third person and plural.

37

4 System Development

4.2.3 Agreement between a subject and a verb

The disagreement between a subject and a verb is detected within the Subject 1
transducer as by then verbs have been marked, and within Subject 1 the patterns
verb-subject and subject-verb are discovered. In the error detector all POS tags from
the subject and the verb are listed. If the subject holds multiple nouns, marked NPs,
then the verb must be plural. If the subject is not marked NPs, then the number of
the subject and verb are compared to see if they match. If they do not match "Vn’
is added to a variable that lists detected errors. Same applies for when a verb is
singular but the subject is NPs. Person of subject and verb are compared for both
NP and NPs. If a mismatch is found between the POS tags in person, then 'Vp’
is added to the list of detected errors. After both number and person have been
checked then the detected errors are added to the verb phrase annotation as seen
here in the example "ég eru stor" (I are big’) where the subject is singular and first
person, but the verb plural and third person. The string for the verb is displayed
here:

[VPb?VnVp? eru ~sfg3fn$ VPb]

As in the previous section the detection can be wrong when the subject is incor-
rectly detected by the parser. In the example below "tré" is the correct subject that
governs the morphological features of the verb "er". The example contains the first
part of the parsed output of the sentence "vio hlidina & tré er pad en stéduvatn sem
er stor" (‘next to a tree is that but lake that is big’).

[PP Vid ao [NP hlidina nveog]]

[PP & ap [NP tré nhep]]

[VPb?Vn? er sfg3en]

{*SUBJ< [NPs [NP pad fphen] [CP en c¢] [NP stéduvatn nhen]] }

The error detection found a disagreement in the example between the verb "er" and
the subject "pad en stoduvatn". The subject has incorrectly grouped together "pad
en stéouvatn” detecting "en" as a conjunction connecting the two nouns, which are
both of the nominative case. This makes the detection expect the verb to be plural,
not singular. Therefore the verb is marked to to indicate a disagreement in number.

4.2.4 Case of an object governed by a preposition

When a preposition is detected and annotated within the Preposition Phrase trans-
ducer the error detector is called to go through the detected phrases. An example
for an input is " vid ao [NP vegur nken NP| " for the sentence "Madurinn st6d vid

38

4.2 Error Detection

vegur" ("The man stood by a road’) where "vegur" (‘road’) is in nominative case,
as opposed to the correct accusative form "veg". The function removes everything
except for POS tags. In the example POS tags would be 'ao’ and 'nken’.

The first preposition tag which is found is taken and its case is extracted. In the
example the letter which represents the case is 'o’ which means the preposition gov-
erns the accusative. Then the case of the last tag is compared with the case of the
first. If a mismatch is found the error marking of *?Pc¢?’ is added to the preposition
phrase markings as seen here:

[PP?Pc? vid ~ao$ [NP vegur “nken$ NP] PP]

Prepositions can be incorrectly tagged to be of other word classes. "A" (‘on’) can
be incorrectly marked as the verb "4" ("to own’). "A" has been correctly tagged and
marked in the sentence, written by a second language learner of Icelandic, "strakur
situr { fanginu & mamman og beir brosa til hver" ("a boy sits in the mother lap
and they smile to each’), but the preposition "til" was incorrectly detected as an
adverb. "Hver" in "til hver" is nominative but not genitive, the case governed by
"til". Therefore "til" was incorrectly tagged not to be a preposition as then the
following word would be genitive.

{*SUBJ> [NP Strakur nken] }
[VP situr sfg3en]
[PP i ap [NP fanginu nhepg]]
[PP?Pc? &
[NPs [NP mamman nveng] [CP og c] [NP beir fpkfn]]]
[VP brosa sfg3fn]
[AdvP til aa]
{*SUBJ< [NP hver fsken] }

4.2.5 Case of an object governed by a verb

This detection is carried out in the Object 1 transducer. By then verbs have been
marked making the subject-verb-object pattern easily detectable. The object is
either a noun or an adjective phrase with or without qualifiers, and the verbs and
the subjects have been annotated.

Let us consider an example where a user sends the sentence "Drengurinn sparkadi
bolti" ("The boy kicked a ball’). The object "bolti" is in the nominative case but
should be "bolta" in dative case. The error detection function receives input in two
parts, subject-verb and the object. The two parts for the example can be seen here:

39

4 System Development

1: {*SUBJ> [NP Drengurinn ~“nkeng$ NP] *SUBJ>}
[VP sparkadi ~sfg3ep$ VP]
2: [NP bolta ~nkep$ NP]

First the verb phrase is isolated and the word extracted from the location of the end
of where '[VP’ occurs in the text and to the beginning of its POS tag marked with
". The tag is also extracted, from the " sign to the $. The case of the object is also
found.

The verb is lemmatised with Lemmald, the lemmatiser module of IceNLP (Ingason,
Helgadottir, Loftsson, and Rognvaldsson, 2008). The lemma of the verb is then
looked up in a hash table. This hash table is generated from a file containing verbs
and cases the verbs governs. For instance, "sparka" dictates that the case of "bolti"
is dative, and that no other cases are grammatically correct. The hash table creates
a list of possible cases after "sparka', which in our example is only dative. The
expected case of the object is compared to the actual case. The expected case is
dative but the actual detected case is nominative. When there is a mismatch an
error is marked on the noun phrase with "70c¢?’ and the output created with the
noun phrase marked as an objective.

{*SUBJ> [NP Drengurinn nkeng NP] *SUBJ>}
[VP sparkadi sfg3ep]
{*x0BJ< [NP?0c? bolti nken NP] *0BJ<} .

The first version of looking up what cases the verb governs was done utilising an
SQL database. This required an external SQL database to be set up, and requests to
be sent for every verb-object pattern detected. It was found simpler to have internal
hash table to look up the verbs instead of an external service as an SQL database.

When the error detector encounters a sentence such as "konan & hvit skyrta og
barnid & bla skyrta" (’the woman owns a white shirt and the child owns a blue
shirt’) the first verb "a" has been tagged with the correct POS. As with the exam-
ple above the case of the object is correctly detected to be incorrect. The second
"a" is incorrectly tagged as a preposition. This is caused by the word "bla" to be
of a wrong case, it should be "blaa" in the accusative case but not the nominative
case. Because of this the verb "4" is expected to be of the same case, leaving the

more appropriate word class for the word to be preposition and not a verb.

{*SUBJ> [NP Konan nveng] }
[VP & sfg3en]

40

4.2 Error Detection

{*0BJ< [NP?0c? [AP hvit lvensf] skyrta nven] }

[CP og c 1

[NP barnid nheog]

[PP?Pc? & ao [NP?NgNnNc? [AP bla lhfosf] skyrta nven]]

4.2.6 Auxiliary verb error

A new transducer was made to detect this pattern. The transducer is carried out
in the post process between the Clean 2 and the Phrase per Line transducers. This
transducer looks for two verb phrases next to each other, potentially with an adverb
between them. The first verb phrase should only hold the auxilary verbs "geta",
"hafa", "fa". The second verb should be marked "VPb" or "VPi". "VPb" are
any forms of the word "vera" (’to be’), such as "oroid" which is its past participle.
Infinitive verb phrases are marked with "VPi". When a match is found to this error
pattern in the transducer, a function is called to find the "[VPi" and modify into
"[VPi?Gh?". If "[VPi" cannot be found nothing is done. An example of this can be
seen below.

The idea was that the combination of the two verb phrases could be something a sec-
ond language learner might write, and it would be discovered in testing whether the
detection is useful. An example of such a sentence would be "drengurinn getur ao
borda" (’the boy can to eat’), as opposed to the correct "drengurinn getur boroad"
("the boy can eat’).

{*SUBJ> [NP Drengurinn nkeng] } [VP getur sfg3en]
[VPi?Gh? ad cn borda sng]

This is the only error detection that does not utilise a special error detection function,
but relies on the transducer itself. This makes the error detection faster in processing
than the detection of the other errors that are detected.

4.2.7 Spelling mistakes

A spell checker is not part of grammatical error highlighting and should be han-
dled before a request is sent for grammatical error detection. Therefore this feature
has been removed, but was temperately part of the error detection as there was
a problem with spelling mistakes skewing the accuracy of IceNLP. This made the
error detection problematic. Some browsers and operating systems come with spell

41

4 System Development

checker that would point out spelling mistakes. People that do not have spell check-
ers in their browsers need additional help. For the first evaluation GNU Aspell' was
used for spell checking. The dictionaries used were a combination of two sources.
The first source is the Big Icelandic Wordlist?. The second source is a list of word
forms extracted from the Database of Modern Icelandic Inflection (Bjarnadoéttir,
2005). The dictionaries were merged and tested on news reports. Additional words
were added when discovered missing.

Aspell was called from the output generator of IceParser as a temporary solution
which was part of the first user evaluation of Writing Support. When the TCF
output creator, described in Section 4.1, encountered a token, Aspell was carried
out as an external program with the token as standard input, the pipe and dont-
suggest flags as parameters. A regular expression went through each output from
Aspell to see if the token is found in a dictionary or not. The token was found in the
dictionary when the asterisk sign (*) appeared as the first character of a line. When
a token was not found then the output contains a number sign (#) followed by the
token and the number of words found to be similar according to Aspell. The spelling
errors were added to the TCF document to the error layer with a new code "Xx" for
spelling mistakes. Therefore, the participants of the first evaluation received their
spelling errors highlighted only after submitting their texts, allowing the spelling
mistakes to skew the output of IceNLP and the error detection.

As stated previously, spelling error detection should be carried out before the gram-
matical error detection. In the second evaluation, in 2013, the aim was to have
access to a new Icelandic context sensitive spell checker named Skrambi developed
by Dadason (2012). In addition to looking up similar words to those that do not
appear in Skrambi’s lexicon, it also disambiguates certain words that have identical
spelling but different meaning. Those words are distinguished by context utilising
IceNLP and corrected accordingly. This context sensitive spelling error detection
might be less accurate in erroneous texts of second language learners than in gram-
matically correct texts. Skrambi was not ready to be used in the evaluation of 2013
and hence spelling errors were not handled. This spell checker operates on websites
so that all spelling errors would have been fixed before the user would submit text
for grammatical error detection.

4.3 lceNLP Web Service

The architecture for the ICALL system built in this project, allows the user to send a
request to a number of different language processing tools and select which one they

Thttp://aspell.net/
http:/ /helgafell.rhi.hi.is/pub/aspell-is /aspell-is-0.51.1-0.tar.bz2

42

4.3 IceNLP Web Service

want with a special parameter. IceNLP Web Service keeps two components of the
old IceNLP website, the request capabilities from users and how IceNLP is handled.
Utilising a web service to handle Writing Support’s error detection (see section 4.4)
detaches the web site from the analysis, leaving the front end and the analysis part
of the website independent from each other. Furthermore, it allows other web sites
and programs to have access the processing abilities of Writing Support. Because of
the flexibility of the IceNLP module (discussed in 4.3.4) other websites, such as the
updated IceNLP website, can make requests that fit their own requirements. When
accuracy of text analysis is improved on the web service, all websites and programs
that utilises it immediately benefit from it without having to implement it specially
for each of those websites and programs.

The old website of IceNLP was hosted on a Apache Tomcat server as an HTML
document. The result page of the website was dynamically generated through a
Java Servlet. This Java Servlet received HTTP POST and GET requests. When
a request was made the Servlet generated a result page for the user. Results were
made with IceNLP in accordance to the request. The Servlet contained IceNLP,
and kept it loaded in memory.

IceNLP Web Service builds on the foundation of the Java Servlet of the old IceNLP
website, accepting POST and GET requests containing parameters that dictate how
text analysis or other functions are conducted. A simple example of that can be
seen here:

http://nlp.cs.ru.is/IceNLPWebService?query=Hann er agatur

The layout of the platform holds three main parts which incoming request go
through: a switch, filters, and execution of the requests. As seen in Figure 4.2,
the switch directs the request to the appropriate module: IceNLP, DeCode (see Sec-
tion 4.3.5), or Stanford POS Tagger (see Section 4.3.6). In the modules the request’s
parameters are filtered and set up before carrying out their main functionality.

This section discusses the main structures of the IceNLP Web Service. The first
part is the request input to the server, called request on Figure 4.2. Section 4.3.2
describes the switch where requests are directed to modules where they will be
processed. Section 4.3.3 describes the filter, which helps the modules set up the
request for processing. The next sections, IceNLP Lexical Analysis, Decode tags,
and Stanford Part-Of-Speech tagger are about the three modules that have been
implemented. Those are the functions that users can request IceNLP Web Service
to carry out and receive the results from.

43

4 System Development

e OH

T

filter filter filter
> &)

Figure 4.2: IceNLP Web Service’s structure.
4.3.1 Input Requests

When deciding upon the architecture, the way in which the platform would receive
requests were made. Two main methods were the most feasible. Simple Object
Access Protocol® (SOAP) is a widely used method to send a requests to web services.
It sends an XML information set that contains all information needed for the service
to carry out the request. The other method was to use simple HI'TP GET and
POST* requests as suggested by the REST web service model. GET requests are
easy to accomplish by any user. When a user enters a URL into a web browser with
certain parameters, he is in fact carrying out a GET request. POST requests can be
performed from most programs. The user can send a POST request through a form
with a submit button on a website. The content of the form acts as the parameters
in the request. Because of the simplicity of GET and POST requests, and the fact
that they can be carried out by users solely by typing URL into a browser, it was
chosen rather than SOAP.

4.3.2 Switch

The switch layer checks which function is to be carried out. The current version
of IceNLP Web Service contains three functions: Icelandic text analysis through
IceNLP, IceNLP tag decoding, and English language POS tagging with the Stanford
Tagger.

3http:/ /www.w3.org/TR/soap12-part1/
*http:/ /www.w3.org/Protocols/rfc2616 /rfc2616-sec9.html

44

4.3 IceNLP Web Service

A request comes in to IceNLP Web Service switch function, which checks the 'mode’
parameter. The mode parameter tells which module to execute: icenlp, stanford,
or decodetag. If the mode parameter is not set, then by default ’icenlp’ is assumed.
When a match is found the appropriate module is carried out. This can be seen in
the example below on how the Stanford POS tagger is called from the main IceNLP
Web Service class with two variables, the parameters from the request and an object
that will create a response to the user.

if (request.getParameter("mode").equalsIgnoreCase("Stanford"))
{
stanbi.run(request, response);

}

This has to be done for all three modules, and it allows additional utilities such
as loggers to be carried out before or after the module. Inside the module the
parameters are set up with the filter as explained previously. Finally, with the
parameters set up, the module can carry out its components, as will be explained
below.

In case of IceNLP, logging of the incoming message is accomplished before the
IceNLP module is carried out, and then the output is logged afterwards. Two
different loggers were used, the older one was placed within the IceNLP module.
Both loggers will be explained in Section 4.4.2.

4.3.3 Filter

A document with the configuration of the filter has been constructed with the rules
about which parameters are allowed, which values the parameters can take, and
what are their default value if none is specified. So that when a request with a
parameter that is not specified in the configuration document is found, that param-
eter is not passed on to execution of a module. But if a parameter that exists in
the configuration has a value that is not in the document, then a default value is
given for that parameter. Here is an example of few lines from the configuration
document:

name=stanford

function=built-in

query=$

tagger=wsjbi,wsjleft3,bi,left3, bidirectional,wsjbidirectional

This is the configuration of the filter for the Stanford POS tagger. The first line

45

4 System Development

expresses that the following lines belong to the Stanford module. The next line
states that the Stanford module is built into the Java code, i.e. that this is a
function within IceNLP Web Service, but not an external source. External sources
were not needed for IceNLP Web Service but will be further explained in section 6.
Those two first lines have to appear in this order for each module with configuration
rules of parameters, but after that the order of parameters rules is free.

The last line, in the example above, tells that the parameter 'tagger’ allows the
values 'wsjbi’, 'wsjleft3’, ’bi’, ’left3’, 'bidirectional’, and 'wsjbidirectional’. All other
values that are not specified and replaced with a default value are rejected. The
default value is the first value after the equality sign. In the case of the 'tagger’
parameter the default is hence 'wsjbi’. The other parameter that the stanford mod-
ule takes is 'query’, but its value can be any string. This is indicated with a dollar
sign ($), but a number sign (#) indicates any integer number. No default value is
specified for the 'query’ parameter, but it can be assigned as seen in the second line
in the example below. The default value in this example below for ’query’ of the
IceNLP module is "Petta er stadlad inntak" (*This is a standard input’).

name=icenlp
query=betta er stadlad inntak,$
tokenize=false,true // accepts true or false, default is false.

The third line shows a message that is commented out and does not affect the
configuration. Everything that is written on the right hand side of double slash
characters is not read by the filter. The parameter 'tokenize’ is taken from the part
of the document that specifies the configuration about IceNLP’s parameters, but
both the modules for Stanford and IceNLP have ’query’ parameter. This is because
the name of the module and the parameter name are joined together to become a
unique key in a hash table. Two modules can have a parameter with the same name.

When IceNLP is initialised the hash table is created from the document that dictates
the filter’s configuration. The document is read line by line, and entries to a hash
table are added appropriately. Each entry is a pair of a key and its value. In the
case of 'tokenize’ in the example above its key would be "icenlp tokenize" and its
value "false,true".

Keys in hash tables are used to look up and retrieve their values. The function that
retrieves default values takes in the module name and a parameter name. It then
puts it together to form a combination such as "icenlp tokenize" as seen above.
Then the function searches the hash table for a matching key and retrieves its value.
In the example of "icenlp tokenize" the value is "false,true". The function extracts
and returns the string that is on the left hand side of the first comma. Therefore
the function will detect "false" to be the default value.

46

4.3 IceNLP Web Service

The function that checks if the parameter’s value is valid works in a similar way.
It fetches the value based on the combination of a module name and a parameter
name. Then it checks if the incoming value matches any of the values described
in the configuration document. But as mentioned before, if the allowed value is
indicated with a number or a dollar sign, then all integers or any strings are allowed
in the incoming variable respectively.

boolean showparsing = Utils.strToBool(
Config.makeValue(request, mode, "parsing"));

Before a module executes its functionality the input is filtered and variables which
the function uses are set up. The variables are set by using the function described
above. This function is called 'makeValue’ and can be seen applied above. In this
function validity is first to be checked, and if it is valid then the incoming value
is set. If it is not found then the default value is set. Values that are integer or
boolean, such as ’6” and ’'true’, are converted from a string to the appropriate type
of variable. In the case of the boolean value, if a string matches 'true’ then a TRUE
value is assigned. The boolean converting utility was shown in the example above.
A function such as parselnt from the Java Integer class, which is used in the filter,
is sufficient to convert a string number into an integer value.

If the filter allows a value that the module does not recognise, then a translation has
to occur. In the case of the IceNLP module it allows many different values of the
parameter which tells IceTagger if and how to use the HMM models. For only using
IceTagger without HMM either ’icetagger’ or 'none’ is used. Both are accepted by
IceNLP Web Service but solely 'none’ is accepted by IceNLP. Therefore a conversion
needs to be carried out that converts ’icetagger’ into none’.

String model = Config.makeValue(request, mode,'"tagger");
if (model.equals("icetagger"))
{

model = "none";

}

Moreover, IceNLP does not accept a string value, but an object. This object has
to be created and the value of the string dictates the usage of HMM in IceTagger
accordingly. This is shown here:

IceTagger .HmmModelType modelType =
IceTagger . HmmModelType.valueOf (model) ;

47

4 System Development

4.3.4 lceNLP Lexical Analysis

For lexical analysis of Icelandic, IceNLP Web Service relies on IceNLP as the name
indicates. IceNLP is loaded into memory, as the old website’s Java Servlet did, to
reduce processing time of requests. IceNLP lexical analysis module can return out-
put of TceNLP’s tokeniser, IceTagger, and IceParser. Those three can be displayed
or not displayed by a request of the user such as this one:

http://nlp.cs.ru.is/IceNLPWebService/?mode=icenlp
&parsing=true&tagging=true&tokenize=true
&query=Banani er gulur

This GET request will send the user the output of the tokeniser, IceTagger, and
IceParser for the input of "Banani er gulur" (A banana is yellow’). The value of
the parameter: tokenize, tagging, and parsing can be true or false, to show or not
show the appropriate output. If none of those three parameters are defined in the
request, the default is to display the output from the tokeniser, to give the user at
least some feedback. Those three different parts of IceNLP are executed separately
for each part of the output. All output parts are separated by empty lines. The
output is collected and sent back to the user as seen here below:

Banani er gulur

Banani nken
er sfglen
gulur lkensf

[NP Banani nken] [VPb er sfg3en] [AP gulur lkensf]

In the first evaluation of 2012 (see Section 5.1) a version of IceNLP was used as
a server, which was a daemon. During the evaluation a problem was discovered.
The daemon did not accept concurring requests. This resulted in an evaluation of
how much load IceNLP Web Service could handle when IceNLP Web Service was
made. The result of the evaluation (see Section 5.2) was that there was a potential
problem. The problem was solved by making the main function synchronized, adding
the synchronized keyword to its declaration in the code. By making the function,
that tokenises, POS tags, and parses synchronized, a request will not interfere with
another request.

48

4.3 IceNLP Web Service

4.3.5 Decoding tags

A function within IceNLP decodes tags and annotations into English or Icelandic.
The module receives an input which a regular expression checks if matches a POS
tag from IceNLP. If the input is a POS tag, then the decode function is carried out.
The function assembles a reply which then is sent to the user.

If the regular expression does not recognise the input is a POS tag, but it has either
{ or | brackets, then the phrase function of the decoder is carried out to identify
strings like "|[NP".

The decoding tags module accepts two parameters: the query string, and which
language the user want the output to be in. The language can either be English or
Icelandic. The decoder uses a utility function of IceNLP which takes each character
of the POS tag and writes down a word or words to explain the tag. Explanations
of each character is separated in the output by a semicolon. The POS tag of "Dren-
gurinn" is "nkeng" which output from the decoder is "Noun; Masculine; Singular;
Nominative; Suffixed article".

4.3.6 Stanford Part-Of-Speech tagger

This module allows POS tagging of English to be accomplished utilising the Stan-
ford Log-linear Part-Of-Speech Tagger (Toutanova, Klein, Manning, and Singer,
2003). It is an open source software licensed under the GNU General Public Li-
cense. IceNLP Web Service is able to handle the Stanford module, as it is not
specially geared towards Icelandic, but is language independent.

When the Stanford module’s main function is called by IceNLP Web Service it does
the same as the other modules and uses the filter. The module only utilises the
‘tagger’ and "query" parameters. The 'tagger’ parameter allows two values in the
filter to represent the same model which the tagger uses. This model is initiated and
loaded into memory for each request, unless it has already been loaded in memory.
Because of memory restrictions it was decided not to allow more than one model to
be loaded into memory. If a new model has been selected to be used it is initiated and
the functionality of the tagger is carried out. Because of those memory restrictions
the Stanford module is disabled.

The tagging function first tokenises the query and puts each token in a list. Each
sentence is put into a separate list, making this a list within a list where each sublist
holds a sentence. Each list of tokens is taken and POS tagging is carried out, one
sentence list at a time. The result is a list of word and POS tag pairs. To create an

49

4 System Development

Rithjalp - maifres

Villumerkingar um:
Skrifadu islenskan texta i textarammann fyrir nedan. e Osamrami i kyni, t6lu, falli
e Osamremi

Yttu 4 hnappinn haegra megin til ad lata yfirfara textann.

Smelltu 4 setningu til ad fa greiningu 4 henni og smelltu
a greininguna til ad fela hana.

Athugid ad sumar villudbendingar geta verid rangar

e Rangt fall eftir forsetningu

Yfirfara texta

Konan er 1jdésherdur og brosir til drengur. Drengurinn elskar
mamma .

Konan og drengurinn er undir tré.

Hun & bléda skyrtu og drengurinn & hvita skyrtur.

Konan er [j6SR&I0UE og brosir fil drengur .

Drengurinn elskar famma .

Konan og drengurinn er undir tré .
Hun a blaa skyrtu og drengurinn a hvita skyrtur .

Figure 4.3: The Writing Support website with grammatical errors highlighted.

output, each element of the result list is output to a string, separating each element
of the list with a new line character.

4.4 \Writing Support Website

In order to demonstrate the abilities of the web service, a website was created to
facilitate second language learning. The website was named Writing Support, or

20

4.4 Writing Support Website

Rithjalp in Icelandic, and was hosted at http://nlp.cs.ru.is/rithjalp/. The content
of the website includes a title, instructions in Icelandic on its usage, input text box,
a submit button, and an iframe® where results are displayed.

There are five files making up the website, index.php, outputTextFeedback.php,
TCFtoHTML.pl, and two Cascading Style Sheets (CSS) files named divSetup.css
and errorHighlighting.css. The main file, index.php, generates the look of the web-
site with help of divSetup.css, and submits text for processing to outputTextFeed-
back.php which inhabits an iframe on bottom of the website. When outputTextFeed-
back.php receives an input it prepares the input and sends it to the IceNLP web
service. When it receives an answer from the webservice in the form of TCF it con-
verts it into HTML and JavaScript, via a Perl script named TCFtoHTMTL.pl, which
will be human readable when displayed in a webbrowser as seen at the bottom of
Figure 4.3.

In the first user evaluation the website was able to highlight four grammatical errors.
In addition to the error of a wrong case of an object governed by a verb there were
three disagreements: within a noun phrase, between a subject and its compliment,
and between a subject and a verb.

4.4.1 Text Corpus Format to HTML

Second language learners who tested the demo website needed to understand the
error markings submitted by the web service. Because of that, it was decided to
highlight the detected errors in different colours depending on the error type. Plain
text output was not sufficient, as cryptic tags are created in the parsing process.
Students had to receive plain text with the errors highlighted to know where the
errors lie. The students also needed to have access to POS information about the
words to help them to decide how to correct their grammatical mistakes. The TCF
contains everything that is needed: the original text, the errors, and POS tags of
the words.

A converter was created that changes TCF output from the web service into an
HTML format. The Perl programming language was chosen because of its ease of
use with regular expressions, which is a vital part of parsing the TCF input. The
conversion process can be described in three steps.

e Reading the TCF document, extracting information from each layer and putting
into separate arrays.

e Constructing a main array containing positions of where phrases and functions

Iframe is a nested web page on another web page.

o1

4 System Development

Konan er ljosharour|og brosir til drengur .
Drengurinn elskar mamma .

Konan og drengurinn er undir tré .

Konan og drengurinn er undir tré g hvita skyrtur .

no st no so fs no

3p
kvk kk hk
et et et et
nf nf nf pgf pgf

Figure 4.4: Web page created from Text Corpus Format data with lexical data about
a sentence the user selected to display.

start and end.

e Compiling an HTML text output from the main array, marking every phrase

with spans.

<tokens> Token list
<token ID="t1">Litla</token> Litla
<token ID="t2">fallegi</token> -
<token ID="t3">barnid</token> fallegi
</tokens> barnid
<POStags tagset="ifd"> POS tag list
<tag tokenIDs="t1">lhenvf</tag> Ihenvf
<tag tokenIDs="t2">lkenvf</tag> Tkenvf
<tag tokenIDs="t3">nheng</tag> onv
</POStags> nheng

Figure 4.5: Tokens and POS tags are extracted from TCF and put into lists.

The TCF document is parsed one line at a time. The contents of token, POS tag,
constituent, and error layers are put into several lists. When a token is encoun-
tered, recognised by the opening and closing of <token> tags, the token is added
to the token list. Same is done for the POS tag list when <tag> is found. This is
demonstrated in figure 4.5.

Constituents have four lists, which hold constituent identification number, category,
token identification number, or type. Type is: a token, a constituent opening that
contains other constituents, or the closing of a constituent. The four lists can be
seen in Figure 4.6. Category of a constituent can be root or sentence, phrases, or
functions. Type of a constituent structures the tree which the constituent layer
forms. The constituent layer contains a tree of constituents, were tokens are the
leafs. A type can be one of the following: a token, an opening constituent marking

52

4.4 Writing Support Website

that holds more constituents within it, or a closing constituent markings.

constID constCat constTokenID constType
1-cl 1-SENTENCE | 1- l-open
2-c2 2-*SUBJ 2- 2-open
3-c3 3-NP 3- 3-open
4-c4 4-AP 4- 4-open
5-c5 5-AP 5- 5-open
6-Ccb 6-AP 6-tl 6-token
7= 7= 7- 7-close
8-c7 8-AP 8- 8-open
9-c8 9-AP 9-t2 9-token
10- 10- 10- 10-close
11- 11- 11- ll-close
12-c9 12-NP 12-t3 12-token
13- 13- 13- 13-close
14- 14- 14- l4-close
15- 15- 15- 15-close

Figure 4.6: Tokens and POS tags are extracted from TCF and put into lists from
the example in Figure 4.5

A list is created that holds the positions of constituents, the final output will be
created from this list. For each line in the constituent layer, an entry is made in
this list. When a constituent tag that opens is found, 'open’ is written to the list
named constType. When a constituent closes ’close’ is written to the list. When a
constituent tag is found that is neither an opening nor a closing tag, but holds a
token identification code, then 'token’ is written to the list as seen in Figure 4.6.

When an error is found the error code is put on the errorType list as seen in fig-
ure 4.7 and the constituent it belongs to in errorConst. With all errors known
and constType showing the structure of the text, mappedFErrors is created. The
error codes are placed in the appropriate location within mappedErrors according
to what constituent the errors belong to. The lists constType and mappedErrors are
gone through one element at a time in parallel. A counter counts how many ’open’
are encountered after seeing an error. The counter is decremented by one when
‘close’ is encountered, and writes 0 in mappedFErrors. When the counter reaches zero
an error in a constituent is closed. This is marked with 1 in mappedErrors. The start
of an error is marked with the error code, and its end is marked with a 1 sign. The
positions of opening, closing, and errors can be seen on Figure 4.7 where position 3
is where the error starts and position 13 where it ends.

The output is created with help of constType. The output is made putting HTML
"" around each constituent, and putting the appropriate class to its error if
there is an error, and tokens. The list is gone through one element in the list at a
time, keeping track of the position in a counter. When ’token’ is encountered the
appropriate token from the token list is put to the output. The position of the token

93

4 System Development

errorType errorConst mappedErrors
1-Ng 1-c3 1-
2-
3-Ng
4_
5_
6_
7-0
8_
9_
10-0
11-0
12-
13-1
14-0
15-0

2 3 4

{*SUBJ [NP [APs

5 6 7 8 9 10 1112 13 14 15
[AP Litla lhenvf] [AP fallegi lkenvf]] barnid nheng] }

Figure 4.7: Tokens and POS tags are extracted from TCF and put into lists.

is kept in constTokenID in a position in accordance to the number of the counter.
If ’close’ is encountered then "< /font>" is written to the output. When ’open’ is
encountered "" is added to the output, where $error is the
error code matching the appropriate CSS class.

A Java Script is also generated to create the pop-up box seen on Figure 4.4 on
page 52. An HTML paragraph tag is placed around each sentence in the output
containing an onclick event calling a function that displays this box. POS tags from
each sentence are put into separate arrays. Person, gender, number, and case are
extracted from the POS tags. This information about each POS tag is written down
for each token in the token list as seen on Figure 4.4.

4.4.2 Loggers

Two loggers were made for the evaluations, one implemented in Java and the other in
Perl. The Perl logger was based on TCFtoHTML.pl (see Section 4.4.1), receiving a
TCF file and compiling the original plain text format out of its layers before storing
it in a log file. The Perl script was called by the IceNLP daemon when a request
was made. Having external program as one of the platform’s utilities was not the
best option. This Perl logger was not used in the evaluations of Writing Support.
Instead a Java implementation of this script was made as part of IceNLP daemon.
This logger was part of the first evaluation (see Section 5.1) and was carried out for
all error detection requests.

54

4.5 IceNLP Website

A modified version of the logger was constructed in order to log the input and output
of IceNLP module in IceNLP Web Service during the second evaluation (see Section
5.3). Each user got a unique identity code to identify from which user requests are
made during the testing session. The information needed for the log was a unique
ID, the time of submitted text, the text it self, and the text returned to the user.

In the switch described in Section 4.3.2, the parameters are taken and sent to a
utility function named logger before the IceNLP module is carried out in IceNLP
Web Service. First a time stamp is created and written out to the standard output.
Then the logger also prints out the string in the 'query’ parameter, along with a user
identity code fetched from the 'user’ parameter of the request. There was a problem
with identifying users on IceNLP Web Service, because the Writing Support website
sends the request and therefore is the user. Hence, all users will be given the same
identity code. The solution was to create an identity code on the Writing Support
website with PHP commands to get the client’s IP number and session ID. Those
two numbers are combined and sent to IceNLP Web Service as a parameter. The
query is written to standard output along with user ID and a time stamp. The
standard output is directed into a file named catalina.out by Apache Tomcat.

The output of IceParser is logged inside of the IceNLP module directly after the in-
put has been analysed. If the output format is anything else than TCF it is written
to catalina.out directly. But if it is TCF a utility function named TCFtoHTML is
called. Tt works in the same way as the TCF to HTML function described in Section
4.4.1. First it creates lists of tokens, POS tags, and constituents. Then it uses the
constituent list to create the output with the same markings, ’open’ for start of a
phrase like ’[NP’, ’close’ to close a phrase ’|’, and then tokens and POS tags. This
process will transform the TCF into a plain text output format as seen below, and
then it will be put onto to the standard output to be written into the catalina.out file.

{*SUBJ> [NP [AP Litla lhenvf] barnid nheng] }
[VP bordar sfg3en] {*0BJ< [NP fisk nkeo] } .

4.5 lceNLP Website

i

Figure 4.8: Ice NLP’s shortcut icon.

2w (D

The original IceNLP website at http://nlp.cs.ru.is/ was on an Apache Tomcat server
with a static HTML page as a main page and a JSP (JavaServer Pages) web appli-
cation for a result page. The application generates HTML code of the result page

95

4 System Development

for each request. IceNLP’s tokeniser, tagger, and parser are part of the application.
When a visitor requests text to be analysed, the application uses IceNLP to generate
the results and displays them. With IceNLP Web Service it is possible to separate
the generation of the website and the NLP tools.

A new website was constructed with the same appearance and functionality as the
old website had. This website has no lexical analysis capabilities on its own, instead
the website requests the IceNLP Web Service (see section 4.3) for all such processing.
The website consists of two main files, an index page (see Figure 4.9 on page 57)
and a result page. Both pages were represented with an icon shown in Figure 4.8.
The index page has all the options of how the analysis is to be conducted. When
the user clicks on the analyse button, all of the options which the user selected are
directed to the result page. This is done by sending the content of the form with
the POST request method. The result page takes those options and forms another
POST request to the IceNLP Web Service. When feedback is received, the result
page displays the results from the IceNLP Web Service. The two servers, an Apache
HTTP server and Apache Tomcat, are hosted on the same computer. The locations
of servers are irrelevant when everyone has equal access to do requests to IceNLP
Web Service.

Additional options were added to the new website that did not exist in the old
one. Now there is given a choice to show outputs from individual parts of IceNLP,
the tokeniser, the tagger, and the parser. On the old website the user was shown
all three outputs in the results. In addition to the two output formats of plain
text format and phrase per line, four new formats were introduced : XML, JSON,
TCF, and processed TCF. Text in the three basic formats is written on the web page
without extra formatting as it is returned from the IceNLP Web Service, but not the
processed TCF. The processed TCF is generated by a Perl script (further explained
in Section 4.4.1) that extracts the text, and marks the errors. Furthermore, the
script also gives the user the option to click on a sentence and see the words’ class,
person, gender, number, and case.

The old version of the website allowed the user to hover the mouse cursor over a POS
tag, on the results page, and display an explanation of it in English or Icelandic.
This functionality has been implemented for both plain text and one phrase per line
outputs. A function was made that processes either output type, and receives text
from IceNLP Web Service and inserts HTML span tags around all lexical annotations
of the input text. This is accomplished by sending every word in the received text
to IceNLP Web Service as a decode tag request (see Section 4.3.5). If the result is
not a question mark it is an explanation of an annotation that needs to be put into
spans. The explanation can be seen when the user hovers the mouse over IceNLP’s
annotations as seen in Figure 4.10. The function requests IceNLP Web Service
decode function to analyse each word, where a word is any string between white
spaces. When decode tag request is replied to with an explanation of an annotation

26

4.5 IceNLP Website

IceNLP! - A Natural Language Processing Toolkit for Icelandic

Type in the text to analyze:

H

Help
[]

Tokenizer: [Show output
#! Strict tokenization Input form: | Other v

Tagger’:
® IceTagger © HMM+ce ' IeetHMM © HMM-+Ice+tHMM

Tagging output: ¥ Show output
#! One sentence per line ¥ Mark unknown words [Show lemma

Parsing output: ¥ Show output
#! Syntactic functions ¥ Merge function and phrase labels
Rely on feature agreement [Mark grammatical errors
® Plain * Phrase per Line ©" XML © JSON © TCF * Processed TCF

Analyse

Figure 4.9: IceNLP’s index site.

a span, containing the explanation, is created around the word.

[NP-SUBIJ= [AP Litla lhenvf] barnid nheng] [VP bordar sfg3en | [NP-OBJ< fisk nkeo] . .

Adjective; Neuter; Singular;
Mominative; Weak declension; Positive

Figure 4.10: IceNLP’s result site POS tag decode.

a7

4 System Development

4.6 lceNLP Daemon

Before the work of this project started there was a daemon version of IceNLP as
briefly described in Section 2.4.1 on page 7. It has a server part and a client part
which functions in the following way. When the server part is executed it initiates
in the same way IceNLP does in IceNLP Web Service. There all IceNLP functions
are present with the addition of socket communication. The server accepts requests
through a socket defined in a configuration file. The client sends requests to this
socket, the server would then parse the text with IceParser and send back to the
client which would write the results to the user’s screen.

4.6.1 Output Format Requests

This part of IceNLP was considered to be used for a server and was part of the first
evaluation (see Section 5.1 on page 61). It was made to generate TCF, XML, and
JSON formats in addition to plain text and phrase per line outputs. A feature was
added so the user could request which formatis chosen for the output. The user can
enter a string, as shown below, into the standard input of the client. The server
then checks what is inside the brackets and sets the output accordingly.

[tcf]lLitla barnid bordar fisk.

When the server is initiated it reads a configuration file for how to set up the output.
After the initiation of the server the output could not be changed. In order to be
able to request different outputs, without reinitiating the server, a new setting in the
configuration file was added. When the server sees ALT, standing for alternating
output, as the output type, it allows output to be requested as seen in the example
above. The brackets and what comes between them is removed from the text before
it is parsed by IceParser.

[txt] [errorHighlight]Litla barnid bordar fisk.

IceParser can be requested to mark grammatical errors by adding "[errorHighlight|"
in front of the input text as seen in the example above. It can also receive "[tag]",
in which IceParser will not carry out the function of the transducers and return the
POS tag sentences in plain text format.

o8

4.6 IceNLP Daemon

4.6.2 Exercise Generator

The Exercise Generator was a suggestion on how it would be possible to utilise the
platform to create drill-and-practice exercises. The idea is to display a sentence
and let students select the morphological features for each word, generating a new
sentence only when the student has identified the correct morphological features, or
the website is refreshed. An exercise is generated from a sentence and displayed as a
web page, an example is shown in Figure 4.11. The sentence is fetched from a corpus
according to a certain aspect, e.g. if the student is supposed to identify the case of
nouns a sentence with multiple nouns is selected in accordance with the student’s
abilities. Sentences are given a score to select appropriately complex exercises for
students.

pad |fornafn v || persdnufornafn v||hvorugkyn~ | eintala v| nefnifall v v

var sagnord v | framsoguhattur v||germynd v | 3.persénar | eintala v | patid v

arid M

1898 | t6luord v||6beygjanleg téluord v v v \ /
nafnor®
lysingarord
fornafn
greinir
téluord
sagnord
atviksord
forsetning
upphréun
samtenging
erlentord

N

Figure 4.11: Example of an exercise created by the Exercise Generator.

A website was created for testing this feature. When a user connects to that web-
site, a script creates a request to the IceNLP daemon by having the client send the
string "[makeExercise]" to the server. The server runs the Perl program Exercise
Generator, that searches a corpus for a suitable sentence. It creates a string for
every word in the sentence in brackets, as seen in the example below, where the
information about each word is separated by a newline character. The text is then
sent to another Perl script that uses this text to create a web page containing HTML
and JavaScript as seen in Figure 4.11. The JavaScript manipulates the web page.
When a student selects a word class, the appropriate drop-down lists appear to the
right of that word.

[word=var; lemma=vera; ordflokkur=sagnord; hattur=framséguhattur;
mynd=germynd; persona=3.perséna; tala=eintala; tid=patid]l\n

29

4 System Development

The IMS Open Corpus Workbench (CWB) is used to search the corpus. CWB has
a query processor that allows external programs to make queries (Evert and Hardie,
2011). Exercise Generator uses the CWB in this way to fetch sentences. This feature
was not implemented as a feature in IceNLP Web Service, but shows that there are
possibilities to create exercises designed for every student using a platform that has
access to NLP tools.

4.6.3 Remove Plain Text Brackets

The plain text and phrase per line outputs have been modified. In the output of
IceParser the annotation was on both sides of the target phrase or function. The
raw plain text output by IceParser for "Litla barnid bordar" (*The little child eats’)
is shown here:

{*SUBJ> [NP [AP Litla lhenvf AP] barnid nheng NP] *SUBJ>}
[VP bordar sfg3en VP]

The convention is to mark the closing on right hand side only with a bracket.
[ceParser’s transducers require opening and closing annotation that match. There-
fore the internal workings of IceParser were left untouched in regard to the anno-
tation. A function strips off the right hand side markings from the output of the
transducers and leaves only the brackets. This can be seen below for the same ex-
ample as above:

{*SUBJ> [NP [AP Litla lhenvf] barnid nheng] } [VP bordar sfg3en]

This is also implemented for IceNLP Web Service and the IceNLP core.

60

5 Evaluation

This chapter deals with the evaluation of the grammatical error highlighting of
Writing Support, the performance of grammatical error detection, and the user
interface of Writing Support. During the first evaluation of Writing Support (section
5.1) the performance of IceNLP Web Server affected the feedback that each user
received. It gave incorrect results as evident in Section 5.1.4. Hence it was important
to evaluate the performance of IceNLP Web Service for this issue. In the second
evaluation of Writing Support (section 5.3) the performance issue had been resolved,
and new grammatical errors introduced.

5.1 Writing Support: First Evaluation

An evaluation of the current status of error detection was made in the summer of
2012. The main purpose of the evaluation was to find out if second language learners
of Icelandic feel that they learn from using a grammar error highlighter, if they are
open to using it, how accurately the detected errors perform, and how users react
to the interface of the website.

5.1.1 Participants

The participants were 13 second language learners, mainly from English speaking or
other West Germanic speaking countries. They were considered to have some com-
prehension of written Icelandic, but not spoken Icelandic. Some of the participants
had experience of Old Icelandic. The students had been learning Icelandic, as a
summer course, at Icelandic Online for a couple of months prior to the experiment.

A teacher from Icelandic Online assisted the students. All students had access to
computers connected to the internet.

61

5 FEvaluation

5.1.2 Materials

Writing Support was hosted temporarily on a remote server for this user test. The
status of the website was close to that described on page 50 and as can be seen
in Figure 4.4. The main differences were that only four grammatical errors were
detected: wrong case of an object governed by a verb, disagreement in a noun phrase,
disagreement between a subject and its complement, and disagreement between a
subject and a verb. Additionally spelling errors were highlighted in a dark grey
colour with white letters. For identifying grammatical errors IceNLP’s daemon was
utilised. Instead of the website making HT'TP requests, the client part of IceNLP’s
server was executed with users’ text piped into it.

Two forms were given to the participants. Both forms were in Icelandic and English.
The first form had instructions for participants on what they were supposed to do.
Participants were asked to describe two photos and then write a narrative about
them which included words from a given word list. There were two photos. The
first photo was of a boy sitting on the lap of a woman. They were sitting on a bench
with a bicycle, palm trees, and a lake seen in the background. The second photo
was of a woman and a boy washing a dog with a water hose. Along each picture
a list of relevant words followed, such as: "drengur" ("boy’), "hjol" (’bike’), "stort
tré" (‘large tree’), and "ungur" ('young’), both in Icelandic and English. On the
form the participants were given an IP address which they were supposed to open.
The IP address leads to Writing Support where they have to write at least 10-12
sentences. Instructions were given on how to use the Writing Support website with
its Java Script pop-up window, detailed at the end of Section 4.4.1.

The second form had questions about the participant, the interface of Writing Sup-
port, and if the error highlighting of grammatical errors helped. Questions about the
participant were with regard to Icelandic proficiency, native language, and various
other questions as seen below.

The first question asks the participant if her proficiency of Icelandic is beginner,
intermediate, or advanced. The next four questions ask the participant how much
they agree with the statements, choosing between: agree, agree somewhat, neither
agree nor disagree, disagree somewhat, and disagree.

Q1. General guidelines about how to use the system are clear.
Q2. Explanations of errors are clear.
Q3. Having some errors in my writing identified helps me write.

Q4. The system (overall) is helpful in writing Icelandic.

The next questions allowed the participants to reply in sentences.

62

5.1 Writing Support: First Evaluation

Q5. Are there other errors you would like identified?

Q6. Did you learn anything new about Icelandic morphology as a result of using
this system?

Q7. Can you think of a different way to provide automatic feedback in writing and
if so what?

Q8. How can we improve this system?

Q9. How could we improve the interface or look of the system?

Participants brought their own computers to do the assignment outlined for them.

5.1.3 Procedure

The participants had fifteen minutes to prepare before undertaking the task, e.g.
opening the Writing Support website on a web browser. When the task started
they had half an hour to write whole sentences in Writing Support. The text was
supposed to describe the two photos on the first form handed to them, and they were
also supposed to make a narrative about what happened before or after the photos
were taken. Then they were to let the Writing Support website analyse the text
for grammatical errors. After that they had ten minutes to modify the text and fix
grammatical errors before submitting it to the teacher. Finally fifteen minutes were
given to fill out the questionnaire on the second form handed out to the participants.

A log with all input texts from participants was collected. The first submissions
from students were analysed manually, marking all occurrences of patterns that are
checked by the error detector for each of the four errors. Unmarked occurrences are
categorised by if they are correctly left unhighlighted or if they should have been
highlighted. In the same fashion, errors that have been highlighted are categorised if
they have been correctly highlighted or not. From counting each group the number
of errors in the text is the sum of correctly highlighted errors and correctly not
highlighted occurrences of the pattern. Of those errors the number of undetected
errors is the difference between correctly and not correctly unhighlighted occurrences

of the pattern. The equation to find out recall is: 2eteded Brrors — Recq],

5.1.4 Results

Texts from all the participants were contained in the logs, but only nine question-
naires were returned. The first submitted texts were gathered for analysis from each
participant. From those first texts 47 spelling errors were found. The grammar
error detector highlighted 10 instances of noun phrases out of 23. Noun phrase dis-

63

5 FEvaluation

agreement is the column marked with N in table 5.1. Eight of them were correctly
highlighted, but in two of the cases where noun phrases were highlighted there was
no error. Recall is 100% as all errors were detected.

Two instances occurred of the error, where the case of an object governed by a verb
was wrong. One instance was found, and the other one was not detected out of the
38 times the pattern in which such error can occur. There were also very few errors
detected where there was disagreement between a subject and its verb. There were
only three errors correctly highlighted out of the seven errors that were in the text,
rendering the recall only 42.9%. There were four errors incorrectly highlighted out
of the 92 instances of subject-verb patterns.

There were about as many subject-complement patterns as verb-object, and its ac-
curacy was about the same, 97.2%. That is in accordance with the overall accuracy
of the four errors ranging between 95% and 100%. Eight errors were made in agree-
ment between a subject and its complement, seven of which were detected. That
makes the recall 87.5% as Table 5.1 shows.

O = Case of an object governed by a verb is incorrect.
N = Disagreement in a noun phrase.
C = Disagreement between a subject and its complement.

V = Disagreement between a subject and a verb.

O N C A%
Highlighted errors 1 10 7 7
Correctly highlighted 1 8 7 3
Precision % 100.0 80.0 100.0 42.9
Errors in text 2 8 8 7
Correctly highlighted 1 8 7 3
Recall (%) 50.0 100.0 87.5 429
Not highlighted 38 23 36 92
Correctly not highlighted 37 23 35 88
Accuracy (%) 97.4 100.0 97.2 95.7
Undetected errors ‘ 1 0 1 4

Table 5.1: Precision and recall of error detection.

As seen in Table 5.2, participants answered that they were either of intermediate or
advanced proficiency of Icelandic, with seven of them claiming to be intermediate
and two advanced. Results of question 3 showed that the participants thought that

64

5.1 Writing Support: First Evaluation

having grammatical errors highlighted would help them with only one participant
disagreeing with the statement. The following is a list of replies to the questionnaire.

Qo QT Q2 Q3 Q4

i 1 1 1 1
i 2 2) 5
a) 5) 5
1 4)) 3
i 4 1) 4
i 4 3) 4
a 4 4 5 4
1 2 2 4 4
i 4 2) 4
Average: 3.33 2.78 4.44 3.78

Table 5.2: Answers to first five questions and averages.

The participants were frustrated with the performance of the system. The submit-
ted texts got scrambled up with each other when sent simultaneously, so that the
participants got more than their own texts back. They also complained about slug-
gishness of the system and that texts were incorrectly highlighted, where there were
no errors in that text. The grey highlight of spelling mistakes did not show white
colour but black. Writing Support website was difficult to use on tablet computers.

The way errors are pointed out was thought to suit language learners well, but
that they need to be given additional hints on how to correct the errors they make.
There was a suggestion to include the declension tables of a morphological database
of Bjarnadéttir (2005) called BIN (‘Database of Modern Icelandic Inflection’). None
of the participants claimed to have learned something about Icelandic morphology
from using the system.

Only one participant suggested that the interface should be changed. The major
changes the interface needed, according to the questionnaire, is to change error
highlighting and text on the website. A nicer looking URL is suggested. The
answers of the last five questions of the questionnaire can be seen below.

e (Q5: Are there other errors you would like identified?

The system does not work when there are more students simultaneous on
the system. Also, it is not BYOD (Bring Your Own Device) friendly because
it us difficult to use on a tablet.

One time, after I clicked on "Yfirfara texta" ("Analyse text’), I was given

65

5 FEvaluation

66

someone else’s text back with their errors highlighted. My text was still in the
box to edit, though.

When several users are logged in simultaneously the correction system
sometimes ceases to work proPerly.

The original text I wrote was accurately reproduced in the correction win-
dow. I then corrected the original version and pressed "Yfirfara texta" ("Anal-
yse text’). Unfortunately the text was scrambled and also words not in my
original or corrected version appeared in the text!

Some of the errors identified are not correct. When more than one user is
on the system it is very slow. Occasionally you see the work of other users on
the system. It is difficult to use on an iPad.

The system is slow. Improvement of the interface.

Q6: Did you learn anything new about Icelandic morphology as a result of
using this system?

No.

Q7: Can you think of a different way to provide automatic feedback in writing
and if so what?

No, I think this is very good. Technology just can’t cope with every variation
n language yet.

No, the basic idea is good. However, further development needs to be done
on the system to remove errors. Also: the boxes which are intended to show
what the corrections are, are themselves confusing. They provide no useful
information. They simply tell you that you have made a mistake which you
already know.

The system is an excellent idea. There are some bugs in the system which
need to be sorted but overall it s a very quick and easy way to highlight gram-
matical areas. If it could be combined with declension tables that would be
useful, or even better if you could see a declension table when clicking on a
highlighted mistake that would be very useful.

Q8: How can we improve this system?

If the error messages could provide suggestions for correction, that might
be nice.

Make explanations of errors in English as well as Icelandic.

It would be good if the system would be more stable. It did not always work,
and was very slow sometimes.

Better speed — a lot of people online together. Improve it visually.

There was a problem with the server, the system seemed to be overloaded, so

5.1 Writing Support: First Evaluation

I could not really try out the program. My sentences were mized up with those
of other participants. When it finally worked, I had no more time. Basically,
I like the idea of this program a lot and I would certainly use it!

e (Q9: How could we improve the interface or look of the system?

People who have trouble seeing things in low contrast might find it difficult
to see the black-on-grey of "Ord ekki © ordoabok” ("Word not in dictionary’).

I do not think the look of the system does need improving.
No need to improve this.

The URL could be something simpler and logical.

A bit of web design.

5.1.5 Conclusion

With regard to the error detection, there was a severe problem with performance
when two ore more participants had submitted their texts at the same time. The way
Aspell was executed made the output generation of IceParser slow. This increased
the chance of participants sending texts while other participant’s text was being
processed. Making the IceNLP daemon able to handle concurring requests must
be implemented. The spell checking did not help the participants with their first
submission. The spell checking must be done before text is submitted. Perhaps
spelling mistakes can be detected in the web browser of the user, either by their
browser or the Writing Support website.

The over all precision was 76% and recall 76%), but the error detection of disagree-
ment between a subject and a verb was 42.9% for both precision and recall. A
subject-verb sentence such as "konan og madurinn borda fisk" (’the woman and the
man eat fish’) should not be highlighted. What was needed is to detect that the
subject, "konan og madurinn" ("the woman and the man’), should be treated as a
whole, being plural and neuter, and expecting the verb to be as well. There were
many of those errors in the texts due to the two photos picturing a boy and a woman
on both pictures.

The Writing Support website must get a new URL that represents it better than an
IP address. As suggested by Icelandic Online on the design, the website should be
in Icelandic and not correct errors or give the student the answers. But it needs to
have some additional information about the errors for the students to be able to help
themselves. Connecting Writing Support with BIN as suggested by a participant
could be accomplished, it needed to be investigated to see if it can be implemented
without a total redesign of the website. BIN is a databse of inflection that could be
used to help students to correct highlighted errors.

67

5 FEvaluation

The major issue is with the error detection which needed to be addressed. The
precision and recall are considerably high. This can be caused by a small sample
size due to few participants, and the fact that the students have intermediate com-
prehension of Icelandic. Further testing must be done with more participants for
more accurate results.

5.2 Load Test

The first evaluation of Writing Support showed a problem with concurrency. The
platform which facilitates Writing Support was to be a Java Servlet, not using the
daemon any longer. IceNLP’s Java Servlet was transformed and then tested to see
how many requests it could handle per second. Would the Servlet behave like the
daemon had done in the first evaluation as mentioned in Section 5.17 If so then there
is a lack of the ability to handle concurrent requests which needs to be addressed.
When evaluating how well IceNLP Web Service would handle Load, there were
conducted two tests where IceNLP Web Server handled concurrent requests, and
where IceNLP Web Server did not handle concurrent requests. That is, the main
function that calls the IceNLP tokenise, tagging, and parsing functions is declared
with and without synchronized keyword.

5.2.1 Materials

A script was written in JavaScript that sends POST requests to the IceNLPWeb-
Server and writes the results. The script carried out both the requests and writing of
the results on screen 1000 times in a succession. Each request contained a grammat-
ically erroneous Icelandic text (see the example texts A and B below), and requested
from IceNLPWebServer to conduct tokenisation, POS tagging, and parsing of the
text. Parsing included error detection. Each request has identity code with "CH’,
'OP’, or 'FF’ depending on which browser it was sent from, then the number of
the request counting from 0, followed by six random letters and numbers. By this
each request can be tracked in the log with the third request from Chromium being
identified with "CH4’ and then a random number code.

A:1 fyrstu myndunni sé ég litla stelpu sem er ad hjdla .
Hin er ad hlzja .
I myndinni er lika madur .
Hann er dokkhardur .
Madurinn hjalpar stelpunni ad hjdéla .
(Ung stelpa & hjol , en kann ekki hjdola .

68

5.2 Load Test

Hin vill lara ad hjdéla .
Getirdu hjalpad mér , pabbi 7

B:Hildur er ung stelpa , sex ars gomul .
Hin er ad lzra ad hjdéla .
Pabbi er ad hjalpa henni , en pabbi segir Hildu er svo 1itill .
Pabbi kan ekki einbera sér , af pvi pabbi sér falleg kona .
pad finnst Hildi ekki gaman .
Hundurinn var hvitur , en nina er hundurinn brann ,

An early version of IceNLP Web Service was tested, having only the IceNLP mode.
It was hosted on the Apache Tomcat server on localhost. The website holding the
scripts, from which the requests were made, was hosted on Apache HTTP Server on
the same computer with another port. Three web browsers were used: Chromium
version 18.0, Opera version 12.02, and Mozilla Firefox version 15.0.

5.2.2 Method

The script was set up on the website to send requests with certain parameters. The
three browsers were initiated. The browsers went at the same time to the address
of the website holding the script. Logs were collected.

5.2.3 Results without handling concurring requests

Opera made its 17th requests when Chromium made its first request to the server,
and then Opera stopped making new requests.

[exiting] 45876 id=0P16XYMAO1
[entering] 45877 id=0P17hyofrP
[entering] 45879 id=CHOsmqrSNM

The 18th request was being processed while Chromium’s first request arrived in
IceNLP Web Server as seen in the text above. Chromium continued making re-
quests until Firefox made a request. Firefox’s first request was received by IceNLP
Web Server while it was processing the 27th request, numbered 26. The processing
started working on the 28th request, but never finished. Instead Firefox’s first re-
quest is finished processing and Firefox finishes all of its 1000 requests.

[exiting] 45905 id=CH25jTd6BJ
[entering] 45906 1d=CH26ITmyLZ

69

5 FEvaluation

[entering] 45907 id=FFOfnDuAgM
[exiting] 45906 i1d=CH26ITmyLZ
[entering] 45908 id=CH27F10XXV
[exiting] 45907 id=FFOfnDuAgM
[entering] 45909 id=FF1dfcUdnM

Opera sent text A shown in the material section above. Chromium sent requests
with the B text. IceParser received strange inputs when the first input from Chrom-
ium interfered with Opera’s 18th. The first five lines are from text A as expected,
but after that the start of text B takes over, with the first letters, "Hildur er u", of
the first sentence of text B missing.

0. I fyrstu myndunni sé ég litla stelpu sem er ad hjéla .

1. Han er ad hlzja .

2. I myndinni er lika madur .

3. Hann er dokkhzrdur .

4. Madurinn hjalpar stelpunni ad hjéla .

5. ng stelpa , sex ars gomul .

6. Hin er ad lzra ad hjdéla .

7. Pabbi er ad hjalpa henni , en pabbi segir Hildu er svo 1litill .
8. Pabbi kan ekki einbera sér , af pvi pabbi sér falleg kona .
9. Dpad finnst Hildi ekki gaman .

10. Hundurinn var hvitur , en ntna er hundurinn brann ,

5.2.4 Results while handling concurrent requests

The three browsers all finished their 1000 requests. The output for every request did
not differ from what was expected for a single request with no interfering requests.
As seen in the example below from the coloured log, multiple requests could be
handled at the same time. The example shows when the tagger and parser are
entered and exited, and also when the synchronized ’analyse’ function that carries
out the functions of the tokeniser, IceTagger, and IceParser.

enter - analyse 1d=FF268
exit - tagger 1d=CH407
enter - parser 1d=CH407
enter - tagger 1d=0P372
exit - parser 1d=CH407
enter - analyse 1d=CH408
exit - tagger 1d=0P372
enter - tagger 1d=CH408
enter - parser 1d=0P372

70

5.2 Load Test

exit tagger 1d=CH408
enter - parser 1d=CH408
enter - tagger 1d=FF268
exit - parser 1d=0P372
enter - analyse 1id=0P373
exit - parser 1d=CH408
enter - analyse 1id=CH409
exit - tagger 1d=FF268
enter - parser 1d=FF268
enter - tagger 1d=CH409
exit - tagger 1d=CH409
enter - parser 1d=CH409
enter - tagger 1d=0P373

The time it took all three browsers to finish 1000 requests of 64 tokens was similar
when each batch of requests was made separately or simultaneously as seen in Table
5.3. The difference was 14.4 seconds more on average for the three browsers com-
pared to when the requests were made one at a time. IceNLP Web Service analysed
3.48 requests per second on average when the browsers carried out the script sepa-
rately, and 3.32 requests per second when the browsers made requests at the same
time.

Time in seconds | Firefox Opera Chromium

One at a time 346.06 260.90 254.60
All together 365.47 277.42 261.87

Difference 19.41 16.52 7.27

Table 5.3: Precision and recall of error detection.

5.2.5 Conclusion

The load test showed that IceNLP Web Service could not handle simultaneous re-
quests without the concurrency implementation. With that implementation IceNLP
Web Service can service simultaneous requests. The time it takes to process multiple
requests is increased by a fraction of a second when multiple requests are sent at
the same time. This is highly unlikely to occur unless the processing time of the
requests is long.

71

5 FEvaluation

5.3 Writing Support: Second Evaluation

The study was conducted during the summer of 2013 with more participants than
in the 2012 experiment. All five of the grammatical errors that were set out to be
implemented were tested as had been done with a subset of them earlier. One extra
error that had not been planned was to be tested as well. The same procedures were
followed as have been detailed in Section 5.1.3, but with slightly different material
as is explained in 5.3.2.

5.3.1 Participants

There were 26 second language learners. All had started to study Icelandic at
Icelandic Online two months prior to the experiment. Two teachers from Icelandic
Online assisted the students on site.

5.3.2 Materials

The same instructions were given to participants as were given in the 2012 exper-
iment, described in Section 5.1.2, but with changed URL to the Writing Support
website. The URL to the website changed to http://nlp.cs.ru.is/rithjalp. Writing
Support did not use the IceNLP daemon any longer for error detection, but utilised
the new IceNLP Web Service for that functionality. The daemon had provided
spelling error detection which was not implemented in IceNLP Web Service. The
Writing Support website was left largely untouched and therefore did not provide
any spelling error detection either. There was only minor change to the question-
naire, rewriting the statements from 2012 into questions.

Q1. Are the directions for using the writing feedback system clear?
Q2. Are the explanations about the types of errors clear?

Q3. Does it help your Icelandic writing to receive suggestions about some errors but
not all?

Q4. Did the system help you (in general) with your Icelandic writing?

Q5. Would you have wanted suggestions for correcting other errors in your text? If
so, which ones?

Q6. Did you learn anything new about the Icelandic case system for this feedback?
Q7. Can you think of another way to give effective automatic feedback on writing?

Q8. Do you have suggestions about how we can improve the automatic feedback
system?

72

5.3 Writing Support: Second Evaluation
Q9. Could we improve the "look" of the system?

IceNLP Web Service had replaced the IceNLP daemon for grammatical error detec-
tion, which was hoped to make the performance of the server stable and to handle
an increased amount of participants better than the IceNLP daemon did the year
before. Two new grammatical error detections were added: Incorrect case of an
object governed by a preposition and the auxiliary verb error. The spelling error
detection was removed. Grammatical detection had been improved, and detection
of disagreement between a subject and a verb now changed gender and number if
the subject contained something like 'man and woman’.

5.3.3 Results

O = Case of an object governed by a verb is incorrect.

N = Disagreement in a noun phrase.

C = Disagreement between a subject and its complement.
V = Disagreement between a subject and a verb.

P — Case of an object governed by a preposition.

G = Auxiliary verb error.

O N C \Y% P G
Highlighted errors 4 44 6 28 42
Correctly highlighted 2 24 2 12 40 0
Precision (%) 50.0 54.5 33.3 429 952 0.0
Errors in text 18 31 6 43 86
Correctly highlighted 2 24 2 12 40 0
Recall (%) 11.1 774 331 279 46.5 0.0
Not highlighted 40 146 55 257 167 9
Correctly not highlighted 24 139 51 226 121 7
Accuracy (%) 60.0 95.2 92.7 879 725 778
Undetected errors ‘ 16 7 4 31 46 2

Table 5.4: Precision and recall of error detection.

There was a very low recall for errors when the case of an object governed by a verb,
11.1% as seen in Table 5.4. The recall was also very low for all other errors except
for noun phrase agreement. Disagreement in noun phrases had recall of 77.4%, but
suffered in precision with only 54.5%, of 44 noun phrases that were highlighted only

73

5 FEvaluation

24 of had disagreement. From the new errors, the auxiliary verb error was never
detected but two instances of the error occurred. Further more, the detection of an
incorrect case of an object according to a preposition was considerably good with
precision of 95.2%, even though its recall only had 40 out of 86 errors correctly
highlighted.

The precision and recall varied greatly between the grammatical error types. Both
precision and recall was high for the noun phrase disagreement error detection com-
pared to the other error types. This is a result of noun phrases not being contingent
on word order, nor does the order of the words within the noun phrase interfere
with the error detection. Other error type detections such as the case of an object
governed by a verb can suffer greatly from word order where the verb usually comes
before the object. When there are more complex, unusual, or incorrect sentence
structure, then the error detections that are sensitive to word order suffer. The er-
ror of wrong case of an object governed by a preposition had high precision but low
recall. The high precision is caused by that when a preposition has been correctly
tagged it causes few wrong detections to compare the preposition and the expected
case of the following noun phrase. The low recall is caused by the prepositions incor-
rectly be tagged of a different word class than a preposition as explained in section
4.2.4, incorrect case of the object can cause incorrect tagging that leads to the error
detection to not find the error.

Out of the 26 participants, 24 questionnaires were received. Majority of the partici-
pants claimed to be beginners. None of them thought the directions on using Writing
Support were unclear. Majority of the participants thought the system helped them
in writing Icelandic as seen on Table 5.5. The table also shows that on average the
participants where more positive than negative in regard to explanations of the error
types being clear and whether it helped them writing Icelandic to receive indication
of some errors.

The participants wanted more information or suggestions on how to correct their
errors, even to receive a corrected text. The error highlighting helped some partic-
ipants to learn something new about Icelandic, specially the highlighting of noun
phrases that are in wrong case governed by a verb. Nonetheless the participants
found the system useful and thought it was a good way to get feedback from a
computer on their grammar.

Many participants agreed that the website needs to be in English, specially the
explanations of what each error type is. Other suggestions about the websites were to
change the highlighting colour scheme to facilitate colour-blind people. The colours
and design of the website should also be updated according to some participant, but
some of them thought it did not need to change.

74

5.3 Writing Support: Second Evaluation

Qo QL Q2 Q3 Q4

b 4 2 3 4
b 5 4 4 4
b 5 3 5 4
b 5 3 3 4
b 4 4 5 5
b 4 4 4 4
i 3 2 5 5
i 4 3 3 4
b 4 3 4 3
b 4 4 3 3
b 5 5 5 5
b 4 2 4 2
b 4 3 4 4
b 3 2 3 3
b 4 3 2 4
b 5 4 4 5
b 4 b) 3 2
b 3 2 4 4
b 5 4 4 4
b 4 2 3 3
b 5 5 4 4
b 5 4 5 5
i 4 4 4 5
b 5 4 4 5
Average: 4.25 3.38 3.83 3.96

Table 5.5: Answers to first first five questions and averages.

e Q5: Would you have wanted suggestions for correcting other errors in your
text? If so, which ones?

Yes, it didn’t correct cases.

There were some grammatical errors that the program did not find.
Maybe suggestions for other phrases.

Wrong spelling.

Endings ... maybe.

The program didn’t pick up when I had the wrong cases.

Yes, right answer on click on certain button.

Yes, all of them if possible.

It would be helpful to get suggestions for all errors, because I don’t always

75

5 FEvaluation

76

understand whatl’s wrong with my text.

Yes, the system doesn’t correct errors like "peir" (‘them’ of a masculine
gender) for a woman and a man ("pau") (‘them’ neuter).

e (Q6: Did you learn anything new about the Icelandic case system for this

feedback?

Nothing new that it was a good [practice] for learning the declension of the
cases.

Something. New words, and about grammar.
Helped in past tense writing.

I don’t know it well enough yet =)

The case followed by certain verbs.

The use of different cases.

I learned new word phrases in which the accusative form of the word is
required.

Which case to use after which signal word, but have to look it up on Ar-
nastofnun.

I learn: "Hun er ’et’ hvit skyrta”.

Q7: Can you think of another way to give effective automatic feedback on
writing?

No.
This system works well.

Only through teacher/student interaction. I think it is very difficult to
create a program that effectively and accurately gives feedback. FEspecially in
Icelandic.

Don’t know.
Give examples on words that would fit better.

This seems to be quite a good way to get feedback, but automatic feedback
system does not recognize all mistakes yet. That’s why it’s better to get feedback
from teachers instead.

System based on Internet browsing.
I find this system very useful.

Maybe when there is an error of "sense" a thing like "maybe you would
like to say something different” or "This makes no sense”.

Q8: Do you have suggestions about how we can improve the automatic feed-
back system?

Maybe the instructions also in English.

5.3 Writing Support: Second Evaluation

It missed some simple things, so it did not seem to work 100%.
Show the case of a word that is written in the wrong case.

Give "Villimerkingar um" ("Error highlights’ information) in English as
well.

Better explanations about expressions and cases.

Give the correct form when one clicks on a return button. English trans-
lation of error message on click.

The program could offer different options?

Maybe by translating the meaning of the colours for the mistakes in En-
glish!

Q9: Could we improve the "look" of the system?
It could be more "professional” looking. Now it looks quite simple.
Not necessary.
Something more contemporary, use the whole space of the web page.
There s too much file in front page.

Times New Roman - fonts look very home-made. Why is the box Faster-
yellow? =)

Make it fill the whole page, use 3d effects, use cleaner colours.
Maybe.

Different background colour in comparison to text field, move elements to
the centre of the screen. Change colours to "dsamremi i kyni.." (*disagreement
in gender..” of noun phrases) and "dsamfreemi frumlags" (‘disagreement of
subject’ and a verb): I am red-green colour blind and it is difficult to tell them
apart.

Brighter colours :)

Of course the look of it could be more modern, but if it’s made to be too
fancy the program may not work as efficiently as it is working now.

Nicer typesetting.
With more colours.

I like that different errors are marked with different colours. The program
looks just a bit old. :)

Maybe but it’s a system to learn language not a social network, so I think

it’s fine =)

77

5 FEvaluation

5.3.4 Conclusion

The IceNLP Web Service handled the requests from users perfectly, giving none
of the bad performance seen in the testing of 2012 when the service failed. But
improvements to grammatical detection did not translate into better results. In 2012
the disagreement between a subject and a verb error had both precision and recall
of 42.9%, but in 2013 recall dropped to 27.9% even if precision remained 42.9%.
Detection of other grammatical errors declined as well with over all precision of
64.5% and recall of 43%. This was not explained by the lack of a spell checker. The
big change from the result in 2012 might be that the participants in 2012 were of
intermediate proficiency of Icelandic, but the group in 2013 thought of themselves
as beginners. Many of the participants wrote texts with extra words, with incorrect
word order, and unfamiliar sentence structure, such as "bak vid eru pao litid hjolio
og stor graen tré" ("behind are it little the bicycle and big green tree’). By forming
the sentence in an unexpected manner IceNLP fails to correctly annotate the text.
Therefore a tool which helps with sentence structure is needed for students. The
tool might only accept common and simple sentence structures known in Icelandic,
where the structure is gathered from a corpus.

There were errors discovered that need to be addressed with regard to detecting
errors. A sentence like "betta eru menn" (‘those are men’), "betta" is actually
'this’, a singular word. Because of this the next word "eru" ("are’) is incorrectly
highlighted. More errors were discovered such as a disagreement in noun phrases in
sentences with numbers, such as "ég er fimm ara" ('T am five years old’). "Fimm" is
nominative and "ara" is genitive. This occurred few times in this year’s participant’s
texts, but did not in last year’s evaluation.

The evaluation shows that language learners are open to using a tool such as this
website to facilitate their language learning. The questionnaire showed that the
website needs a new design, not only to look fancy, but also for the colour blind.
The website might need to be both in Icelandic and English, or made in such a way
that language is not a barrier to understand the type of errors and how to correct
them.

A teacher from Icelandic Online was asked her views on Writing Support. She
claimed that the task of describing the pictures required more complex sentences,
grammar, and vocabulary than the participants needed in previous exercises in their
learning. Writing Support could become a useful tool for learning Icelandic after
further improvements on the detection, not all grammatical errors were detected.

78

6 Discussion and Conclusion

The purpose of the project, described in this thesis, is to build an intelligent writ-
ing support system for second language learners of Icelandic. A website was built,
named Writing Support, where second language learners can write sentences and
have certain grammatical errors highlighted. Writing Support utilises the IceNLP
module in IceNLP Web Service for lexical analysis and to mark grammatical er-
rors. IceNLP Web Service has NLP modules that can be used to facilitate language
learning. This web service receives requests from users, such as websites, to carry
out analysis and to return results. Two evaluations of the error detection of Writing
Support were conducted, one in 2012 and the other in 2013. The results of Writ-
ing Support’s evaluation shows that precision and recall are rather low, but that
participants in the evaluation agreed that this was a good way to learn Icelandic.

The reason for low precision and recall is twofold. First, spelling errors make it
difficult for IceTagger to recognise words and make IceTagger guess the morpholog-
ical features of words in accordance to their surrounding words. When IceTagger
encounters an unknown word that might be incorrectly written, the word is tagged
according to its context rather than its morphological features, as morphological
features of unknown words are unknown. The tag selected to be the correct one
applies to the word as it should be written correctly. IceNLP is good at tagging and
parsing grammatically correct Icelandic texts. The simpler the sentence the better.
IceNLP is not good at analysing erroneous and complex sentences. Second, strange
sentence structure and multiple grammatical errors need to be addressed before any
grammatical error detection.

Sentence structure is annotated by IceParser. Therefore only after IceParser has
finished annotating phrases and syntactical functions can sentence structure error
highlighting take place. This can be accomplished inside the post process phase
between the Clean 2 and Phrase Per Line transducers in the form of a new trans-
ducer. Tt is possible to analyse a tagged corpora to detect the most common sentence
structures in Icelandic. With rules of most common known sentence structures it is
possible to warn a user if rare or awkward sentence structure is detected. Students
could be given a list of sentence structures that would guide the students. The list
could be generated in accordance to the words which students use. In future releases
error detection should be moved to its own transducer. That will result in longer
processing time, but the error detector would have access to the whole annotated

79

6 Discussion and Conclusion

string, instead of partially annotated string.

The questionnaire showed that the Writing Support website needs a redesign. Many
participants of the second evaluation wanted a spell checker. As discussed before,
this is important. Many options are for spell checkers online, GNU Aspell, discussed
on page 41, or Skrambi. Skrambi can easily be used as web service when it is
released. Participants also wanted features that could help them fix the errors that
were highlighted, one participant suggested connecting BIN (Bjarnadottir (2005);
see page 67) to Writing Support. This could be done for all words within highlighted
noun phrases. In a similar way a list of possible cases following verbs could be shown
for highlighted error between a verb and an object. A help page explaining how to
correct each error type might help language learners.

Part of this project was also to create an architecture for a platform that facilitates
ICALL. This platform was built using web services, and the implementation of that
platform used by Writing Support was named IceNLP Web Service. As seen in
Section 5.2 about load testing IceNLP Web Service, it can handle multiple requests
at the same time. The platform is not language specific. Stanford POS Tagger was
implemented allowing IceNLP Service to tag English, in addition to Icelandic. The
Stanford module in IceNLP Web Service can only handle one model in memory at
a time, due to memory restrictions, in its current implementation. When a user
requests a model that is not the one that is in memory, the new model must be
initiated, causing delays in processing of the request. This shows that there is
a need of a monitor that directs requests, if needed, to another resource. That
resource is another IceNLP Web Service that already has that other model initiated
by Stanford Tagger. This can also be done if the primary IceNLP Web Service is
busy but one of its resources, another IceNLP Web Service, is idle. The primary
IceNLP Web Service would track status of its resources and get signals from them
indicating what type of requests they are able to accept.

As mentioned in Section 4.3.3 about the filter, the functions that were implemented
in IceNLP Web Service were all built-in. A POST request function was constructed
but not used. But this has to be expanded further to include external programs,
databases, and corpora.

In the first evaluation the precision and recall were considerably high, 76% for both
precision and recall, compared to the second evaluation which had 64.5% precision
and 43% recall. The participants in the first group had better comprehension of
Icelandic than the group in the second evaluation, so their sentence structure was
better. In the first evaluation most of the participants considered themselves to be
intermediate learners of Icelandic, but the participants of the second evaluation in
2013 thought of themselves as beginners, having only studied the language for a
couple of months. The number of participants was less in the first evaluation than
in the second one, 13 and 26 respectively. Recall and precision of the error detection

80

for Writing Support was low, but participants of the second evaluation thought the
system helped them writing Icelandic. The system highlighted many errors, and
participants liked the idea of Writing Support. Error detection worked well on the
simplest sentences. This shows that there is potential for this type of system for
facilitating second language learning of Icelandic.

81

Bibliography

Luiz Amaral, Flavia Cunha, Detmar Meurers, and Ramon Ziai. Developing and
Integrating ICALL Systems. 2010.

Alan Bailin. Artificial Intelligence and Computer-Assisted Language Instruction: A
Perspective. Calico Journal, 5(3):25-45, 1988.

Alan Bailin and Lori Levin. Introduction: Intelligent Computer-Assisted Language
Instruction. Computers and the Humanities, pages 3-11, 1989.

Stephen Bax. CALL—past, present and future. System, 31(1):13-28, 2003.

Ken Beatty. Teaching and researching computer-assisted language learning. Pearson
Education, 2003.

Kristin Bjarnadottir. Modern Icelandic Inflections. Nordisk sprogteknologi, 2005:
49-50, 2005.

Martha Dis Brandt, Hrafn Loftsson, Hlynur Sigurpoérsson, and Francis M Tyers.
Apertium-IceNLP: A rule-based Icelandic to English machine translation system.

In The 15th Annual Conference of the Furopean Association for Machine Trans-
lation (FAMT-2011), Leuven, Belgium, 2011.

Thorsten Brants. Tn'T: a statistical part-of-speech tagger. In Proceedings of the sixth
conference on Applied natural language processing, pages 224-231. Association for
Computational Linguistics, 2000.

Noam Chomsky. On certain formal properties of grammars. Information and control,
2(2):137-167, 19509.

Jon Friorik Dadason. Post-Correction of Icelandic OCR Text. Master’s thesis,
University of Iceland, 2012.

Stefan Evert and Andrew Hardie. Twenty-first century corpus workbench: Updat-
ing a query architecture for the new millennium. In Proceedings of the Corpus
Linguistics 2011 conference. University of Birmingham, UK, 2011.

Ulrich Heid and Kerstin Eckart. The D-SPIN text corpus format and international
Standards. October 2009. Universitat Stuttgart, (Germany.

83

BIBLIOGRAPHY

Trude Heift. Developing an intelligent language tutor. CALICO Journal, 27(3):
443-459, 2010.

Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow. WebLicht: Web-based LRT
services for German. In Proceedings of the ACL 2010 System Demonstrations,
pages 25-29. Association for Computational Linguistics, 2010.

Anton Karl Ingason, Sigran Helgadottir, Hrafn Loftsson, and Eirikur Rognvalds-
son. A Mixed Method Lemmatization Algorithm Using a Hierarchy of Linguistic
Identities (HOLI). In Advances in Natural Language Processing, pages 205-216.
Springer, 2008.

Dan Jurafsky, James H Martin, Andrew Kehler, Keith Vander Linden, and Nigel
Ward. Speech and language processing: An introduction to natural language pro-

cessing, computational linguistics, and speech recognition, volume 2. Prentice Hall,
2000.

Ida Kramarczyk, Hrafn Loftsson, Sigrin Helgadéttir, and Eirikur Roégnvaldsson.
Improving the PoS tagging accuracy of Icelandic text. 2009.

Hrafn Loftsson. Tagging Icelandic text: An experiment with integrations and com-
binations of taggers. Language Resources and Evaluation, 40(2):175-181, 2006.

Hrafn Loftsson. Tagging Icelandic text: A linguistic rule-based approach. Nordic
Journal of Linguistics, 31(1):47, 2008.

Hrafn Loftsson and Eirfkur Régnvaldsson. IceParser: An Incremental Finite-State
Parser for Icelandic. In Proceedings of NoDaLiDa. Citeseer, 2007a.

Hrafn Loftsson and Eirikur Rognvaldsson. IceNLP: A Natural Language Processing
Toolkit for Icelandic. In Proceedings of interspeech, 2007b.

Christopher D Manning and Hinrich Schiitze. Foundations of statistical natural
language processing. MIT press, 1999.

Tony McEnery and Andrew Hardie. Corpus linguistics: method, theory and practice.
Cambridge University Press, 2011.

Noriko Nagata. BANZAI: An application of natural language processing to web-
based language learning. CALICO journal, 19(3):583-600, 2002.

Noriko Nagata. Some design issues for an online Japanese textbook. CALICO
Journal, 27(3):460-476, 2010.

Jorgen Pind, Friorik Magnuisson, and Stefan Briem. The icelandic frequency dic-
tionary. The Institute of Lexicography, University of Iceland, Reykjavik, Iceland,
1991.

84

BIBLIOGRAPHY

Ruth H Sanders. Thirty years of computer assisted language instruction: Introduc-
tion. Calico Journal, 12(4):6-14, 1995.

Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In Pro-
ceedings of international conference on new methods in language processing, vol-
ume 12, pages 44-49. Manchester, UK, 1994.

Helmut Schmid. Text Corpus Format. November 2010. SfS Tiibingen / IMS
Stuttgart, Germany.

Hlynur Sigurpoérsson. Daemonizing and enhancing IceNLP for the purpose of ma-
chine translation. 2010.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer.
Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency network. In In
Proceedings of HLT-NAACL 2003, pages 252-259, 2003.

Elena Volodina, Hrafn Loftsson, Birna Arnbjornsdéttir, Lars Borin, and Guo-
mundur Orn Leifsson. Towards a system architecture for ICALL. In Proceed-
ings of the 20th International Conference on Computers in Education. Singapore:
Asia-Pacific Society for Computers in Education, 2012a.

Elena Volodina, Lars Borin, Hrafn Loftsson, Birna Arnbjérnsdoéttir, and Guo-
mundur Orn Leifsson. Waste not, want not: Towards a system architecture for
ICALL based on NLP component re-use. In Electronic Conference Proceedings,
volume 80, pages 47-58, 2012b.

Shashinie M.T. Wijayadharmadasa. E-learning and the challenges Distance Lan-
guage Learning with Digital Technologies Effectively. 2012.

85

	Introduction
	Project Goal
	Structure of the Thesis

	Background
	Computer-Assisted Language Learning
	Icelandic Online
	Intelligent Computer-Assisted Language Learning
	Natural Language Processing
	IceNLP
	Tokeniser
	IceTagger
	HMM+ICE+HMM
	IceMorphy
	IceParser

	Text Corpus Format

	Project Description
	System Development
	Text Corpus Format Generator
	Error Detection
	Noun phrase agreement
	Agreement between a subject and its complement.
	Agreement between a subject and a verb
	Case of an object governed by a preposition
	Case of an object governed by a verb
	Auxiliary verb error
	Spelling mistakes

	IceNLP Web Service
	Input Requests
	Switch
	Filter
	IceNLP Lexical Analysis
	Decoding tags
	Stanford Part-Of-Speech tagger

	Writing Support Website
	Text Corpus Format to HTML
	Loggers

	IceNLP Website
	IceNLP Daemon
	Output Format Requests
	Exercise Generator
	Remove Plain Text Brackets

	Evaluation
	Writing Support: First Evaluation
	Participants
	Materials
	Procedure
	Results
	Conclusion

	Load Test
	Materials
	Method
	Results without handling concurring requests
	Results while handling concurrent requests
	Conclusion

	Writing Support: Second Evaluation
	Participants
	Materials
	Results
	Conclusion

	Discussion and Conclusion
	Bibliography

