
M
as
te
r
T
he
si
s

Hochschule Darmstadt & Reykjavík University
Departments of Computer Science

LISGrammarChecker: Language Independent
Statistical Grammar Checking

Master Thesis to achieve the academic degree
Master of Science ĪM.Sc.ī

Verena Henrich and Timo Reuter
February 2009

First advisor: Prof. Dr. Bettina HarriehausenĥMühlbauer

Second advisor: Hrafn Loftsson, Ph.D., Assistant Professor

ii

“There is something
funny about me
grammar checking
a paper about
grammar checking...”

William Scott Harvey

iii

iv

Abstract

People produce texts, and therefore the use of computers rises more and more. The gramĥ
matical correctness is often very important and thus grammar checkers are applied. Most
nowadays grammar checkers are based on rules, but often they do not work as properly as
the users want. To counteract this problem, new approaches use statistical data instead of
rules as a basis. This work introduces such a grammar checker: LISGrammarChecker, a Language
Independent Statistical Grammar Checker.

This work hypothesizes that it is possible to check grammar up to a certain extent by only
using statistical data. The approach should facilitate grammar checking even in those lanĥ
guages where ruleĥbased grammar checking is an insufficient solution, e.g. because the lanĥ
guage is so complex that a mapping of all grammatical features to a set of rules is not possiĥ
ble.

LISGrammarChecker extracts nĥgrams from correct sentences to built up a statistical dataĥ
base in a training phase. This data is used to nd errors and propose error corrections. It
contains biĥ, triĥ, quadĥ and pentagrams of tokens and biĥ, triĥ, quadĥ and pentagrams of partĥ
ofĥspeech tags. To detect errors every sentence is analyzed with regard to its nĥgrams. These
nĥgrams are compared to those in the database. If an nĥgram is not found in the database,
it is assumed to be incorrect. For every incorrect nĥgram an error point depending on the
type of nĥgram is assigned.

Evaluation results prove that this approach works for different languages although the accuĥ
racy of the grammar checking varies. Reasons are due to differences in the morphological
richness of the languages. The reliability of the statistical data is very important, i.e. it is
mandatory to provide enough data in good quality to nd all grammatical errors. The more
tags the used tagset contains, the more grammatical features can be represented. Thus the
quality of the statistical data and the used tagset inuence the quality of the grammar checkĥ
ing result. The statistical data, i.e. the nĥgrams of tokens, can be extended by nĥgrams from
the Internet. In spite of all improvements there are still many issues in nding reliably all
grammatical errors. We counteract this problem by a combination of the statistical apĥ
proach with selected language dependent rules.

v

vi

Contents

I. Introduction

1. Introduction 3
1.1. Motivation . 4
1.2. Goal and Definition . 5
1.3. Structure of this Document . 6

2. Fundamentals 9
2.1. Natural Languages and Grammar Checking 9

2.1.1. Definition: The Grammar of a Natural Language 9
2.1.2. Tokenization . 10
2.1.3. Grammar Checking . 11
2.1.4. Types of Grammatical Errors . 12
2.1.5. Definition: nĥgrams . 14
2.1.6. Multiword Expressions . 15
2.1.7. Sphere of Words . 16
2.1.8. Language Specialities . 16

2.2. CorporaħCollections of Text . 17
2.2.1. Definition: Corpus . 17
2.2.2. Sample Corpora . 18

2.3. PartĥofĥSpeech Tagging . 19
2.3.1. Tagset . 20
2.3.2. Types of PoS Taggers . 21
2.3.3. Combined Tagging . 22

3. Related Work 25
3.1. Ruleĥbased Approaches . 25

3.1.1. Microsoft Word 97 Grammar Checker 26
3.1.2. LanguageTool for Openffice . 27

3.2. Statistical Approaches . 27
3.2.1. Differential Grammar Checker . 27
3.2.2. nĥgram based approach . 28

3.3. Our Approach: LISGrammarChecker . 29

vii

Contents

II. Statistical Grammar Checking

4. Requirements Analysis 33
4.1. Basic Concept and Idea . 33

4.1.1. nĥgram Checking . 34
4.1.2. Word Class Agreements . 36
4.1.3. Language Independence . 37

4.2. Requirements for Grammar Checking with Statistics 37
4.3. Programming Language . 39
4.4. Data Processing with POSIXĥShells . 41
4.5. Tokenization . 41
4.6. PartĥofĥSpeech Tagging . 42

4.6.1. Combination of PoS Taggers . 42
4.6.2. Issues with PoS Tagging . 43

4.7. Statistical Data Sources . 44
4.8. Data Storage . 44

5. Design 47
5.1. Interaction of the Components . 47
5.2. User Interface: Input and Output . 48
5.3. Training Mode . 49

5.3.1. Input in Training Mode . 49
5.3.2. Data Gathering . 50

5.4. Grammar Checking Mode . 54
5.4.1. Input in Checking Mode . 55
5.4.2. Grammar Checking Methods . 55
5.4.3. Error Counting . 57
5.4.4. Correction Proposal . 60
5.4.5. Grammar Checking Output . 61

5.5. Tagging . 61
5.6. Data . 63

6. Implementation 69
6.1. User Interaction . 69
6.2. Tokenization . 71
6.3. Tagging . 71
6.4. External Program Calls . 73
6.5. Training Mode . 74
6.6. Checking Mode . 75

6.6.1. Checking Methods . 76
6.6.2. Internet Functionality . 78

viii

Contents

6.6.3. Correction Proposal . 79
6.6.4. Grammar Checking Output . 80

6.7. Database . 80
6.7.1. Database Structure/Model . 81
6.7.2. Communication with the Database 81

III. Evaluation

7. Test Cases 87
7.1. Criteria for Testing . 87

7.1.1. Statistical Training Data . 88
7.1.2. Input Data for Checking . 89
7.1.3. Auxiliary Tools . 89
7.1.4. PoS Tagger and Tagsets . 92

7.2. Operate Test Cases . 92
7.2.1. Case 1: Selfĥmade Error Corpus ĪEnglishī, Penn Treebank Tagset . . 92
7.2.2. Case 2: Same as Case 1, Refined Statistical Data 95
7.2.3. Case 3: Selfĥmade Error Corpus ĪEnglishī, Brown Tagset 97
7.2.4. Case 4: Selfĥmade Error Corpus ĪGermanī 98
7.2.5. Case 5: Several Errors in Sentence ĪEnglishī 100

7.3. Operate Test Cases with Upgraded Program 100
7.3.1. Case 6: Selfĥmade Error Corpus ĪEnglishī, Brown Tagset 100
7.3.2. Case 7: Selfĥmade Error Corpus with Simple Sentences ĪEnglishī . . . 101

7.4. Program Execution Speed . 102
7.4.1. Training Mode . 102
7.4.2. Checking Mode . 102

8. Evaluation 105
8.1. Program Evaluation . 105

8.1.1. Correct Statistical Data . 106
8.1.2. Large Amount of Statistical Data . 107
8.1.3. Program Execution Speed . 107
8.1.4. Language Independence . 108
8.1.5. Internet Functionality . 108
8.1.6. Encoding . 109
8.1.7. Tokenization . 109

8.2. Error Classes . 110
8.3. Evaluation of Test Cases 1ĥ5 . 112
8.4. Program Extensions . 117

8.4.1. Possibility to Use More Databases at Once 118

ix

Contents

8.4.2. More Hybrid nĥgrams . 118
8.4.3. Integration of Rules . 119
8.4.4. New Program Logic: Combination of Statistics with Rules 120

8.5. Evaluation of Upgraded Program . 120

IV. Concluding Remarks

9. Conclusion 127

10. Future work 129
10.1. More Statistical Data . 129
10.2. Encoding . 130
10.3. Split Long Sentences . 130
10.4. Statistical Information About Words and Sentences 132
10.5. Use nĥgram Amounts . 132
10.6. Include more Rules . 132
10.7. Tagset that Conforms Requirements . 133
10.8. Graphical User Interface . 134
10.9. Intelligent Correction Proposal . 134

V. Appendix

A. Acronyms & Abbreviations 139

B. Glossary 141

C. Eidesstattliche Erklärung 143

D. Bibliography 145

E. Resources 151
E.1. Listings . 151

E.1.1. Simple Voting Algorithm . 151
E.1.2. Shell Function to Call Extern Programs 152

E.2. Error Corpora . 153
E.2.1. Selfĥmade Error Corpus ĪEnglishī . 153
E.2.2. Selfĥmade Error Corpus with Simple Sentences ĪEnglishī 159
E.2.3. Selfĥmade Error Corpus ĪGermanī . 160

x

List of Figures

2.1. Three example trigrams . 14

3.1. Microsoft NLP system . 26

4.1. Token nĥgram check example . 34
4.2. Correction proposal example . 36

5.1. Abstract workflow of LISGrammarChecker 48
5.2. Workflow in training mode . 50
5.3. Two sample trigrams Īof tokensī are stored into database 52
5.4. Extract adverb and verb . 52
5.5. Extract adjective and noun . 53
5.6. Workflow in checking mode . 54
5.7. Grammar checking . 57
5.8. Correction proposal example Īrepeated from Figure 4.2ī 61
5.9. Workflow of tokenization and tagging . 62
5.10. Tagger combination . 63
5.11. Database structure with tables . 67

6.1. Schema of shell function . 74
6.2. Tag nĥgram check in detail . 77
6.3. Token nĥgram check . 78

7.1. Training time of Wortschatz Universität Leipzig 103

8.1. New program logic . 121

xi

List of Figures

xii

List of Tables

2.1. Example errors in English ĬKY94ĭ . 13
2.1. Example errors in English ĬKY94ĭ Īcontinuedī 14

4.1. The emerged requirements with their consequences 40
4.2. Simple voting example . 43
4.3. Comparison of several storing methods . 45

5.1. All information that is extracted in training mode 53
5.2. All possible error assumption types . 58
5.3. Data in the database . 65

6.1. Content of array evaluated_lexemes_lemmas_tags 73

7.1. Test case 1: Error classification of tag nĥgram check result 93
7.2. Test case 1: Error classification of hybrid nĥgram check result 93
7.2. Test case 1: Error classification of hybrid nĥgram check result Īcontinuedī . . 94
7.3. Test case 1: Error classification of token nĥgram check result 94
7.4. Test case 1: Correction proposal results . 95
7.5. Test case 2: Error classification of tag nĥgram check result 96
7.6. Test case 2: Error classification of hybrid nĥgram check result 96
7.7. Test case 2 & 3: Error classification of token nĥgram check result 97
7.8. Test case 3: Error classification of tag nĥgram check result 97
7.9. Test case 3: Error classification of hybrid nĥgram check result 98
7.10. Test case 4: Error classification of tag nĥgram check result 98
7.10. Test case 4: Error classification of tag nĥgram check result Īcontinuedī 99
7.11. Test case 4: Error classification of hybrid nĥgram check result 99
7.12. Test case 4: Error classification of token nĥgram check result 99
7.12. Test case 4: Error classification of token nĥgram check result Īcontinuedī . . 100
7.13. Test case 6: Results from new program logic 101
7.14. Test case 6: Results from new program logic 101
7.15. Test case 6: Correction proposal results . 102
7.16. Grammar checking times . 103

8.1. Fulfillment of established requirements . 106

xiii

List of Tables

xiv

Part I.

Introduction

Introduction 1
Nowadays people expect their computer systems to support a lot of functionality, one such
functionality includes writing documents and texts. It is important in many domains to proĥ
duce texts which are correct with regard to their syntax and grammar. This is no easy task.
People who write texts in foreign languages are unsure about correct syntax and grammar.
The demand for computer programs which help to produce texts with high quality, i.e. a
text with correct grammar and good style, increases.

Almost everyone writing a document on a computer uses at least one tool to check, for inĥ
stance, the spelling of thewords. Spell checking can be done simply with a dictionary and few
rules. Today, all important word processors, for example OpenOffice ĬOpeĭ and Microsoft
Word ĬMicbĭ, provide a spell checker in their standard conguration. Spell checking works
quite well for many languages. This saves lots of time and is a rst step towards a high quality
text.

Also, since some time, grammar checking tools have arisen in popularity, by companies like
Microsoft that have introduced grammar checker tools to their Office Suite. In comparison
to spell checking, grammar checking is much more complex and has thus left behind feature
completion and correctness. In theory, grammar checkers should work like spell checkers
already do; but, current grammar checkers reveal several limitations. It is frustrating for

3

1. Introduction

the user to still see wrong phrases that have not been marked as wrong and, even more
exasperating, correct phrases marked as incorrect.

Thus, in spite of the help of a computer program, manual reviewing is indispensable in order
to get high quality texts.

1.1. Motivation

Grammar checking is important for various aspects. It improves the quality of text, saves
time while writing texts, and supports the learning of a language. There are several gramĥ
mar checking approaches. The most common method of grammar checking is ruleĥbased.
These grammar checkers are established to some degree. They work quite well for choĥ
sen languages. Ruleĥbased grammar checkers work with a set of rules which represent the
grammatical structure of a specic language. This means that a ruleĥbased grammar checker
is languageĥdependent. The rules can cover almost all features of a language which makes
the approach powerful. The more features are implemented, the better are the results but
the more complex the systems. If a language is morphologically rich or if a lot of different
phrase structures are possible, the complexity of a grammar checker quickly increases. All
languages differ in their grammatical structure, which makes it nearly impossible to support
more than one language with the same rule set. A ruleĥbased grammar checker can be conĥ
sidered as staticħonce written for a specic language it depends on and supports only this
language.

This means that a ruleĥbased grammar checker needs to be written separately for each lanĥ
guage that need to be supported. This is a very timeĥ and resourceĥconsuming task. Furtherĥ
more, some languages are so complex that a mapping of all grammatical features to a set of
rules is not possible. It is not even possible to write a ruleĥbased grammar checker for every
natural language. Although a ruleĥbased approach seems to be very promising, even today a
featureĥcomplete grammar checker is not availableħnot even for a morphologically simple
language like English.

A study over ten years ĬKie08ĭ shows, that all famous grammar checkers are far from being
perfect. This evaluation compares several ruleĥbased grammar checkers, like the grammar
checker from Microsoft Word ĬMicbĭ and the LanguageTool ĬLanbĭ from OpenOffice.org
ĬOpeĭ.

A poll in the Seattle PostĥIntelligencer article about the usefulness of the Microsoft Word
grammar checker ĬBis05ĭ shows that the majority are of the opinion that a grammar checker
is not as useful as it should be. Even if this poll does not represent all users of the Microsoft
Word grammar checker, our conclusion is that the need for accurate grammar checkers is
high.

4

1.2. Goal and Definition

New elds of grammar checking arise through more power, storage capabilities and speed
of today’s computer systems. Statistical data is freely available through the Internet, e.g.
through search engines, online newspapers, digital texts, and papers. These basic principles
lead to a new idea about grammar checking, which leaves the area of rules, and steps into a
statistical approach.

We are thinking about a simple approach to get a maximum impact. Our statistical apĥ
proach overcomes the problem of languageĥdependence. The basic concept is languageĥ
independent which can be easily adapted to new languages. It can serve several languages
at once, and even benets those languages whose rules are impossible or not valuable to
implement because the language is not widespread enough.

1.2. Goal and Definition

Our goal is to write a language independent grammar checker which is based on statistics.
From now on, we call it LISGrammarChecker, which stands for Language Independent Statisti-
cal Grammar Checker. In our approach, we do not use rules to identify errors in a text. We
use statistical data instead. Language independence is supported, because of the lack of
languageĥdependent rules. Statistical data can be given in every natural language and thus
language independence is provided. LISGrammarChecker needs statistical data as a basis
to learn what is correct to mark errors, i.e. if a sentence or part of it is not known as correct.
The statistical data is the basis for all grammar checking. To get a database that is as comĥ
plete as possible, we consider the possibility of gaining these data directly from the Internet,
for example, through aGoogle ĬGooaĭ search. Errors are based on wrong grammatical usage,
which is assumed if the statistical basis does not know a specic grammatical structure.

A problem, which will probably arise, are misleadingly marked errors, so called false positives.
The goal is to keep these false positives as few as possible. We want to counteract this with
a concept of thresholds, i.e. we do not intend to mark an error immediately but collect a
reasonable amount of error assumptions to state the existence of an error. Along with the
detection of an error comes the correction proposal. We want to gain these proposals from
the most likely alternatives out of the statistical data.

We start with feeding LISGrammarChecker with English and German data, and evaluate
these languages as a proof of concept for the languageĥindependence of the program.

5

1. Introduction

Hypothesis
We assume that it is possible to check grammar up to a certain extent by only using
statistical data. This can be done independent from a natural language.

1.3. Structure of this Document

To facilitate a better understanding of this document, the fundamentals are explained in
chapter 2. This chapter starts with a denition of the term grammar in a natural language,
and explains what we mean with grammar checking and nĥgrams. We specify a corpus in
general and introduce wellĥknown corpora for several natural languages. Furthermore, partĥ
ofĥspeech tagging is introduced, together with tags, tagsets, taggers, and combined tagging.

Chapter 3 focuses on related work in grammar checking. For the two main approaches in
grammar checkingħruleĥbased and statisticalħstateĥofĥtheĥart work is presented. We inĥ
troduce the idea of our language independent statistical grammar checking approach and
compare it to existing approaches. In doing so, we point out especially the differences beĥ
tween LISGrammarChecker and existing grammar checkers.

We come to the requirements analysis of our grammar checker in chapter 4. We start
presenting our idea in more detail and develop the requirements for LISGrammarChecker.
According to these requirements, we analyze the consequences for our work and start to
specify what we need to consider. We analyze what would t best to fulll our requirements.
We present which programming language we use, which corpora we prefer and how we
gather our statistical data. We regard the aspects of tagging within our grammar checker.
Furthermore, we analyze how to process and store data in an appropriate manner.

The design of LISGrammarChecker is described in chapter 5. We show all components
of the system and how these work together to fulll the requirements from chapter 4. All
aspects that are alreadymentioned are considered to trigger a solution for implementation.

In Chapter 6, where we present the implementation of LISGrammarChecker, we describe
all implemented functionality of LISGrammarChecker and the way how we have realized
it.

To test the functionality of our approach, we create several test cases in chapter 7. These
tests should show how LISGrammarChecker works and reveal problems. Therefore, we
train different statistical data corpora and check erroneous sentences.

6

1.3. Structure of this Document

We evaluate and interpret the results of the test cases in chapter 8. Furthermore, we regard
LISGrammarChecker with respect to its functionality and the established requirements.
We analyze problems that occurred with the implementation of the program and propose
solutions for several aspects that could be done alternatively.

In chapter 9, we conclude all what we have learned from our work as well as show the useful
knowledge this approach has to build a language independent statistical grammar checker.
Finally we present possible future work to our language independent statistical grammar
checking approach in chapter 10.

7

1. Introduction

8

Fundamentals 2
This section introduces the fundamentals which are necessary to understand basic parts
of this work. First, we explain our understanding for natural languages including the term
grammar and what grammar checking means for this work. Then, collections of text, i.e.
corpora, are explained. Finally, we introduce partĥofĥspeech ĪPoSī tagging with respect to
different types of taggers and combined tagging.

2.1. Natural Languages and Grammar Checking

This section starts with a denition of a grammar in a natural language. An explanation of
tokenization follows. We introduce the terms grammar checking and nĥgrams.

2.1.1. Definition: The Grammar of a Natural Language

Weunderstand a natural language as a way for humans to communicate, including all written
and spoken words and sentences. The syntax of a language describes how words can be
combined to form sentences. The morphology of a language regards the modication of

9

2. Fundamentals

words with respect to time, number, and gender. We dene a grammar of a natural language
as a set of combinations Īsyntaxī andmodications Īmorphologyī of components, e.g. words,
of the language to form sentences. This denition follows Rob Batstones explanations in
ĬBat94ĭ.

Grammar of a Natural Language
A grammar of a natural language is a set of combinations (syntax) and modifications
(morphology) of components and words of the language to form sentences.

The grammarħsyntax and morphologyħdiffer in each language. Conversely, this means
that, if there is a difference in syntax ormorphology in two languages, these languages are not
the sameħa language can be distinguished from another by its grammar. An example of two
very similar languages is American and British English. Most people would not distinguish
these as different languages, but if there is at least one difference in grammar, these languages
need to be considered separately, following our denition.

2.1.2. Tokenization

Every item in a sentence, i.e. every word, every number, every punctuation, every abbreviaĥ
tion, etc., is a token. We use the term lexeme as a synonym without any differences.

Tokens & Lexemes
A token is every atomic item in a sentence, e.g. words, numbers, punctuation, or
abbreviations. Lexeme is used synonymously.

One challenging part when using text is the task of word and sentence segmentation. This is
also known as tokenization. Tokenization is the breaking down of text tomeaningful parts like
words and punctuation, i.e. tokens. This work is usually done by a tokenizer. Tokenization
is a necessary step before tagging Īsection 2.3ī can be done.

There are different ways how to tokenize a text. For example, clitics as can’t can be interĥ
preted as one token alone, or it can be split and interpreted as the two words can not. There
are several such cases, where more than one possibility can make sense. Another such examĥ
ple is the handling of numbers. The format of numbers can vary greatly, e.g. large numbers
can be written without any punctuation as 1125000. But in many languages, it is common to

10

2.1. Natural Languages and Grammar Checking

facilitate the reading for readers and thus numbers are written e.g. with periods as delimĥ
iter as in 1.125.000 in a lot of Central European languages or with commas 1,125,000 as in the
English language.

Tokenization and Tokenizer
Tokenization is the breaking down of text to meaningful parts like words and punc-
tuation, i.e. the segmentation of text into tokens. The process of tokenization is
done by a tokenizer.

The main challenge of tokenization is the detection of the sentence and word boundaries.
Some symbolic characters, e.g. “. ? !”, maybe used as sentence boundary markers in lanĥ
guages which use the Latin or Cyrillic alphabet. As one can see in the largeĥnumber example
above, these symbolic characters can have different roles. In the English language the period
can be used for several tasks. It is used to mark the end of a sentence, as a decimal delimiter,
or to mark abbreviations. This causes problems in determining the correct sentence end
marker. To solve this problem a list with abbreviations can be used to distinguish abbreviĥ
ations and the sentence end marker. But if we consider a sentence with an abbreviation at
the end of a sentence, there is an ambiguity which need to be resolved.

Another challenge is the detection of word boundaries. Usually words are delimited by white
space characters. There are some exceptions, e.g. tagging Īsee section 2.3ī of multiword
expressions, which need a different treatment. An example for this is the expression “to kick
the bucket”. If the space character is used as the word delimiter, the result is four individual
tokens that are tagged individually. Because of its sense “to die”, the whole expression needs
to be tagged with one tag, here a verb, instead of four individual ones.

This is different in other languages using logographic symbols representing words like Chiĥ
nese. While Chinese and Japanese use the period as a sentence delimiter, words are not
necessarily delimited by white space. One can see here that tokenization is not an easy task
and has potential inuence on the accuracy of any method, like tagging, which depends on
this.

2.1.3. Grammar Checking

The grammar of a natural language describes its syntax and morphology, as explained above.
Hence, grammar checking can be described as the verication of syntax and morphology
according to the used language. The goal is to check a sentence or text for its grammatical
correctness. Tools performing this work are called grammar checkers.

11

2. Fundamentals

Grammar Checking and Grammar Checker
The verification of syntax and morphology is called grammar checking. The process
of grammar checking is done by a grammar checker.

In order to check the grammar of a text, different approaches are used.

Pattern matching A very primitive way is pattern matching. This method works by using
a data storage where common grammatical mistakes are stored together with their
corrections. A sentence, or part of it, is checked by matching it to some error entry in
the data storage. In case of a match, an error is detected, which can then be corrected
with the stored correction. This method is quite effective for the patterns that are in
the data storage. But there is a lack of generality. Every small difference in grammar
needs a new pattern, e.g. the Īwrongī sentences “He sell.” and “He tell.”. When using
pattern matching there needs to be two entries in the look up table to correct both
errors, even if they differ only in one characterħthemissing s for third person singular.

Rule-based approach A more common way to do grammar checking is based on rules. Simĥ
ple rules can be used to detect errors which are very easy to nd, e.g. doubled puncĥ
tuation. If the sentences are more complex, the rules to detect errors become more
complicated. If we again take the missing “s” example from above, we can tackle the
problem of two entries by dening one rule. This rule would dene that the personal
pronoun he can only be followed by a third person singular verb and not by the inniĥ
tive. If the word he is found, followed by a verb which is not in third person singular, an
errors is marked. In this approach, a sentence is parsed in such a way that it matches
a certain grammar.

Statistical approach A third method for checking grammar is the statistical approach. The
main assumption in this approach is that text can be corrected by only using large
amounts of text. These texts form a statistical database which is used to detect errors.
When using statistics, two different ways can be used to achieve the goal of correcting
grammar. One uses the data directly to compare it with the text which should be
corrected. Another one derives a grammar from statistical information which can
then be used to check and parse the text.

2.1.4. Types of Grammatical Errors

When people are writing, theymakemistakes. In this section we take a look at themost freĥ
quent error types in English. Table 2.1 shows chosen errors from Kantz and Yates ĬKY94ĭ.

12

2.1. Natural Languages and Grammar Checking

We do not include all errors from the source. Errors that only concern spelling are not
listed. The errors in Table 2.1 are sorted by the mean irritation score. This score describes the
average degree of how sensible people respond to an error. This means, if an error is very
noticeable, then the mean irritation score is high. The table is ordered from most to least
bothersome.

Table 2.1.: Example errors in English [KY94]
Category Example

you’re/your So your off on holiday this week and you haven’t had a
moment to think about the paperbacks.

their/there Two principal shareholders wanted to sell there comĥ
bined 42İ stake.

sentence fragment They want to know as to why they aren’t sleeping, why
they want to throw up when they eat.

subjectĥverb agreement She and Lorin is more than willing to lend if they can
nd worthy borrowers.

wrong preposition in verb
phrase

Then we could of celebrate the new year on an agreed
rst day of Spring.

too/to The chancellor has been at the scene of to many acciĥ
dents.

were/where One areawere theGulf states do seem united is in their
changed relations with outside states.

pronoun agreement Mr. Hodel also raised concerns that the U.S. might
commit themselves to an ineffective international
treaty.

object pronouns as subjects And she said Tuesday she was not sure how her would
vote.

runĥon sentences The shares have fallen this far they seldom come back.
tense shift She looked right at me and she smiles broadly.
it’s/its The company said it’s rate of sales growth for the quarĥ

ter has slowed from the 33İ pace during the second
quarter.

lose/loose I promise if somebody starts playing fast and lose with
the university, they’ll have to answer.

dangling modier After reading the original study, the article remains unĥ
convincing.

13

2. Fundamentals

Table 2.1.: Example errors in English [KY94] (continued)
Category Example

comma splice It is nearly half past five, we cannot reach town before
dark.

affect/effect One not entirely accidental side affect of the current
crackdown will be a dampening of the merger and acĥ
quisition boom.

then/than I never worked harder in my life then in the last couple
of years.

2.1.5. Definition: n-grams

Usually, n-grams are a subsequence of neighbored tokens in a sentence, where n denes the
number of tokens. For example, “modern houses are” is a trigram, consisting of three neighĥ
bored words, as you can see in Figure 2.1. We do not differentiate between the types of
token, i.e. if the token is a word, a number, an abbreviation, or a punctuation as punctuĥ
ation marks, commas, etc. Our understanding of nĥgrams includes all kinds of tokens. An
example is shown in Figure 2.1, where “very secure .” also constitutes a trigram.

Figure 2.1.: Three example trigrams

A sentence has kĥĪnĥ1ī nĥgrams, where k is the sentence length including punctuation, i.e.
the number of tokens, and n species the nĥgram, i.e. how many neighbored tokens. This
means, that the example sentence has six trigrams: kĥĪnĥ1ī = 8ĥĪ3ĥ1ī = 6, where k = 8, n = 3.

14

2.1. Natural Languages and Grammar Checking

Amount of n-grams
The amount of n-grams in a sentence is k-(n-1), where k specifies the number of
tokens in a sentence and n specifies the number of tokens classifying the n-gram.

k—(n—1) =
∑

n-grams in a sentence

We go one step further and expand the denition of nĥgrams insofar as we introduce a
second nĥgram variant. This second variant consists of the tags Īsee section 2.3ī of the tokens
and not the tokens Īe.g. wordsī themselves. To distinguish the two nĥgram variants, we call
them n-grams of tokens and n-grams of tags. For example, we have two trigrams in parallel for
“modern houses are”:

1. The three consecutive tokens “modern houses are” form a trigram of tokens, and

2. the three tags Īhere word classesī “adjective noun verb” of these three tokens constitute
a trigram of tags.

For the amount of nĥgrams of tags in a sentence, the same calculation as above applies for
the amount of nĥgrams of tokens: kĥĪnĥ1ī.

n-grams of Tokens & n-grams of Tags
An n-gram of tokens is a subsequence of neighbored tokens in a sentence, where
n defines the number of tokens. An n-gram of tags is a sequence of tags that
describes such a subsequence of neighbored tokens in a sentence, where n defines
the number of tokens.

2.1.6. Multiword Expressions

The term of multiword expressions is already mentioned in the tokenization section. A
multiword expression is the combination of at least two lexemes. The meanings of these
words differ from their original meaning. For example, the term “White House” does not
express a house with white painting. There are different types of multiword expressions.
ĬDMS00ĭ

15

2. Fundamentals

Multiword entries The example “to kick the bucket” is a typical multiword entry. This means,
in case of a ruleĥbased approach, the multiword is not dened by a rule, but has its own
entry in the database.

Captoids These aremultiword expressions with all words capitalized, e.g. a title as “Language
Independent Statistical Grammar Checker”. This must not be confused with the capitalizaĥ
tion of nouns in German.

Factoids Another subset of multiwords are factoids. These are for example dates or places.
Their characteristic is that they can easily be described by rules.

2.1.7. Sphere of Words

Most words inuence other words, especially neighbored ones. If we consider the sentence
“The boys, who live in this house, are playing with the ball.”, the noun boys inuences the verb
are. This plural form of to be is correct, because of the plural noun boys. The sphere of the
single word boys reaches to the distant word are. The correctness can be described as the
agreement of the two words.

Wewant to give twomore examples for these types of agreements. The rst is the agreement
between adverb and verb. This feature is important in English. Let us consider the sentence
“Yesterday, the man stayed at home.”, containing the temporal adverb yesterday. Whenever
this temporal adverb is used in English, the verb must have a certain tense; in this case,
simple past. Quite a lot of temporal adverbs force the verb to a xed tense to assure valid
grammar.

Another grammatical dependency exists between adjectives and nouns. Both must agree in
several ways, depending on the language. In Icelandic and in German they need to agree
in number, case and gender. For example “ein grünes Haus” Īsingular, neuter, nominativeī,
“ein grüner Baum” Īsingular, masculine, nominativeī, “zwei grüne Häuser/Bäume” Īplural, mascuĥ
line/neuter, nominativeī, and “des grünen Hauses” Īsingular, neuter, genitiveī show different
adaptions of the adjectives that are inuenced by the characteristics of the nouns. For adjecĥ
tives in English, there is no distinction for number, gender or case. It makes no difference if
we say “the green house” Īsingularī or “the green houses” Īpluralī. The only exceptions are the
two demonstrative adjectives this and that with their plural forms these and those. All other
adjectives have only one possible form in modern English.

2.1.8. Language Specialities

As the above examples show, natural languages differ in their morphological features. The
complexity of a language depends on the adaption of characteristics, for example, number,

16

2.2. Corpora—Collections of Text

gender and case. Icelandic and German are far more complex than English. They concern
different options for all features. Icelandic and German are so called morphologically rich
languages. The grammar of a language dictates, if two words agree in their characteristics,
e.g. in number, gender and case. In the English language, the differences in case and gender
are rare. Thus it is much more simple.

Further differences in natural languages are the lengths of word and sentences. In German,
long sentences are common, which is usually not good style in English. Another aspect is
the lengths of words. In languages like German and Icelandic, they can be arbitrarily long.
This applies for the German compound “Donaudampfschiffahrtsgesellschaft”, where 5 nouns are
concatenated.

2.2. Corpora—Collections of Text

In this section we give a denition for the term corpus Īplural: corporaī and give examples
for wellĥknown corpora in chosen natural languages.

2.2.1. Definition: Corpus

We have chosen a denition of a corpus according to that from Lothar Lemnitzer and Heike
Zinsmeister in ĬLZ06ĭ:

Corpus
A corpus is a collection of written or spoken phrases that correspond to a specific
natural language. The data of the corpus are typically digital, i.e. it is saved on
computers and machine-readable. The corpus consists of the following components:

• The text data itself,

• Possibly meta data which describe the text data,

• And linguistic annotations related to the text data.

17

2. Fundamentals

2.2.2. Sample Corpora

Every natural language has a distinct set of words and phrases. There exists different corĥ
pora for many different languages. We introduce some of the most wellĥknown. The most
corpora that we show are English, but we also list German and Icelandic ones. Furthermore,
we regard two special types of corpora, Google nĥgrams and an error corpus.

American National Corpus The American National Corpus ĪANCī ĬIS06ĭ currently conĥ
tains over 20 million words of American English and is available from the Linguistic
Data Consortium ĬLinbĭ. The work is currently in progress. Its nal version will conĥ
tain at least 100 million words.

British National Corpus The British National Corpus ĪBNCī is an analogy to ANC for Briĥ
tish English. This is a collection of 100 million words released in its last version in
2007. BNC is already complete. According to the the official BNC website ĬBur07ĭ
this corpus was built from a wide range of sources. It includes both written and spoken
sources and claims to represent a wide selection from 20th century British English.

Brown Corpus An alternative to ANC and BNC is the Standard Corpus of PresentĥDay
American English Īalso known as Brown Corpusī ĬFK64ĭ. It consists of approximately
1 million words of running text of edited English prose printed in the United States
during the calendar year 1961. Six versions of the Corpus are available. All contain the
same basic text, but they differ in typography and format.

Wortschatz Universität Leipzig Another interesting source for corpora is Wortschatz at
Universität Leipzig ĬQH06ĭ. There are corpora available for 18 different languages, e.g.
English, German and Icelandic. Their source are newspapers and randomly collected
text from the Internet. The German corpus has a size of 30 million sentences, the
one for English has 10 million sentences, and the Icelandic corpus consists of 1 million
sentences. They are available via a web service. Some of them are partly available for
download. Due to copyright issues they are not as big as the ones available online.
All texts are split into sentences and stored line by line. The corpora are provided in
different sizes. For English the biggest consists of 1 million sentences, for German
it contains 3 million sentences with an average of 15 to 16 words per sentence. For
Icelandic no downloadable corpus is available.

NEGRA corpus Another wellĥknown German corpus is the NEGRA corpus ĬBHK+97ĭ. It
consists of 355,096 tokens Īabout 20 thousand sentencesī of German newspaper text
which is taken from the Frankfurter Rundschau. The corpus is tagged with partĥofĥ
speech and annotated with syntactic structures.

18

2.3. Part-of-Speech Tagging

Icelandic Frequency Dictionary corpus The common Icelandic corpus is created with the
Icelandic Frequency Dictionary ĬPMB91ĭ. It is published by the Institute of Lexiĥ
cography in Reykjavik and is considered as carefully balanced. The corpus consists of
500,000 words from texts published in the 1990s. It includes text from ve different
categories, Icelandic ction, translated ction, biographies and memoirs, nonĥction
as well as books for children. ĬHol04ĭ

Google n-grams This corpus differs from the others insofar as it contains word nĥgrams and
not plain text. Google nĥgrams ĬBF06ĭ are a collection of English word nĥgrams from
publicity accessible web pages contributed by Google ĬGooaĭ. They are also available
from the Linguistic Data Consortium ĬLinbĭ. The nĥgram lengths are unigrams up to
pentagrams. For every nĥgram its observed frequency count is included. Altogether,
the corpus includes more than 1 trillion tokens together with 1 billion pentagrams
Īthese are the pentagrams that appear at least 40 timesī and 13 million unique words
Īthese are the words that appear at least 200 timesī. ĬBF06ĭ

Error corpus An error corpus is a text with intentionally wrong sentences. An example corĥ
pus, which contains 1000 wrong English sentences Īabout 20 thousand wordsī and
their correct counterparts, can be found in ĬFos04ĭ. The sources for those error senĥ
tences are multifaceted. It “consists of academic material, emails, newspapers and magazines,
websites and discussion forums, drafts of own writing, student assignments, technical manuals,
novels, lecture handouts, album sleevenotes, letters, text messages, teletext and signs” ĬFos04ĭ.

2.3. Part-of-Speech Tagging

The main task in part-of-speech (PoS) tagging is to assign the appropriate word class and morĥ
phosyntactic features to each token in a text. The result is an annotated (or tagged) text, which
means that all tokens in the text are annotated with morphosyntactic features. This is useĥ
ful for several preprocessing steps in natural language processing ĪNLPī applications, i.e. in
parsing, grammar checking, information extraction, and machine translation. Words are
not denite in their PoS. Ambiguity can occur through multiple possible morphosyntactic
features for one word. Thus still today there are many problems to be solved for reaching
good solutions although partĥofĥspeech systems are trained with large corpora.

The process of assigning the word class and morphosyntactic features to words is called tagĥ
ging. Therefore, the morphosyntactic features are represented as strings, which are denoted
as tags. The set of all these tags for a specic natural language constitute a tagset. There exĥ
ist several tagsets, see section 2.3.1. The process of tagging is performed by a tagger, whose
main function is to remove the ambiguity resulted from the multiple possible features for a

19

2. Fundamentals

word. There exist several methods to perform this task; see section 2.3.2 for an overview of
different tagger types.

PoS Tagging and PoS Tagger
Part-of-speech tagging describes the assignment of the appropriate word class and
morphosyntactic features to each token in a text. The process of tagging is performed
by a tagger.

In the process, the tagging accuracy is measured as the number of correctly tagged tokens
divided by the total number of tokens in a text. In general, there can be taggers for all
languages, the tagger simply needs to support a language. That there are more taggers for
the English language than e.g. for Icelandic is obvious and results from the amount of peoĥ
ple speaking a language but also from the morphological complexity. The tagging accuracy
obtained for morphologically complex languages is signicantly lower than the accuracy obĥ
tained for English. There is a possibility to increase the tagging accuracy with combined
tagging, which is explained in section 2.3.3.

Tagging Accuracy
The tagging accuracy is measured as the number of correctly tagged tokens divided
by the total number of tokens in a text.

2.3.1. Tagset

A tagset subsumes a set of possible tags. There exist several tagsets, which are usually bound
to a specic language.

Tags and Tagset
The morphosyntactic features that are assigned to tokens while tagging are repre-
sented as strings. These strings are denoted as tags. The set of all tags for one
language constitute a tagset.

20

2.3. Part-of-Speech Tagging

Penn Treebank tagset One of themost important tagsets for the English language is built by
the Penn Treebank Project ĬMSM93ĭ. The tagset contains 36 partĥofĥspeech tags and
12 tags for punctuation and currency symbols. The PennTreebank Project is located at
the University of Pennsylvania. All data produced by the Treebank is released through
the Linguistic Data Consortium ĬLinbĭ.

Stuttgart-Tübingen Tagset A well known German tagset is the StuttgartĥTübingen Tagset
ĪSTTSī ĬSTST99ĭ. It consists of 54 tags altogether, which are hierarchically structured.
48 of these are partĥofĥspeech tags, and six tags describe additional language parts as
e.g. punctuation or foreign language parts. STTS results from the two PoS tagsets
that were developed by the Institute for Natural Language Processing, University of
Stuttgart, and Department of Linguistics, University of Tübingen.

Icelandic Frequency Dictionary corpus tagset Compared to a tagset in amorphological rich
language, the Penn Treebank tagset and the STTS contain only a small amount of tags.
A tagset for a morphologically rich language can be much larger, e.g. the main tagset
for Icelandic contains about 700 tags. This tagset is constructed through the Icelandic
Frequency Dictionary corpus ĬPMB91ĭ. The tags are not simply tags that describe one
morphological feature. Instead, each character in a tag describes a different feature.
The rst character, for example, denotes the word class. Depending on the word
class, there can follow a predened number and set of characters denoting additional
morphological features. For a noun, there can follow features like gender, number and
case. For adjectives, degree and declension can follow. Verbs can have a voice, a mood
and a tense. ĬLof07ĭ

Brown tagset and Münsteraner tagset As said above, a tagset is usually bound to one speĥ
cic language, but this does not allow the contrary statement that a language can have
only one tagset. For English and German there exist at least two. Additionally to the
Penn Treebank tagset and the STTS tagset, which both can be seen as the standard
tagsets for their targeted language, there exist the Brown tagset ĬFK64ĭ and the Münĥ
steraner tagset ĬSte03ĭ. Both tagsets contain more tags than the Penn Treebank and
STTS tagset. The Münsteraner tagset is built similar to the Icelandic one. It also uses
each character for a different feature of the word.

Some tagsets dene how texts should be tokenized before they are passed to a tagger. For
example for the Penn Treebank tagset, the tokenization is proposed in ĬPenĭ.

2.3.2. Types of PoS Taggers

There are several methods how a partĥofĥspeech tagger work, e.g. based on rules ĬLof08ĭ,
hiddenMarkovmodels ĬBra00ĭ, probabilistic using decision trees ĬSch94ĭ, errorĥdriven transĥ

21

2. Fundamentals

formationĥbased learning ĬBri94ĭ, or maximum entropy ĬTM00ĭ. We introduce some of
them.

Brill tagger One partĥofĥspeech tagger was introduced by Brill in 1994 ĬBri94ĭ. Brill tagger
is errorĥdriven and based on transformations. It achieves a relatively high accuracy.
The method assigns a tag to each word and uses a set of predened rules, which is
changed iteratively. If a word is known, the most frequent tag is assigned. If a word
is unknown, the tag noun is naively assigned. This procedure to change the incorrect
tags is applied several times to get a nal result.

TnT An example for a tagger based on the implementation of the Viterbi algorithm using
hidden Markov models is TnTħTrigrams’n’Tags ĬBra00ĭ. This tagger is language inĥ
dependent; new languages can be trained. The main paradigm used for smoothing is
linear interpolation. The respective weights are determined by deleted interpolation.
Unknown words are handled by a suffix tree and successive abstraction.

Stanford Tagger ĬTM00ĭ is based onmaximum entropy. It uses tagged text to learn a loglinĥ
ear conditional probability model. This model assigns probabilities to each tag, which
are used to evaluate the results. Stanford Tagger is also language independent. It was
developed at the Natural Language Processing Group, University of Stanford.

TreeTagger ĬSch94ĭ is a probabilistic language independent tagger. It is a tool for annotating
text with partĥofĥspeech and lemma information which has been developed within the
TC project at the Institute for Computational Linguistics, University of Stuttgart.
The TreeTagger has been successfully used to tag several languages, including German
and English. It is easily adaptable to other languages, if a lexicon and amanually tagged
training corpus are available.

IceTagger Another tagger type is based on rules. These taggers depend mostly on the natĥ
ural language itself and are thus usually for one specic language with its quirks. An
example for an Icelandic language tagger is IceTagger ĬLof08ĭ. It is based on a set of
rules for the Icelandic language and therefore not suitable for any other languages.

2.3.3. Combined Tagging

Combined tagging is done by a combined tagger which uses the output of two or more indiĥ
vidual taggers and combines these in a certain manner to get exactly one tag for each token
as the result. It has been shown, for various languages, that combined tagging usually obĥ
tains higher accuracy than the application of just a single tagger ĪĬHZD01ĭ, ĬSjö03ĭī. The
reason is that different taggers tend to produce different Īcomplementaryī errors and the
differences can be exploited to yield better results. When building combined taggers it is
thus important to use taggers based on different methods Īsee section 2.3.2ī.

22

2.3. Part-of-Speech Tagging

Combined Tagging
The combination of more than one single part-of-speech tagger is called combined
tagging.

There are several strategies of how the different tagger outputs can be combined. These
strategies are denoted as combination algorithms.

Simple voting The simplest combination algorithm represents a majority vote. All individĥ
ual tagger votes are equally valued while voting for a tag. The sum of all tagger votes
are summed up, and the tag with the highest number of votes represents the combined
tagging result. In the case of a tie, the tag proposed by the most accurate taggerĪsī can
be selected. ĬHZD01ĭ

Weighted voting is similar to simple voting, but gives every tagger output a different weight.
For example the taggers which are known to produce a high overall accuracy gets more
weight when voting. The weighted votes are also summed up and the tag with the
highest result wins. In case of a tie, which is usually rare using this algorithm, the
same procedure as stated before applies. ĬHZD01ĭ

For an overview of further combination algorithms see ĬHZD01ĭ.

23

2. Fundamentals

24

Related Work 3
In this section we discuss related work to our grammar checker. As described earlier, there
are two main types of grammar checkers. We discuss both methodsħruleĥbased and staĥ
tisticalħand show what has been done so far and how the different approaches work. As
examples for the ruleĥbased approach, we explain the system used by the Microsoft Word
97 ĬMicbĭ grammar checker and LanguageTool ĬLanbĭ, an open source project used as a
grammar checker in OpenOffice.org ĬOpeĭ. The statistical approach refers to two research
works, but none of them are already implemented in a productive used tool.

3.1. Rule-based Approaches

Very wellĥknown grammar checkers are those of Microsoft Word, WordPerfect ĬCorĭ, as
well as LanguageTool and Grammarian Pro X ĬLinaĭ. They are available for many different
languages. All of them use a certain amount of rules against which they check sentences or
phrases. Thus, a main disadvantage is the limitation to a specic language. Rules can rarely
be reused for more than one language. We show this functionality in more detail for the
grammar checker in Microsoft Word 97 and the open source tool LanguageTool which can
be integrated in OpenOffice.

25

3. Related Work

3.1.1. Microsoft Word 97 Grammar Checker

Microsoft ĬMicaĭ splits the grammar checking process in Microsoft Word 97 ĬMicbĭ into
multiple stages, as we can see in picture 3.1. Our explanations for this approach are based on
ĬDMS00ĭ.

Figure 3.1.: Microsoft NLP system

1. The rst stage is a lexical analysis of the text. The text is broken down into tokens
which aremainly words and punctuation. Every token is morphosyntactically analyzed
and a dictionary lookup is done. Multiword prepositionsħe.g. in front ofħare handled
separately. Instead of storing every single word of those multiwords, they are stored
as one entry in the dictionary. In this stage, two more types of tokens are considered:
factoids and captoids. Factoids usually consist of dates and places whereas captoids
consist of words in capital letters. When the processing is nished the output of this
stage is a list of partĥofĥspeech records.

2. The second stage is the parsing. In ĬDMS00ĭ it is also called syntactic sketch, see
Figure 3.1. Augmented phrase structure grammar ĪAPSGī rules are applied to build
up a derivation tree. The output of this stage are one or more trees. Each node is a
segment record of attributeĥvalue pairs which describes the text that it covers.

3. In the third stage a renement of the tree from stage 2 is done. This produces more
reasonable attachments for modiers like relative clauses. It is possible to move a
prepositional phrase of time which is obvious to clause level by just using syntactic

26

3.2. Statistical Approaches

information. A semantic reattachment is done in the Microsoft NLP system but it is
not used in the Word 97 grammar checker yet.

4. The fourth stage is used to produce logical forms. The logical forms make explicit the
underlying semantics of the text. Some phenomena is treated here, e.g. extraposition,
longĥdistance attachment, and intrasentential anaphora. This stage is used under cerĥ
tain conditions, which is the case if the sentence is in passive voice or if it contains a
relative pronoun.

3.1.2. LanguageTool for Openffice

LanguageTool ĬLanbĭ can be integrated into OpenOffice ĬOpeĭ. Here, the processing is less
complex than the approach from Microsoft. The development team splits up the text into
sentences ĬLanaĭ. Like the grammar checker in Microsoft Word 97, all words in the senĥ
tences are separated and annotated with partĥofĥspeech. Finally the text is matched against
rules which are already built into the system. Furthermore rules given in XMLĥles are also
checked.

3.2. Statistical Approaches

Some tried different approaches for grammar checkers based on statistical data. None of
them are used as a productive tool. In the following we describe two approaches which have
some aspects in common with our approach in LISGrammarChecker.

3.2.1. Differential Grammar Checker

In A Statistical Grammar Checker by Kernick and Powers ĬKP96ĭ several methods for grammar
checking are reviewed. In their opinion, most approaches start from the wrong site by lookĥ
ing at a sentence and checking its correctness. Kernick and Powers propose an approach
which regards two sentences and tries to classify which one is more likely to be correct.

Their approach is based on statistics without a preĥexisting grammar. They gain all statistical
information from a corpus with more than 100 million words. This corpus is built from
articles like ZiffĥDavis, the Wall Street Journal and AP Newswire. They mainly use nonĥ
ction texts and text that approximates semiĥformal spoken English.

A rst thought was to use semantics to process statistical information. But, as this was
proved unsuccessful, they decided to review syntax instead. They tried to look for a minimal
set of contexts, which can be used to distinguish words. An easy example of such a context

27

3. Related Work

is form and from. Their nal result is a differential grammar, which means “a set of contexts that
differentiate statistically between target words” ĬKP96ĭ.

3.2.2. n-gram based approach

The approach called N-gram based Statistical Grammar Checker for Bangla and English is introĥ
duced in the paper ĬAUK06ĭ written by Alam, UzZaman and Khan. Their system to check
grammar using statistics is based on the assumption that the correctness of a sentence can
be derived just from probabilities from all trigrams in a sentence. They want to use trigrams
of words, but because of the used corpus, which is too small, they use trigrams of tags. To
clarify their approach, we show a little example using bigrams. We have taken this examĥ
ple from their paper ĬAUK06ĭ, where bigrams are used, although the system is explained to
work on trigrams. The example uses the sentence “He is playing.”.

The rst step is the calculation of the probabilities of all bigrams of the example sentence.
The probabilities of all bigrams are multiplied. Their result is the probability of the correctĥ
ness of the whole sentence.

Correctness Probability for the Example Sentence
P (He is playing.) = P (He | <start>) * P (is | He) * P (playing | is) * P (. | playing)

Deducting from the paper we assume that the probabilities of all pairs are gained by perĥ
forming an nĥgram analysis. For our example, this means going through corpora using a
window of two, and determine how often each pair is found. The probabilities are therefore
calculated by dividing the amount of the bigram through the amount of all bigrams.

As the last step, the probability P is tested if it is higher than some threshold. If this is true,
the sentence is considered to be correct. Because of the multiplication of all probabilities
only one missing bigram causes a probability of zero for the whole sentence. As described
in the paper, this can occur often because of a too small training corpus which was used
beforehand to train the system and, therefore, does not contain all word bigrams of the
target language.

The concrete approach differs from the example. Instead of using the words itself, the partĥ
ofĥspeech tags corresponding to the words are used. This procedure is used because a lack
of training data. The authors assume that they can get all trigrams if they are using partĥofĥ
speech tags. In addition, trigrams are used instead of bigrams. The threshold is set to zero.
This means that every sentence which yields a higher probability than zero is considered to
be correct.

28

3.3. Our Approach: LISGrammarChecker

The paper does not describe in detail which corpus was used to train the system. For the
tagging, the partĥofĥspeech tagger from Brill ĬBri94ĭ is used. There is no further information
about the accuracy.

The paper does not clearly state how the accuracy measurements are achieved. For Enĥ
glishħusing a manual tagging methodħthe performance is denoted as 63İ. This perforĥ
mance is assessed from the amount of sentences which are detected as correct out of 866
sentences which the authors denoted to be correct. There is no measurement for false posĥ
itives. Furthermore the paper is imprecise which sentences were used to determine perforĥ
mance.

3.3. Our Approach: LISGrammarChecker

Our approach embodies a Language Independent Statistical Grammar Checkerħwe call it LISGram-
marChecker. The main idea of our approach is based on statistics. We consider a database
containing all biĥ, triĥ, quadĥ, and pentagrams of tokens and of tags of a language. This
database is built up in a training phase. When the database is built up, we gather statistical
information. We want to use this statistical information, i.e. nĥgrams, for nding errors and
propose error corrections. Every sentence is checked for all nĥgrams of tokens and nĥgrams
of tags and different error points are given if a specic nĥgram is wrong.

Let us explain our approach with an example using trigrams only. For the sentence “All
modern houses are usually very secure.”, our approach will extract every trigram out of the
sample sentence, e.g. “All modern houses”, “modern houses are”, “houses are usually”, etc. These
trigrams are saved into the database for training. While checking the sentence “All modern
houses is usually very secure.” Īwrong verb tenseī, we check the existence of every trigram in
the database. In this case, the trigram “houses is usually” is not found in the database, and
thus an error is assumed. Additionally, this trigram analysis is also done for trigrams of tags,
not only for the trigrams of the tokens themselves. A more detailed description follows in
the next chapters.

Compared to the ruleĥbased grammar checkers, our approach aims to be completely lanĥ
guage independent. We achieve the language independence by the opportunity to train the
database for every natural language. The checking is then done for the specied language.

Furthermore, we do not use any rules at all. We only use statistical data for grammar checkĥ
ing. This facilitates all languages to be used in the same program. And this program allows
also languages where it is impossible or where the language is not spread enough to write a
set of rules for grammar checking.

29

3. Related Work

We do not use a differential grammar. Thus our approach differs from the described gramĥ
mar checker from Kernick and Powers ĬKP96ĭ.

Compared to the described approach from Alam, UzZaman and Khan ĬAUK06ĭ which also
uses nĥgrams, our system uses more nĥgrams and combines them in a certain manner. The
other approach only uses trigrams of tags to check the grammar. Furthermore, they take
probabilities into account and there is no possibility to mark an error. If one trigram is not
found, the whole sentence is just marked as incorrect due to the multiplication of the single
probabilities of all trigrams. Instead we use biĥ up to pentagrams and both nĥgrams of tokens
and nĥgrams of tags. We also consider all tags of a sentence. We think that regarding only
trigrams is not sufficient enough, because the word spheres are usually bigger than three and
these are necessary to foresee all dependencies of a specic word. If we look at the wrong
sentence “He and the girl is curious.”, we would consider the whole sentence as correct if we
are using trigrams only. The reason is that the verb is is not compared with the rst noun
he and thus the plural cannot be detected to be necessary. When using pentagrams, this is
detected with the pentagram “He and the girl is”. This pentagram would be considered as
wrong. We do not use the probabilities of the nĥgrams directly but use an error counter
with different weights for individual errors.

30

Part II.

Statistical Grammar Checking

Requirements Analysis 4
This chapter describes our approach. We start by explaining our idea and concept, and
continue to develop the requirements for LISGrammarChecker. According to these reĥ
quirements, we analyze the consequences for our work and start to specify what we need to
consider. We analyze what would t best to fulll our requirements. We indicate which
programming language we use, which corpora we prefer and how we obtain our statistical
data. We regard the aspects of tagging within our grammar checker. Furthermore, we anaĥ
lyze how to process and store data in an appropriate manner.

4.1. Basic Concept and Idea

LISGrammarChecker uses statistical data to detect errors in a text. Therefore, we need a
lot of texts which are used to build up the statistical database. These texts are processed in
a certain way and the result is stored permanently. These stored results in the database can
be extended at any time with new texts. We have two different approaches implemented in
parallel. The onewhichwe explain rst is based on nĥgrams and is used for themain grammar
checking. The second usesmorphosyntactic features, i.e. word classes, and tackles therefore
some specic grammar problems.

33

4. Requirements Analysis

4.1.1. n-gram Checking

Our main approach for statistical grammar checking uses nĥgrams. In later sections we will
summarize all this functionality as n-gram checking.

Data gathering To perform nĥgram checking we need two different types of data: nĥgrams
of tokens and nĥgrams of tags Īsee section 2.1.5ī. Getting the tags for each token in
the texts requires the use of a partĥofĥspeech tagger. From the input texts, we extract
nĥgrams of 2 up to 5 consecutive tokensħbigrams up to pentagramsħand separately
the biĥ to pentagrams of the corresponding tags. The rst step of our concept is thus
the processing of a large amount of text. The results of this training step are stored
persistently for further processing.

Token n-gram check In the next step we want to perform the grammar checking using the
stored statistical data. Therefore, we compare an input text, in which errors should be
detected, with the statistical data. To allow the comparison, the input text also needs
to be analyzed with respect to its nĥgrams. Figure 4.1 shows an example, beginning
in step 1 with the wrong input sentence “All modern houses are usually vary secure.”.
Step 2 shows examples for extracted nĥgrams. These extracted nĥgrams are just a small
part of the nĥgrams in the sentence. A complete token nĥgram extraction would start
with all pentagrams of tokens for the whole sentence. Then we continue with the
corresponding quadgrams of tokens, going on with the trigrams of tokens, and so on.

Figure 4.1.: Token n-gram check example

34

4.1. Basic Concept and Idea

After that, all obtained nĥgrams are looked up in the database Īstep 3 in Figure 4.1ī. If
an nĥgram is not found in the database, it is assumed that this nĥgram is wrong. In our
example the pentagram “modern houses are usually vary” is not found in the database Īsee
step 4ī. An error level is calculated corresponding to the amount of nĥgrams which are
not found in the database. The smallest erroneous nĥgram nally points to the error
in the input text. In this example, this would be the nĥgram “usually vary secure” and is
therefore marked as an error Īstep 5ī.

Tag n-gram check Independent of the nĥgram check of tokens, we analyze also the nĥgrams
of the tags. This works similar to the described method with the nĥgrams of tokens,
butħin addition to the biĥ up to pentagramsħwe use a whole sentence as one nĥgram
of tags. Thus we start with the analysis of the tags for a whole sentence. Then we
continue with the pentagrams of the tags followed by the check of the quadgrams,
trigrams, and bigrams as described above.

Furthermore, we consider three more nĥgramsħhybrid nĥgramsħwhich consist of toĥ
kens and tags. The rst of them is a bigram consisting of a token and a tag on its right
side. The second is almost the same but viceĥversa: a bigram that consists of a token
and a tag as its left neighbor. The third can be considered as a combination of the two
other bigrams: it consists of a token in the middle and a tag on each side as its left and
right neighbor.

Internet n-gram check An additional functionality, which can be activated along with the
nĥgram check of the tokens, is the use of nĥgrams from an Internet search engine,
e.g. Google ĬGooaĭ or Yahoo ĬYahĭ. This option offers the possibility to gain nĥ
grams from an indenitely large amount of statistical data. If this functionality is
activated, we extend the token nĥgram check to use the data from Internet search
engines to increase the amount of statistical data. That means, if there is an error in
the token pentagrams from our database, the next step is a token pentagram check in
the Internet, before we continue with the quadgram check from the local storage.

Error counting The error counting is done in step 4 of Figure 4.1. For both methodsħnĥ
gram of tokens and nĥgram of tags checkħthere are individual weights for each error
assumption. This means that the weights of how much an error assumption counts
can be dened individually. For example, there is an individual weight for an error
assumption of an unknown token pentagram, a weight for a missing token quadgram,
a weight for a missing tag quadgram, etc. All error assumptions are counted correĥ
sponding to their weights. All these errors are summed up and the result is compared
to an overall error threshold. If it is higher than the threshold the sentence is marked
as wrong.

Correction proposal After the input text is checked and all errors marked, correction proĥ
posals corresponding to the found errors should be given. Our idea to correct errors

35

4. Requirements Analysis

also uses nĥgrams. We want to make a proposal for the most probable phrase. Thereĥ
fore, we use the borders of nĥgrams, leaving out the error itself.

For example, we take again the found error “usually vary secure” of our example, see
step 1 in Figure 4.2. We take the pentagram corresponding to the error and replace
the entry in the middle with a wildcard, i.e. in this case “are usually * secure .”. In step
2 we search in our database for pentagrams with the rst Īareī, second Īusuallyī, fourth
Īsecureī and fth Ī.ī entry as specied. The middle element in the pentagram Īi.e. the
third oneī is a wildcard Ī*ī. We search for possible correction proposals. There are
two different possibilities how the proposal can be chosen from the results. Either we
propose the result with the most occurrences or the most similar entry Īcompared to
the skipped tokenī which has still an appropriate amount of occurrences. In step 3 of
Figure 4.2, we propose “are usually very secure .”. In this case, the proposal represents
the phrase with the most occurrences, which is also the most similar entry compared
to the error Īvary and very differ only in one letterī.

Figure 4.2.: Correction proposal example

4.1.2. Word Class Agreements

Our second approach does not represent a full grammar check but a solution to tackle two
specic grammar problems. The idea is similar to the nĥgram approach. Thus there is also

36

4.2. Requirements for Grammar Checking with Statistics

a lot of statistical data required. Again, we need a tagger to get the word classes, i.e. several
tags that correspond to these word classes.

We check the agreement of a temporal adverb with the tense of the corresponding verb,
and the agreement of an adjective to its corresponding noun. Therefore, we save this data
while statistical data is processed and check a new text, where errors should be detected,
against it.

Adverb-verb-agreement We save all temporal adverbs as proper tokens, e.g. yesterday, and
the verb tags in a sentence. If there is the verb stayed in the sentence, we save its tag
verb (past tense).

Adjective-noun-agreement Here we save all adjectives along with the noun which is deĥ
scribed by the adjective. Both are used as tokens itself, e.g. we save the adjective
young together with the noun girl.

From now on we refer to this second part of our approach as word class agreements. In this
part we necessarily need a tagger which gives the word class tags. In addition, the tags that
are used to detect the tokens need to be specied for every language, or, more precisely,
even for every possible tagset. That means if we use the Penn Treebank tagset we need to
specify that the tag RB marks adverbs. These little rules need to be dened because it is not
possible to identify a certain word class just by looking at text. When checking sentences,
the assumed errors are also summed up.

4.1.3. Language Independence

Our approach is language independent, because the statistical input texts can be given in
any language. There could be a problem concerning language independence, if there exists
no tagger for a specic language. This lack of a tagger could hinder the full functionality,
i.e. the nĥgrams of tags and the second part of our idea using the word classes cannot be
used. However, the nĥgrams of tokens from storage and from the Internet can be used
in every natural language. A limitation to the language independency regarding the word
class agreements could be the nonexistence of one or both features in a certain language but
nevertheless they can be used in all languages where these agreement test make sense.

4.2. Requirements for Grammar Checking with Statistics

Our purpose is to build a language independent statistical grammar checkerħLISGrammarĥ
Checkerħwhich detects as many errors as possible and is capable of proposing an approĥ
priate correction. Nowadays, all wellĥknown grammar checkers use sets of rules to perform

37

4. Requirements Analysis

these tasks. A big disadvantage in using rules is the lack of language independence. As specied
in our denition of grammar Īsection 2.1.1ī, it is rarely possible to use the same rule for more
than one language. Furthermore, some languages are too complex to be mapped into a set
of rules, or the language is not spoken by enough people so that it is not protable enough
to build up a rule set for it. We try to counteract these problems by using statistical data
to perform the grammar checking instead of rules. The data for every language needs to be
processed separately because of their differences.

The use of statistical data instead of rules introduces some new challenges. Rules can deĥ
scribe many grammatical features and thus cover complex grammatical structures. This
means that all rules for a complete grammar usually do not need so much storage memory.
For example, the Microsoft Word 97 grammar checker uses about 3 MiB storage capacity
ĬDMS00ĭ. This is contrary to the statistical approach. Here we need the possibility to
process and store a lot of data. Statistical data get more accurate and reliable, if more data are
available at once. To get more data, the Internet nĥgram feature can be activated. This
requires LISGrammarChecker to query the Internet and handle the query results.

All the data needs to be stored in a usable and logical form into a database. The access time
to the data must be fast enough to fulll some speed requirements. It has to be fast enough
to check the grammar in acceptable time. There are two competing factorsħspeed versus
accuracy. Due to the problem of data handling, the speed of data retrieval decreases rapidly
if the amount of data gets too large.

A very important constraint for this approach demands the statistical data to be (grammatically)
correct. Only if this is fullled, will a sufficient statistical signicance be reached and the
information be considered reliable. It is therefore not acceptable to process and save data from
every input sentence while grammar checking is done. Thus, we need separate modes in the
programħone for data gathering, i.e. a training mode, and another mode using this database
to perform the grammar checking on new input text which is possibly wrong, i.e. a grammar
checking mode.

Our approach uses tags. We have the choice between developing our own tagger or using
an existing one to get the tags for each token automatically. As we considered using decent
taggers which are already language independent, we want those to be executed within the
program. Like the statistical data itself, the tagging result is required to be correct because text
which is tagged wrong can not be found in the data storage and logically the overall result
is incorrect. The goal of full tagging accuracy is not reachable. As a single tagger is always
less accurate than a combined tagger, taggers with good accuracies have to be combined to
maximize the tagging accuracy.

The user needs to communicate with the system to provide the input text and to change prefĥ
erences Īmode etc.ī. Thus the user interface must provide possibilities to fetch the required
informations. In addition, there is the demand for the grammar checker to show results.

38

4.3. Programming Language

The user need to see what the grammar checker has done so far, e.g. in training mode if the
training is successful, or in checking mode if the input text contains errors and where they
occurred Īgrammar checking resultī.

To use statistical data from training input for later grammar checking, the data need to be
extracted and prepared using some logic. It must be specied what needs to be extracted and
an algorithm is needed to do that work.

To perform grammar checking with statistical data, a logic is needed. The grammar checking is
implemented by an algorithm. This logic needs to consider e.g. how the stored statistical
data can be used to check the grammar of input text.

There is always a tradeĥoff between the amount of detected errors in a text and the misĥ
leadingly marked errors, the so called false positives. The goal is to detect as many errors as
possible. If there are toomany false positives, the usefulness decreases. Thus the false positive
rate should be as small as possible. We want to achieve this goal with a concept of thresholds,
i.e. we do not intend to mark an error immediately but collect a reasonable amount of error
assumptions to state the existence of an error. Along with the detection of an error comes
the correction proposal. We want to gain these proposals from the most likely alternatives out
of the statistical data.

Table 4.1 summarizes the developed requirements with their consequences for the impleĥ
mentation of LISGrammarChecker. In the following sections we analyze how to satisfy
these requirements.

4.3. Programming Language

One main decision to implement an approach is the selection of the programming language.
Demands for our implementation extend from the possibility to combine the execution of
other programs as taggers to the use of a data storage system to save statistical data. It
should have the opportunity to query Internet resources, e.g. to build a connection to an
Internet search engine to get search results from it. For our approach it is necessary to
operate with strings in many ways, which makes simple string handling valuable. The speed
of program execution does not seem as important at a rst glance. But if we consider the
amount of data which is processed, the tradeĥoff between speed and accuracy quickly raises
in importance. This prefers a language which can be compiled to native machine code and
can thus be executed directly without a virtual machine. Scripting languages are also not
sufficient with regard to the execution speed. The paradigm of the language and features
like garbage collection does not really matter. Demands like operating system and platform
independence are not important for us.

39

4. Requirements Analysis

Table 4.1.: The emerged requirements with their consequences

Requirements Consequences

Language independence
Process statistical data separately for every language
Save huge data permanently Īdatabase systemī

Gain data and save it permaĥ
nently

Separate training mode to save data

Grammar checking without
saving wrong input

Separate grammar checking mode

Correct statistical data Gain correct text from reliable sources

Program execution speed Fast program components Īprogramming languageī
Short data access time Īfast data storageī

Accurate reliable data Much statistical data
Use Internet nĥgrams Possibility for Internet queries
Tagged input text with high
accuracy

Integrated tagger
Combined tagger

User need to interact with the
system

Appropriate user interface to give input and preferĥ
ences

Show results Ītraining successĥ
ful or errors foundī

Output result to the user

Save data in training mode for
later grammar checking

Algorithm to extract information from input

Perform grammar checking in
grammar checking mode

Algorithm to perform grammar checking

Few false positives Use thresholds for error calculation
Propose a correction Gain proposals from the most likely alternatives out

of the statistical data

There are various languages which meet the needs to different extents. As we consider the
demands of a fast program execution, the possibility to run external programs, and simĥ
ple string handling as important, we decided to use the rather new programming language
D ĬDigĭ. Even though it is a very young programming language, it is very well supported
through a frontĥend for the GNU Compiler Collection called GDC ĪGNU D Compilerī
ĬFriĭ.

40

4.4. Data Processing with POSIX-Shells

D does not need a virtual machine like Java, nor is it a scripting language as PHP or Python.
Native binaries raise the speed of program execution compared to these languages. The
programming language is not bound to objectĥorientation. Functional programming which
can raise the speed of program execution is also supported. String handling is supported in
a sophisticated way like e.g. in Java, which is an advantage over C or C++. It is possible to
execute other programs within D and handle their standard input Īstdinī and standard output
Īstdoutī. D is similar to C and C++, thus it is easy to adopt. Additionally, C code can diĥ
rectly be included and mixed within D code. In case of missing D functions or bindings Īi.e.
MySQL ĬMSĭī, the C alternatives can be used. D comes with a garbage collector which is a
nice but not necessary feature for our approach.

4.4. Data Processing with POSIX-Shells

A lot of data processing is needed before the proper grammar checking can be done. This
means that data has to be processed and converted to the format which is expected by the
program. To ensure the correct delivery of data to the program we use the capabilities of
POSIXĥshells ĬIEE04ĭ.

An important point is the use of the shellĥbased streams standard inĥ and output. On the
one hand, LISGrammarChecker itself needs to be used with a shell command. It needs to
handle huge input texts, thus the standard input is both suitable and useful, because it is
fast and accurate. Furthermore, to offer the possibility to execute LISGrammarChecker
within another program through piping Īredirecting of streamsī both the input and output
of our grammar checker is handled through these standard streams Īstdin and stdoutī. All
capabilities of POSIXĥtools, such as grep, sed, or echo, can be used in combination with
LISGrammarChecker. On the other hand, the execution of other programs, especially PoS
taggers, within LISGrammarChecker need to be provided through a command line call.
The taggers can be included through the use of POSIX commands, in this case with the
help of shell scripts. This works, because D supports the use of commands to execute other
programs and handle their standard inĥ and output.

One important feature is the capability of scripting. In POSIXĥshells there are a lot of
programming language features available. Among them are if clauses and while and for loops.
Used with the multifaceted POSIXĥtools every data conversion can be done.

4.5. Tokenization

Our approach needs a good tokenization method to avoid unnecessary mistakes. The main
issue is the sentence boundary detection. For our approach we propose to use a tokenizer

41

4. Requirements Analysis

based on the theory by Schmid in his paper ĬSch00ĭ. This work aims to be mainly a peĥ
riod disambiguation method which achieves an accuracy higher than 99.5İ. Schmid uses
different features which denote the sentence boundaries. Among them are a dictionary of
abbreviations and pattern.

4.6. Part-of-Speech Tagging

Partĥofĥspeech taggers are very important for our approach. The process of tagging corpora
is a presupposition for some functionality where tagged text is required. It is important
to choose taggers which yield a high accuracy rate. Therefore, the taggers need to get preĥ
trained les for all used languages. Furthermore, all taggers need to be fast to ensure that
grammar checking is possible in sufficient time.

In LISGrammarChecker we include TnT ĬBra00ĭ, TreeTagger ĬSch94ĭ, and StanfordTagĥ
ger ĬTM00ĭ for English and use the Penn Treebank ĬMSM93ĭ tagset. For German, we also
use TnT, TreeTagger, and StanfordTagger, but instead of the Penn Treebank tagset we use
the STTS tagset ĬSTST99ĭ. One requirement of LISGrammarChecker is language indepenĥ
dence, thus it is easily possible to include more taggers for other languages. The TnT tagger
for example yields an accuracy of 96,7İ both in English and German with the provided
models. The models were trained with newspaper texts. TreeTagger yields an accuracy of
about 96.3İ for English. We choose these taggers for our rst prototype implementation,
because they fulll our requirements.

When comparing the tagsets, there is a contradiction if a tagset with less or more tags is
chosen. The more tags a tagset consists of the more complex is the tagging and thus the
accuracy lower, but the exactness of the classication is higher. As we have described above,
we decided to use the smaller tagsets because they yield a higher accuracy.

4.6.1. Combination of PoS Taggers

Accuracy is one requirement for tagging. Combined tagging can produce higher accuracies
than the use of only a single tagger. For combined tagging it is the best to use as many
different tagger types as possible. Let’s consider the example sentence “This shows a house.”
and do simple voting with three taggers A, B, and C. Table 4.2 shows the result.

If we look at tagger Bwe see that the word shows is accidently tagged wrong. The word shows
can be a plural noun, which has the tag NNP. In this context this is wrong, because it is a
verb in third person singular, i.e. the tag VBZ is correct. There would be a mistake in tagging
if only tagger B is used, but with the simple voting combination the nal result denotes the

42

4.6. Part-of-Speech Tagging

Table 4.2.: Simple voting example

Tokens Tagger A Tagger B Tagger C Combination

This DT DT DT DT
shows VBZ NNP VBZ VBZ

a DT DT DT DT
house NN NN NN NN

. SENT SENT SENT SENT

word shows as VB because two of three taggers Īthe majorityī propose that tag. All taggers
make different errors and thus the combination can eliminate some tagging errors.

Regarding the tradeĥoff between tagging accuracy and execution speed, we have to nd the
best tradeĥoff for our intention. If it takes for example one millisecond to achieve 96İ
accuracy instead of 96.2İ in ve seconds, the 0.02İ greater accuracy is not as valuable as
more speed. For our prototype, the above mentioned taggers are sufficient. The simpler the
combining method, the faster is its execution. Thus we start with the implementation of
simple voting.

4.6.2. Issues with PoS Tagging

While using PoS tagging, there are several aspects which need to be considered. For examĥ
ple the encoding must be consistent. LISGrammarChecker uses UTFĥ8 ĬYer03ĭ, thus the
taggers need to support this.

In case of a combined tagging, the tokenization must be done the same way for all taggers.
This is required to get correct results. One solution is that we do the tokenization for all
taggers once and thus in the same way before the taggers get the texts.

The next problem which arises by using taggers is the input to the tagger and the output
after tagging. This need to be considered and implemented in an adaptive way so that it is
possible for LISGrammarChecker to support various kinds of taggers.

43

4. Requirements Analysis

4.7. Statistical Data Sources

In order to get a database which allows an accurate grammar check, we need good statistical
data for training. In this case good means that the used corpora and texts need to be of
good quality. Good quality means grammatical correctness and good language style. It is
therefore not possible to use every available corpus resource. Transcripts of recorded spoken
text are not recommended, because it does not fulll the quality demands. Useful for the
English language are for example newspaper texts fromABC,NYT, or Bloomberg, and texts
from the American National Corpus ĬIS06ĭ Īover 20 million wordsī as well as Wortschatz
Universität Leipzig ĬQH06ĭ. For German, Wortschatz Universität Leipzig is also useful.
It contains 3 million sentences with about 15.73 words per sentence which are 47,190,300
words.

4.8. Data Storage

LISGrammarChecker needs to handle and store huge amounts of data. It must be able to
handle more than 100 million different data sets. The requirement for a database is to store
text phrases, e.g. nĥgrams, and the data needs to be ready for retrieving in a short period of
time. To achieve these tasks efficiently, the data must be stored in an ordered way. Several
methods can be used.

We reviewed three methods: a at le, a XML le, and a database system. With regard
to LISGrammarChecker, all three have advantages and disadvantages in their usefulness of
necessary features. Some key features are compared in Table 4.3. The markers represent a
scale of how well a specic feature is supported. The scale from best to poorest is: ++ Īvery
good supportī, + Īgood supportī, o Īneutralī, – Īpoor supportī, and – – Īvery poor supportī.

If we regard the complete table, a database system would be the best solution for our protoĥ
type. We have a lot of scattered data which needs to be sorted in someway Īe.g. there should
be no double entriesī. Sequenced data means that the data is already structured and can be
written like a stream. That would only be the case after our program has nished and all
the data is processed. If we look at Table 4.3, we see that a database has only poor support
for sequenced data, but a at le supports sequenced data very well. This indicates that
if the data has been structured once that the data can be copied like a stream to another
database which is a lot faster than doing the extraction again. A database has advantages
compared to a simple text le, especially optimization, sorting, and searching. We do not
need to do this on our own in the program. The XML le has also some advantages which
could be of use for us but the tradeĥoff shows that we would rather use a database system for
LISGrammarChecker. Many features from Table 4.3 are supported.

44

4.8. Data Storage

Table 4.3.: Comparison of several storing methods

Feature Flat file XML file Database

Write sequenced data ++ + ĥ ĥ
Write single set Īpartī ĥ o +
Organization of information ĥ + +
Access particular data ĥ ĥ ĥ ++
Check if set exists before writing ĥ ĥ ĥ ++
Optimize data structures ĥ + ++
Sort and search data sets ĥ + ++

The next question is which database to use. Again, there are several possibilities. We decide
to use a MySQL ĬMSĭ database. It has the big advantage that there are MySQL bindings
which allow a simple integration into D. Furthermore, MySQL is a wellĥknown and reliable
open source database system.

One advantage of using the database system MySQL is its capability to use clusters. That
means it would be possible to use more than one machine to store the data on. This would
improve the speed considerably. We will consider this for further improvements to the
speed.

45

4. Requirements Analysis

46

Design 5
In this chapter we give an overview of the design of LISGrammarChecker. We introduce
all program components and show how they interact with each other.

5.1. Interaction of the Components

LISGrammarChecker reects the structure of a typical computer programħit consists of
an input, a processing, an output, and a database component. Figure 5.1 shows an overview of
the general interaction of these abstract components. LISGrammarChecker is designed to
process data in a serialized form, starting with an input, continuing with the processing part,
and concluding with the output.

There are two different workows possible: one to train the program with statistical data,
training mode, and one for doing the checking of grammar, checking mode. In training mode,
the input is statistical text, which is analyzed in the processing part and written to the
database Īsee section 5.3 for more detailsī. In checking mode, the input is also text. This

47

5. Design

Figure 5.1.: Abstract workflow of LISGrammarChecker

text will be checked for errors in the processing part. The results from this grammar checkĥ
ing, e.g. the indication of errors, is given to the user as output. Section 5.4 describes the
checking mode.

Before we give the description of these two modes, we consider the user interface with the
inĥ and output of LISGrammarChecker.

5.2. User Interface: Input and Output

LISGrammarChecker is a shell programwithout a graphical user interface. Input and output
of the program happens on the command line. This means that options and data input are
given to the program by using the standard input Īstdinī.

Both training and checking mode have different inputs. In both modes, input parameters
can be specied, e.g. the language, the tagging method Īsee section 5.5ī, or a database name
Īsee section 5.6ī. In trainingmode, statistical data in form of Īhugeī texts are given as input to
be stored in the database. Subsection 5.3.1 presents more details about the input in training

48

5.3. Training Mode

mode. In checking mode, a sentence or even a text is given as input, which is checked for
grammatical errors. This is explained in subsection 5.4.1.

The output is given out on the standard output Īstdoutī. It differs in both modes. The
training mode outputs just a success message, that the extracted data has been written to
the database. We do not indicate this output in our overview ĪFigure 5.1ī, because it is of
no relevance for the main program workow. The output from checking mode is much
more important. It presents the grammar checking results, especially the error indication
together with corresponding correction proposals. The results from the grammar checking
part are explained in subsection 5.4.5.

5.3. Training Mode

The training mode is used to ll the database with statistical data. The training is a preconĥ
dition before any text can be checked.

The rst step of this mode is the input. Here the program expects texts, which are used to
extend the database. This data is passed to the tagging component rst, which is explained in
section 5.5. After that, the tagged text is given into the data gathering component, where the
needed phrases and information is extracted and afterwards written into the database for
further processing. Figure 5.2 demonstrates the described training workow. We continue
explaining the input in the following subsection.

5.3.1. Input in Training Mode

All input is passed to the program by input parameters on the standard input. There are
several input parameters available in training mode:

Statistical data This is themain andmost important input to the program. Huge collections
of text serve as input to train LISGrammarChecker, i.e. to extend the database with
statistical data. It is generally possible to input all kind of texts, but they should fulll
some standards. It is, for example, very important that the texts are Īgrammaticallyī
correct. Only if this is assured and enough texts are used to learn, will a sufficient
statistical signicance be reached and the information be reliable. Thus, it makes a
difference which kind of input texts are used to ll the database.

Language The language can be specied by a parameter. This is used to assign the input
data to the correct language. If the optional language parameter is missing, English is
chosen as the default language. The language information is needed in order to store
the input data in the correct database tables.

49

5. Design

Figure 5.2.: Workflow in training mode

Tagging method Furthermore, the tagging behavior can be changed. The default uses all
available taggers for the chosen language and their outputs are combined by a simple
voting algorithm. By setting this parameter, the combined tagging can be skipped in
favor of one single tagger. See section 5.5 for more details about the possible tagging
methods.

Database name An individual database name can be specied. This is optional and usually
a default name is used. This option offers the possibility to build up a new database
without harming another. Using this option, the databases can be used for different
advantages.

5.3.2. Data Gathering

The data gathering step analyzes the input texts and extracts statistical information from
them. These data are stored in the database. Later, they are used for the grammar checking.

50

5.3. Training Mode

In this step the texts are already tagged.

We analyze the input texts in two different ways: regarding their nĥgrams Īrst part of our
approachī and regarding their word class agreements Īsecond partī. While parsing the texts,
we extract all needed information at once. For every entry that is stored to the database, a
corresponding amount of occurrences are saved. This amount describes how often a specic
data set occurred. See section 5.6 for more details about the form of the stored data.

n-gram checking The rst and main part of our approach uses nĥgrams as explained in secĥ
tion 4.1.1. We use both the nĥgrams of tokens and nĥgrams of tags. Token nĥgrams
means that we take a look at nĥgrams of two up to ve neighbored tokens Īall bigrams
to pentagramsī. While performing the nĥgram analysis we extract all these token nĥ
grams and store them in our database. We do the same with the tag nĥgrams. The only
difference to the treatment of the token nĥgrams is the usage of tags instead of the toĥ
kens themselves. As a speciality we also store the tag structure of a whole sentence;
this means that we save all tags of each sentence as a tag combination.

Figure 5.3 illustrates an example on the basis of the sample sentence “All modern houses
are usually very secure.”ħthe two trigrams “modern houses are” and “houses are usually”
are taken from the sentence and stored to the database. This example sentence has
more than two trigrams. If we take the formula from section 2.1.5 to calculate the
amount of nĥgrams, we get six trigrams: kĥĪnĥ1ī = 8ĥĪ3ĥ1ī = 6, where k = 8 Ītokens in the
sentenceī and n = 3 Īclassies the nĥgram as a trigramī. The same formula can be taken
to calculate the amounts of pentagrams, quadgrams and bigrams.

We also need to evaluate the token nĥgrams from the Internet and store them but we
do not request any Internet nĥgrams in training mode. The reason for that is that it
is not useful because the training data are considered as correct and needs therefore
not to be double checked. But nevertheless we use them in checking mode, and every
nĥgram loaded from the Internet is stored locally to our database when it is requested.

Furthermore, we store three more nĥgrams of hybrid type. They represent a mixture
of tokens and tags. The rst is a bigram consisting of a token and a tag as its right
neighbor. The second is almost the same but viceĥversa: a bigram that consists of a
token and a tag as its left neighbor. The third is the combination of both bigrams: a
token in the middle of two tags.

Word class agreements The information needed for the second part of our approach, which
is already explained in section 4.1.2, refers to the word classes. We take this informaĥ
tion from the tags. This part of our approach does not represent a whole grammar
checking logic. It rather tackles two specic grammar problems. In LISGrammarĥ
Checker, there are two kinds of word class agreements implemented: the agreement
between an adverb and a verb as well as the agreement of an adjective and a noun.

51

5. Design

Figure 5.3.: Two sample trigrams (of tokens) are stored into database

Figure 5.4 shows an example of an adverbĥverbĥagreement. The sample sentence is
“Yesterday, the man stayed at home.”. At rst, this sentence is tagged by a tagger. In the
gure, the tags are illustrated as word classes “adverb, determiner, noun, verb (past tense),
preposition, noun, punctuation”. For the adverbĥverbĥagreement, we need the adverbs as
proper tokens and the tags of the verbs. This means that we parse the training input
in a next step. If we nd the tag adverb in a sentence, we save the token of the adverb
together with the tags of the verbs in the same sentence. In our example, the extracted
information is highlighted in blue in Figure 5.4: the token “Yesterday” and the tag “verb
(past tense)”. These data are stored to the database.

Figure 5.4.: Extract adverb and verb

The adjectiveĥnounĥagreement works similar to the adverbĥverbĥagreement. An examĥ
ple sentence “Das ist ein grünes Haus.” is shown in Figure 5.5. This sentence is given as
training input to LISGrammarChecker. Again we start by tagging the text. The tags
which are illustrated as word classes in this case are “pronoun, verb, determiner, adjective,
noun, punctuation”. For the adjectiveĥnounĥagreement we need the adjectives together
with the nouns that are described by the adjectives. We need both as proper tokens.
In our example sentence, this is the adjective grünes, which describes the noun Haus.
They are written in blue in Figure 5.5. Both tokens are stored to the database.

52

5.3. Training Mode

Figure 5.5.: Extract adjective and noun

Concluding to this data gathering subsection, Table 5.1 summarizes all data that we extract.

Table 5.1.: All information that is extracted in training mode

Checking method Extracted data (assigned to methods)

Token nĥgram check ĪInternet
functionality not yet relevantī

Token bigrams
Token trigrams
Token quadgrams
Token pentagrams

Tag nĥgram check

nĥgram of all tags of a sentence
Tag bigrams
Tag trigrams
Tag quadgrams
Tag pentagrams
Bigrams of a token with its left neighbors tag
Bigrams of a tokens with their right neighbors tag
Trigram of a tokens with its left and right neighĥ
bors tags

Adverbĥverbĥagreement Adverb tokens with belonging verb tags
Adjectiveĥnounĥagreement Adjectives and belonging nouns, both as tokens

53

5. Design

5.4. Grammar Checking Mode

As the name of this mode already proposes, the grammar checking itself is done here. This
workow starts also with the input: text, which will be checked. In addition to that, there
can be input parameters to specify the language, the tagging method, and further details
about the checking method. The general workow for the grammar checking is shown in
Figure 5.6. The tagging mechanism follows the input part, similar to the one in training
mode. The gure shows that the checking methods and the error counting constitute the core
grammar checking. These components interact with the database and optionally with the
Internet. After the identication of all errors, the correction proposal component comes into
play. The identied errors together with their correction proposals are presented to the
user in the output component. The following subsections explain the checking mode in
more detail, starting with the input.

Figure 5.6.: Workflow in checking mode

54

5.4. Grammar Checking Mode

5.4.1. Input in Checking Mode

There are several input parameters for the shell, which can be used in checking mode:

Input text The grammar checking mode requires text as input which should be checked.
This texts can be a single sentence or a whole text. These texts are necessary for
checking mode and must be specied.

Language There is an optional parameter which species the language. It is used to preĥ
pare parts of the program to use the correct language. If this language parameter is
missing, English is chosen as default language. As in the training mode, the language
information is needed in order to retrieve the correct data from the database.

Tagging method The tagging method can be specied using another input parameter. This
parameter is optional. If it is not specied, all available taggers for the current language
are used. Their results are combined using the simple voting algorithm.

Database name An individual database name can be set. This is optional and usually a deĥ
fault name is used. This option offers the possibility to use a different database with
other statistical data.

Error threshold The error threshold can also be specied. This parameter denes the overĥ
all error threshold for all errors in one sentence. For more details about the error
threshold and the error calculation see section 5.4.3. This parameter is set to 30 by
default.

Internet n-grams The amount of available token nĥgrams can be extended by activating the
Internet nĥgram check. This is deactivated by default. This feature extends the toĥ
ken nĥgrams in the local database with nĥgrams that are searched in the Internet. The
preferred search engine can be specied, e.g. Google ĬGooaĭ or Yahoo ĬYahĭ. Furĥ
thermore, a threshold can be given, which species the amount of search results that
denes a positive search. This threshold is optional as well; its default is 400.

5.4.2. Grammar Checking Methods

The checking methods component, which is illustrated in Figure 5.7, gets tagged text as
input. This text is now ready to be checked for errors. Various properties that can reveal
errors are examined in several checking methods. All checking methods can detect distinct
errors. At rst, all detected errors are only handled as error assumptions. A true error
is dened when enough error assumptions occur. True errors are calculated in the error
counting component Īsee belowī. As the checking methods are already described in detail
in section 4.1, we briey recall them:

55

5. Design

Token n-gram check Use the nĥgrams of token from database for checking. First, all penĥ
tagrams of token in the sentence are checked. In case of one or more pentagrams are
not found, the token quadgrams come next, then the trigrams and nally the bigrams.

Internet functionality This is no complete checking method, but rather an extension for
the token nĥgram check which can be activated optionally. In this case, the statistical
data is extendedwith nĥgram search results from an Internet search engine. The search
engine can be specied, e.g. Google ĬGooaĭ, Yahoo ĬYahĭ, or Google Scholar ĬGoobĭ.
If this functionality is activated and an error in a pentagram of token occurred, the
pentagram is sent to an Internet search machine. The search machine returns the
amount of found results. If this amount is greater than a certain threshold we dene
this pentagram as correct. After that we continue with the quadgrams of token from
our database. Here the same rule applies: if a quadgram is wrong, an Internet search
is started for that particular quadgram. The same will be the case for triĥ and bigrams.
All requested results are stored in the local database, so that the same request does
not need to be sent twice. This functionality is deactivated by default because of the
numerous requests to the Internet.

Tag n-gram check Uses the tag nĥgrams from database for checking. It starts with the tags
of a whole sentence, and continues with the pentagrams of tags. If a pentagram is not
found we check the quadgrams etc. Furthermore the nĥgrams of the hybrid tags and
tokens are checked.

Adverb-verb-agreement If an adverb is found in the sentence, the agreement between it
and the verb tag is checked. To do that, the token of the adverb is used. For the verbs
Īwe use them all because some tenses consist of more than one verbī we use the tags.
A lookup for that combination is done to check if it is valid.

Adjective-noun-agreement If there is an adjective in front of a noun in the sentence, the
agreement of the noun and the describing adjective are checked. Here, for both the
adjective and the noun, the tokens are compared.

All checking methods are executed in one pass but all need different statistical informations.
Each checking method component interacts with the database and, if required, with the
Internet component.

Figure 5.7 shows the interaction of all components. First, the individual grammar checkĥ
ing methods are executed. While they are working, they determine missing items, e.g. not
found nĥgrams. If an item is not found in the database we make an error assumption. These
error assumptions are stored for further processing. We store the type of the missing item
together with its position, so that we remember the exact location, where the error assumpĥ
tion occurred and of which type it is. These data are necessary to calculate the overall errors

56

5.4. Grammar Checking Mode

Figure 5.7.: Grammar checking

and to point out the phrase where the error occurred. When the true errors are identied,
corresponding corrections proposals can be evaluated.

As all checking methods use different approaches to achieve their results, they all deterĥ
mine different error assumptions. These error assumptions can be weighted individually to
calculate an overall error result.

5.4.3. Error Counting

All grammar checking methods which are explained in the previous subsection detect differĥ
ent errors. These errors are handled as error assumptions at the beginning. The checkĥ
ing methods store the detected errors assumptions with their type and location for further
treatment. The error counting component uses this stored error assumption information

57

5. Design

to calculate the overall error. Table 5.2 shows all possible error assumptions that can be deĥ
termined by the checking methods. These error assumptions occur, if an entry is not found
in the database. For example, if the pentagram of tokens “modern houses is usually very” is
nonexistent in the database, an error is assumed.

Table 5.2.: All possible error assumption types
Checking method Possibly determined error assumptions

Word nĥgram check
ĪInternet functionality
deactivatedī

Nonexistent token bigram
Nonexistent token trigram
Nonexistent token quadgram
Nonexistent token pentagram

Word nĥgram check,
Internet extension
activated

Nonexistent token bigram
Nonexistent token trigram
Nonexistent token quadgram
Nonexistent token pentagram
Nonexistent token bigram from Internet search
Nonexistent token trigram from Internet search
Nonexistent token quadgram from Internet search
Nonexistent token pentagram from Internet search

Tag nĥgram check

Nonexistent bigram of a token with its left neighbor tag
Nonexistent bigram of a token with its right neighbor tag
Nonexistent trigram of a token with its left and right
neighbor tags
Nonexistent nĥgram of all tags of a sentence
Nonexistent tag bigram
Nonexistent tag trigram
Nonexistent tag quadgram
Nonexistent tag pentagram

Adverbĥverbĥagreement Nonexistent adverbĥverbĥagreement
Adjectiveĥnounĥ
agreement

Nonexistent adjectiveĥnounĥagreement

All error assumptions can have individual weights. These weights can be specied within

58

5.4. Grammar Checking Mode

the program. The overall error calculation sums up all error assumptions and the result is an
overall error amount which denotes the correctness of a sentence. If this amount is above a
specied error threshold, the sentence considered as wrong.

The calculated error is graded by the amount of found combinations. A hierarchy can be
built up, where errors with larger nĥgrams weigh less than short nĥgrams, e.g. a nonexistent
pentagram counts less than a nonexistent bigram. In addition, there can be a hierarchy for
the relation of not found nĥgrams of tokens and nĥgrams of tags.

Even if there are few error assumptions in a sentence, the overall calculated error can be
dened as “no error”. This means that, if the overall calculated error is lower than the
specied error threshold, the sentence is not dened as wrong. This approach aims to minĥ
imize the amount of false positives.

For a better understanding of the error calculation with individual weights, we give two
examples. Both examples demonstrate token nĥgram checks. The examples are consciously
very similar, with the same error weights. They differ only in one trigram error assumption.
Example one has a wrong trigram, and the overall result indicates an error. Example two has
no wrong trigram, and this slight difference causes no overall error indicated in the second
example.

Error Calculation Example One

Error assumptions 6 token pentagrams, 4 token quadgrams, and 1 token trigram.

Error weights token pentagram counts 1, token quadgram counts 5, and token
trigram counts 10.

Error threshold 30

Overall error 6x1 (pentagrams) + 4x5 (quadgrams) + 1x10 (trigrams) = 36

Result As the overall error threshold (30) is lower than the overall calculated error
(36), these error assumptions are indicated as a true error.

59

5. Design

Error Calculation Example Two

Error assumptions 6 token pentagrams, and 4 token quadgrams.

Error weights token pentagram counts 1, and token quadgram counts 5.

Error threshold 30

Overall error 6x1 (pentagrams) + 4x5 (quadgrams) = 26

Result As the overall error threshold (30) is still higher than the overall calculated
error (26), these error assumptions are not indicated as a true error.

5.4.4. Correction Proposal

After the identication of the true mistakes, a correction proposal is evaluated. We want to
make a proposal for the most probable alternative phrase out of the statistical data. Thereĥ
fore, we use the token nĥgrams again.

In detail, we use the token nĥgrams which include the mistake. The borders from these
nĥgrams are those from the wrong nĥgrams. The token in the middle of the nĥgram, where
the error is left out, is replaced by the most probable alternative.

For example, we take again the Īwrongī sentence “Modern houses are usually vary secure.” with
the detected error “usually vary secure”, see step Ī1ī in Figure 5.8. Then we use the surrounding
pentagramwith a wildcard for the error itself, i.e. in this case “are usually * secure .”. In step Ī2ī
we search in our database for pentagrams with the rst Īareī, second Īusuallyī, fourth Īsecureī
and fth Ī.ī entry as specied. The middle element in the pentagram Īi.e. the third oneī is
a wildcard Ī*ī. We search for possible correction proposals. There are two different ways;
either we propose the result with the most occurrences or the most similar entry Īcompared
to the skipped tokenī which has still an appropriate amount of occurrences. In step Ī3ī of
Figure 5.8, we propose “are usually very secure .”. In this case, the proposal represents the
phrase with the most occurrences, which is also the most similar entry compared to the
error Īvary and very differ only in one letterī.

60

5.5. Tagging

Figure 5.8.: Correction proposal example (repeated from Figure 4.2)

5.4.5. Grammar Checking Output

Grammar checking mode prints all grammar checking results to the standard output Īstdĥ
outī. This mainly includes:

Error assumptions All error assumptions that occur in any grammar checking method are
shown. These error assumptions are very multifaceted. Table 5.2 lists all possible error
assumptions that can occur.

True detected errors All error assumptions are counted with individual weights. If these
overall calculated error proposals in one sentence are higher than a specied threshold,
true errors are dened. LISGrammarChecker indicates these errors, i.e. points to the
locations where the errors occur.

Correction proposals For all true mistakes that are marked, a correction proposal is given.

5.5. Tagging

Tagging is done in both modesħtraining and checking. It is always done in the early stages
of the program workow, prior to any other process. The texts which are given to LISĥ

61

5. Design

GrammarChecker serve as input to the tagging component. The output is tagged text. The
tagging component is composed of smaller parts, as one can see in Figure 5.9.

Figure 5.9.: Workflow of tokenization and tagging

Before the tagging can take place, tokenization needs to be done, i.e. the corpus is split into
meaningful tokens. This step is necessary before any tagger can start its tagging. Sometimes
a tagger can tokenize the input text itself but we want to do this step before any tagger
comes into action, because this minimizes the differences in interpretation of tokens in
case of more than one tagger used. If we do the tokenization for all taggers the same way,
the problem of different interpretations is solved.

After the tokenization, all empty lines in the text are eliminated. Then the texts are passed
to the tagger for tagging. The behavior of the tagging can be inuenced by the user. Differĥ
ent taggers are available. Which ones are available depends on the specied language. In
general, two different tagging variants are possible:

Combined tagging All available taggers for the specied language are used to tag the text.
After that, their results are combined using the simple voting algorithm. Figure 5.10
shows this combination. The advantage of combined tagging is a higher accuracy rate,
but unfortunately this needs more execution time than the use of one single tagger

62

5.6. Data

only. The usefulness of a combination depends on the language. The combination
option is chosen as default if nothing else is set.

Single tagger It is possible to set explicitly one tagger, which skips the use of the other
taggers and thus saves processing time. This method is only as accurate as the chosen
single tagger itself, but the advantage is higher execution speed.

Figure 5.10.: Tagger combination

All taggers are programs that are called within LISGrammarChecker. Because of that, Figĥ
ure 5.9 illustrates an initial step of printing text to stdin. This means, that LISGrammarĥ
Checker redirects all texts to the standard input of the taggers, i.e. to the tokenization
components of the taggers. The output of the taggers are again standard streams. These
streams are directly used by LISGrammarChecker.

Afterwards, the tagged texts are passed to the next components Īdata gathering component
in training mode and checking methods component in checking modeī.

5.6. Data

We use a MySQL ĬMSĭ database system to store the data. The database is used through the
C bindings. We plan to implement an interface that communicates with the database. This
interface can be used by all functionalities to read data from database or to write data into

63

5. Design

the database. This design offers encapsulation insofar that not every program element can
access the database. The database is rather restricted to one component which manages all
database accesses.

Table 5.3 shows the data which is stored in the database. The third column shows that every
type of data are stored in an individual database table. These database tables are shown in
Figure 5.11. In this gure, the token nĥgrams from Internet search are missing. The reason
is a better manner of representation of the picture. The Internet nĥgrams would be drawn
exactly the same as the token nĥgrams. This means that four more tables ĪInternet pentaĥ
to bigramsī exist.

64

5.6. Data

Table 5.3.: Data in the database

Checking method Type of data Database table

Token nĥgram
check ĪInternet
functionality
irrelevantī

Token bigrams 2_GRAMS

Token trigrams 3_GRAMS

Token quadgrams 4_GRAMS

Token pentagrams 5_GRAMS

Token nĥgram
check ĪInternet
extension
activatedī

Token bigrams from Internet 2_GRAMS_INTERNET

Token trigrams from Internet 3_GRAMS_INTERNET

Token quadgrams from Internet 4_GRAMS_INTERNET

Token pentagrams from Internet 5_GRAMS_INTERNET

Tag nĥgram check

nĥgram of all tags of a sentence SENTENCE_TAGS

Tag bigrams 2_GRAMS_TAGS

Tag trigrams 3_GRAMS_TAGS

Tag quadgrams 4_GRAMS_TAGS

Tag pentagrams 5_GRAMS_TAGS

Bigrams of a token with its left
neighbors tag TAG_WORD

Bigrams of a tokens with their
right neighbors tag WORD_TAG

Trigram of a tokens with its left
and right neighbors tags TAG_WORD_TAG

Adverbĥverbĥ
agreement

Adverb tokens with belonging
verb tags ADVERBS_VERSB

Adjectiveĥnounĥ
agreement

Adjectives and belonging nouns,
both as tokens ADJECTIVES_NOUNS

Figure 5.11 illustrates that every type of data have an associated eld for the amount. This
amount represents the occurrences of an nĥgram in training mode, or in case of the Internet
nĥgrams, the amount of e.g. Google ĬGooaĭ results is stored.

There are a few details, which are not mentioned until now, e.g. every table has an id eld
and there two more database tables WORDS and TAGSET. These serve as ancillary tables to
facilitate the use of IDs instead of the tokens or tags. This database design results from
optimization steps which amongst others comes from database normalization. The database

65

5. Design

is normalized in third formħaside from table SENTENCE_TAGS. This table is intentionally in
alternative format. Normalized in third normal form means that the database satises the
rst three normal forms as follows ĬHilĭ:

First normal form A database satises the rst normal form, if all tables are atomic. This
means that each value in each table column is atomic, i.e. there are no value sets within
a column.

Second normal form The basis for the second normal form requires a database to satisfy
rst normal form. Additionally, every nonĥkey column must depend on the entire
primary key.

Third normal form The third normal form bases on the second normal form. Furthermore,
every attribute that is not part of the primary key depends nonĥtransitively on every key
of the table. Simply said, this means that all columns directly depend on the primary
key.

LISGrammarChecker attempts to be language independent, thus the database model needs
to serve several natural languages. The database tables from Figure 5.11 do not include any
possibilities to mark the language of the entries. If we consider that all tables contain a
huge amount of data from just one language, the data retrieval for more than one language
in the same table will be heartaching slow. We want to solve this issue by using a new set
of database tables for each language. Thus all database tables in Figure 5.11 are exclusively
available for the language that is currently used. The database interface knows the current
language with which LISGrammarChecker runs. Thus for the rst time that a language is
chosen, all database tables are created for this language. If the database tables for the current
language already exist, these are simply usedħdata is read from the corresponding database
and written to the correct one. Therefore there is a set of database tables for every language
that has already been used in LISGrammarChecker.

Furthermore, there is the possibility to specify a database name with an input parameter. In
this case, LISGrammarChecker uses not the default database name, but the new one. If the
database with the specied name does not yet exist, it creates a completely new database
and tables for every natural language that is used with this database. This possibility can be
useful if another training corpus should be used, which is not intended to be mixed with an
already existing one in the same language.

66

5.6. Data

Figure 5.11.: Database structure with tables

67

5. Design

68

Implementation 6
Here we provide an overview of the implementation of LISGrammarChecker. The program
is mainly written in D but it also uses some help of a few shell scripts. We start with the
description of the user interface. Then we explain how we have realized the tagging. As the
main functionality of LISGrammarChecker is split up in two different modesħtraining and
checkingħwhich represent different elds of activity, we explain them separately. Finally,
everything concerning data is described.

6.1. User Interaction

LISGrammarChecker has no graphical user interface. It is controlled by command line
switches similar to other POSIX ĬIEE04ĭ programs. These switches are given to the proĥ
gram as arguments. This facilitates the use of data preprocessing tools Īlike charset convertĥ
ersī before the data is delivered to our grammar checker.

On execution of the program without parameters, a help screen is shown Īsee Listing 6.1ī.
This screen explains the usage of LISGrammarChecker. It tells e.g. how to specify the
language or the tagging options. The usage provides information about the relevance of the

69

6. Implementation

parameterħif these are required or optional. In case of an optional argument, default values
are mentioned. There are a few parameters that can be used in both modes, e.g. database
name or tagging mode. But some are only relevant in one mode, e.g. the error threshold
only makes sense in checking mode. At the bottom of Listing 6.1, there are two examples
how to call LISGrammarChecker.
1 LISGrammarChecker -- Language Independent Statistical Grammar Checker
2 2009-01-31, by Verena Henrich and Timo Reuter
3
4 Usage: ./LISGrammarChecker.out [OPTIONS] FILE
5
6 Options:
7 -d DBNAME,
8 --dbname DBNAME Use database with name DBNAME. This value is optional,
9 default is "lis_grammar_checker".

10 -D, --droptables Drop all tables from the database.
11 -e NUM,
12 --threshold NUM Set error threshold value, standard is 30 (ignored in
13 training mode).
14 -h --help Print this help.
15 -l LANG,
16 --language LANG Select language. Options are "de", "en" (default)
17 and "is".
18 -s [NUM]
19 --search [NUM] Use an Internet search engine (i.e. Google) for
20 additional analysis (ignored in training mode). NUM
21 specifies threshold for amount of search results that
22 defines positive search. NUM is optional, 400 is default.
23 -T --training Use training mode instead of checking mode (default).
24 -t TAGGER,
25 --tagger TAGGER Select tagger. Option "all" (default) uses
26 simple voting results of all taggers, other options
27 are "tnt", "treetagger" and "stanford".
28 -v --verbose Activates further information. In training mode, e.g.
29 information about gathered n-grams, in checking mode,
30 e.g. results of every n-gram check request.
31
32 Examples: ./LISGrammarChecker.out -T -D --language de statistical.text
33 ./LISGrammarChecker.out -t tnt -s --threshold 15 input.text

Listing 6.1: Program usage information

The parameters are given as arguments to LISGrammarChecker. Thus, they can be accessed
through the args[] array in the main routine. We retrieve the given parameters as Listing
6.2 rudimentally illustrates. This implementation allows any order of the input options.
Dependent on the specied arguments, we trigger the corresponding events. The listing
shows a switch statement, where a string args[i] is used in the switch expression. This
is one positive aspect of the programming language D which in this case leads to a more
straightforward code.
1 for (int i = 1; i < args.length; i++)
2 {
3 switch (args[i])
4 {
5 case "-D":
6 case "--droptables":

70

6.2. Tokenization

7 droptables = true;
8 break;
9

10 case "-T":
11 case "--training":
12 training = true;
13 break;
14
15 case ...
16 }
17 }

Listing 6.2: Retrieval of the input parameters

6.2. Tokenization

Before any tagger can start its work, tokenization must be done as a preprocessing step.
Therefore, we use a Perl script, called tokenize.pl1. The script works as described in the
theory in section 4.5. It performs several tasks to achieve the overall goal of tokenization
and counteracts corresponding problems. Mainly, the input texts are split into tokensħone
token per line. Thereby, periods are disambiguated, and e.g. clitics, punctuation, and parenĥ
theses are considered as own token. The script should not get too much text as input, beĥ
cause it reads the whole input le at once and needs therefore a lot of memory.

The tokenization is included as a preprocessing step in the tagging component. This is
described in the following section.

6.3. Tagging

In LISGrammarChecker, there are two different tagging methods possible: combined tagĥ
ging or the use of one single tagger. At themoment, we support three different taggersħTnT
ĬBra00ĭ, TreeTagger ĬSch94ĭ and Stanford Tagger ĬTM00ĭ. Combined tagging with all
available taggers for a language is the default behavior. If it is desired to use a single tagĥ
ger, this can be done by the input parameter, e.g. --tagger tnt to use TnT.

The main tagging module is called taggers.tagger. The function runTaggers manages
tagging, regardless of the chosen language or tagging variant. All used taggers are executed
through direct calls from inside LISGrammarChecker. No extra program needs to be called
beforehand. We can call external programs with the help of our shell function in module

1The script we use is written by Helmut Schmid, Institute for Natural Language Processing at University
of Stuttgart, Germany Īhttp://www.ims.uniĥstuttgart.de/ftp/pub/corpora/tokenize.perlī

71

http://www.ims.uni-stuttgart.de/ftp/pub/corpora/tokenize.perl

6. Implementation

standard.shell. The working of this function is described in section 6.4. Hereby, we can
retrieve the stdout of the called program for further processing.

Every included tagger is represented by a module inside taggers, e.g. taggers.tnt or
taggers.treetagger. Using the shell function, we call an individual shell command for
each tagger. These commands contain details about all parts from the grey box in Figure
5.9: tokenization, empty line elimination, and tagging. Listing 6.3 shows an example tagger
call. The command illustrates a call of TnT tagger in its German version.
1 // Call TreeTagger with German parameters
2 shell("echo '" ~ inputtext ~ "' | ./taggers/tokenize.pl -a taggers/abbreviations/german |

grep -v '^$' | ./taggers/tnt/tnt -v0 ./taggers/tnt/models/negra -");

Listing 6.3: Example command to call tagger

The rst part of the command Īechoī prints the input text. This text is piped Ī | ī into the
perl script Ī./taggers/tokenize.plī. Here, piping means that the stdout of the left part
of the pipe symbol Ī | ī serves as stdin for the right part of that symbol Īsee rst box in Figure
5.9ī. This means that the printed input text serves as input to the perl script. This script
does the tokenization Īsecond box in the gureī as described in the previous section. The
next step eliminates all empty lines Īthird box in Figure 5.9ī. This is done with the command
grep -v '$̂'. The result is a list of tokens separated by carriage returns Ī\nī. This result is
piped into the tagger program itself Ī./taggers/tnt/tntī. One speciality in this command
to call TnT is the hyphen Ī-ī at the end. This enables us to give TnT a piped stdin as input
which simulates a le. This is necessary because TnT does not support reading input text
from stdin.

The commands for other languages and taggers are similar. The outputs of all taggers vary.
We harmonize them and store all together in evaluated_lexemes_lemmas_tags, a threeĥ
dimensional char array. This array represents the tagging result in case of combined tagging
as well as a single tagger is used. To describe the content of this array, let us think about a
twoĥdimensional table, where all cells represent strings, i.e. oneĥdimensional char arrays. An
example is shown in Table 6.1. The rst column contains the unchanged tokens Īlexemesī
of the input text. The second column contains the base forms Īlemmasī of these tokens.
The third column represents the tags of the nal tagging result. Further columns contain
the tags of the individual single taggers that are used.

Regardless of the used tagging variant, the tagging result is stored in the third column of
evaluated_lexemes_lemmas_tags. In case one uses just a single tagger, this array has only
three columns, and the third one contains the result of the single tagger. Otherwise, if
combined tagging is used, at rst all single taggers are executed. Their proposed tags are
stored into columns four onwards, leaving column three empty for the nal combined result.
The next step is the combination of all proposed tags. Since the nal result is stored in the

72

6.4. External Program Calls

Table 6.1.: Content of array evaluated_lexemes_lemmas_tags

Lexemes Lemmas Result Tagger 1 Tagger 2 Tagger 3

This this DET DET DET DET
shows show VBZ VBZ NNP VBZ

a a DET DET DET DET
house house NN NN NN NN

. . SENT SENT SENT SENT

same way regardless of the used tagging variant, further processing is not inuenced if a
different tagging method is used.

In LISGrammarChecker the simple voting combination algorithm is implemented. The
tag which is proposed by most of the taggers is used as the nal annotation. In case of
a tieħwhen using three taggers, this can occur if all tagger propose a different tag for a
certain tokenħthe tag of the rst tagger is used. This is the tag proposed by TreeTagger
and this behavior can only be changed if the execution sequence is reordered. Listing E.1 in
the appendix shows function simpleVoting with the implementation of the simple voting
algorithm. The algorithm goes through all tags. If it nds a new tag, a new entry with amount
one is created. If the tag is already in the list, the amount is increased. As nal step, the
amounts are compared and the tag with the highest amount is returned.

Currently, LISGrammarChecker includes three taggers. But nevertheless the algorithm is
designed to take a quasiĥunlimited amount of tagger outputs to combine them to one reĥ
sult.

The demand to add further taggers could arise, especially to facilitate language indepenĥ
dence. A new tagger need to be pretrained in order to be able to tag. New taggers can
simply be added by copying all needed tagger resources into the taggers module and proĥ
viding a module taggers.newtagger. This module can use the shell function to call the
new tagger. The output on stdout is returned to LISGrammarChecker which if necessary
needs to be adapted in order to t into evaluated_lexemes_lemmas_tags array.

6.4. External Program Calls

As already described in section 4.3, the D programming language has the capability to exeĥ
cute an external program. Unfortunately, it is impossible to fetch the output of that program

73

6. Implementation

from the standard input Īstdinī. We tackle the problem introducing a new function called
shell Īshown in Figure 6.1ī in module standard.shell. It works similar to the function
which will be provided in version 2.0 of D. Our function links directly to the popen function
from C which provides a method to redirect the stdout. This gives us the capability to store
the output of a program in a variable. The full code is shown in Listing E.2 in the appendix.

Figure 6.1.: Schema of shell function

6.5. Training Mode

The main task in training mode is gathering statistical information. Prior to the data gathĥ
ering component, the input text gets tagged. Then, several properties of the input texts are
analyzed and needed information is extracted and nally stored to the database. This mode
is activated with the input parameter --training.

The data gathering task is mainly done in three functions: one for the extraction of nĥgrams
Īboth tokens and tagsī, a second for the extraction of the adverbs and verb tags, and a third
for the adjectives and nouns. These functions correspond to the main grammar checking
features of our program.

Extract n-grams The handling of the nĥgrams is inside the module standard.neighbors.
Here, the function evaluateNeighbors implements the data gathering of both the
nĥgrams of tokens and the nĥgrams of tags. This speeds up the execution speed of the

74

6.6. Checking Mode

program. The algorithm doing the extraction goes through all sentences and in every
step it performs the following:

1. Add tags of the whole sentence to the database.

2. Regard every word of the sentence and determine all biĥ, triĥ, quadĥ, and pentaĥ
grams of tokens, all biĥ, triĥ, quadĥ, and pentagrams of tags and all hybrid bigrams
and trigrams for each token.

3. Save all nĥgrams to the appropriate database tables.

Extract adverbs and verbs Inmodule standard.adverbs the adverbĥverbĥagreement is imĥ
plemented. Function evaluateAdverbs extracts all adverbs and the corresponding
verbs. The text is analyzed sentence by sentence. In every sentence the occurrence
of an adverb is checked. This is done with a check, if one tag in the sentence marks
an adverb. A call of function bool isAdverbTag(char[] language, char[] tag)
gives this information as a boolean value that marks the tag in the language as an
adverb. This function is not language independent and needs to be extended if not
yet implemented languages should be used. In case of a found adverb, the token of
the adverb is stored, and additionally all verb tags of that sentence are extracted. The
verb tags are detected with the help of function isVerbTag, which works similar to
isAdverbTag. This information Īthe adverb tokens and the verb tagsī is written to the
database.

Extract adjectives and nouns The module standard.adjectives includes the adjectiveĥ
nounĥagreement. The data gathering is done in function evaluateAdjectives. This
function goes through all sentences and analyses the occurrence of a noun which is
described by an adjective. If these two word classes occur, both the adjective and the
noun are stored in the database. The occurrence of the two word classes are gathered
through the functions isAdjectiveTag and isNounTag. These two functions work
similarly to the isAdverbTag function for adverbs.

6.6. Checking Mode

Checking mode is activated with the input parameter --checking. Prior to the checking
methods, the input texts are tagged. Then the checking methods analyzes several properties
of the input texts and gives back the amount of not found data sets in the database.

75

6. Implementation

6.6.1. Checking Methods

The checking is done sentence by sentence. There are four main checking methods that are
executed:

Tag n-gram check This method in implemented in function analyzeNeighboredTags of
module standard.neighbors. It analyzes all tag nĥgrams. The workow therefore is
shown in Figure 6.2. It starts with checking the sequence of all tags in the sentence.
If this sequence is not found in the database, an error is assumed and the next check
regards the all tag pentagrams. For every nonexistent pentagram the location, i.e. the
token where it occurs, is stored. In case of at least one nonexistent pentagram, the
tag quadgrams are checked. Not all quadgrams are checked, but only those which
are located inside the wrong pentagram windows. This is realized through the stored
pentagram location, and minimizes the amount of quadgram checks so that only the
really needed checks are done. For example, if one tag pentagram is false, the two tag
quadgrams inside this pentagramwindow need to be checked. If two neighboring penĥ
tagrams are false, three quadgrams need to be checked accordingly. This optimization
reaches also to the trigram and bigram checks. The tag trigrams are checked in case
of at least one false tag quadgram. The bigrams are only checked in case of at least one
missing trigram, and also only these bigrams are checked, which are inside the wrong
trigram windows.

All tag nĥgram checks which are explained up to now are summarized on the left part
of Figure 6.2. Beside these tag nĥgrams, there are three nĥgram checks which regard
hybrid nĥgrams of tags and tokens. The trigram which represents a tagĥtokenĥtag seĥ
quence is checked at rst. Then the two bigrams are checked, which both represent
a token and the tag of its neighbor, either the sequence tagĥtoken or tokenĥtag. The
checks of these three hybrid nĥgrams are also optimized, i.e. they are only done when
they are really necessary.

Token n-gram check The token nĥgram check is also in module standard.neighbors. The
function doing this work is called analyzeNGrams. It analyzes all token nĥgrams. The
workow is similar to the rst part of the tag nĥgram check. It is shown in the left
side of Figure 6.3. The token nĥgram check starts with checking all tag pentagrams
of a sentence. For every nonexistent pentagram the location, i.e. the token where it
occurs, is stored. In case of at least one nonexistent pentagram, the token quadgrams
are checked. Not all quadgrams are checked, but only those, which are located inside
the wrong pentagram windows. This works exactly as described above.

The token nĥgram check can be extended by nĥgrams from an Internet search engine.
This extension is deactivated by default because of the numerous requests to the Inĥ
ternet. It can be activated by the input parameter --search NUM. NUM optionally

76

6.6. Checking Mode

Figure 6.2.: Tag n-gram check in detail

specifies a threshold which denes the amount of search results that denes a positive
search. If the Internet functionality is activated, the checking workow is different.
If there is an error in the token pentagrams from our database, the next step is a token
pentagram check in the Internet. The Internet pentagram is dened to be correct if
the search engine result is higher than the specied threshold Īdefault is 400ī. If this
pentagram is not correct, then we continue with the token quadgram check from the
local storage, and so on. The new workow is shown on the right side of Figure 6.3.
For every Internet search request that is done, we save the result. Thus if a request was
already done, the result can be taken from the database and an unnecessary Internet
request can be avoided. Further details about how we establish a connection or how
we read data from the Internet are explained in the next subsection.

Adverb-verb-agreement This functionality is in function analyzeAdverbs which is situĥ
ated in module standard.adverbs. It works similar to the corresponding function in
training mode. All sentences are analyzed with regard to an adverb occurrence. This
is again done with the help of function isAdverbTag. In case there is an adverb in the
sentence, all verb are searched with the help of function isVerbTag. The combination

77

6. Implementation

Figure 6.3.: Token n-gram check

of the adverb token and all verb tags of the sentence are checked in the database. If
the combination is nonexistent, an error is marked.

Adjective-noun-agreement Module standard.adjectives contains the responsible funcĥ
tion analyzeAdjectives. This function checks all sentences for an occurrence of a
noun ĪisNounTagī with a describing adjective ĪisAdjectiveTagī. This combination
is then looked up in the database. In case of a negative result, an error is marked also.

6.6.2. Internet Functionality

This functionality is implemented in module standard.search. We have implemented the
Internet search engines Google ĬGooaĭ, Google Scholar ĬGoobĭ and Yahoo ĬYahĭ. Google
is used as the standard at the moment.

Inside the module, the function getDataFromConnection establishes an Internet connecĥ
tion using an Internet address Īsee Listing 6.4ī. The command writeString is used to send

78

6.6. Checking Mode

an HTTP request to the server. The answer is read with socketstream.readLine() and
contains an HTTP header with HTML code.
1 // Create new TCP socket and socket stream from given parameters ,
2 // InternetAddress resolves domain to IP address
3 auto Socket tcpsocket = new TcpSocket(new InternetAddress(domain, port));
4 Stream socketstream = new SocketStream(tcpsocket);
5 ...
6 // Send a GET request to the server
7 socketstream.writeString("GET " ~ url ~ " HTTP/1.1\r\nHost: " ~ domain ~ "\r\n\r\n");

Listing 6.4: Establish Internet connection

The url in the string to the server Īsee Listing 6.4ī is different for all searchingmachines. For
Google it is http://www.google.com/search?ie=utf-8&oe=utf-8&q= for example. After
the last equal sign there needs to be the string which should be searched. It needs to be
given in double quotes and all white space characters must be replaced by the plus sign. If
we send modern houses are as request, the string to the server is the following
1 http://www.google.com/search?ie=utf -8\&oe=utf -8\&q=''modern+houses+are''

Google gives back its standard result page. We do not send the request via browser and
get thus the plain HTML code. The HTML data is parsed to extract the amount of search
results. In case of Google the phrase swrnum=123456 is extracted from the data stream. The
value after swrnum= can be used directly as the amount of results. Listing 6.5 illustrates this.
1 // Find variable "swrnum", which shows the amount of results
2 int pos_amount = find(html_data, "swrnum") + 7;
3 // Count the digits in the string
4 auto digits = countchars(html_data[pos_amount..pos_amount+9], "0123456789");
5 // Get the amount of results and convert it to integer
6 amount_of_google_results = toInt(html_data[pos_amount..pos_amount+digits]);

Listing 6.5: Gain Google search result amount

The same is done with Google Scholar and Yahoo.

6.6.3. Correction Proposal

Function proposeCorrection gets the erroneous pointed token phrase as an argument. We
check all triĥ and pentagrams of tokenswith functions getCorrectionProposalFrom3Grams
and getCorrectionProposalFrom5Grams. These functions return themost probable token
for the position in the middle. Thus we check the trigram sequence token * token with the
wildcard at the second position and the pentagram sequence token token * token token with
the wildcard at the third position.

79

6. Implementation

6.6.4. Grammar Checking Output

Listing 6.6 shows an example output of a grammar check. The command to call LISGramĥ
marChecker in this specic example is:
1 ./LISGrammarChecker --tagger tnt --language en --threshold 5 input.text

The listing shows that LISGrammarChecker nds the error and points it to the user. It
does not show every detailħthe option --verbose can extend the outputħbut the relevant
parts to get a feeling for the output.
1 Run LISGrammarChecker in language en
2 - Use TnT Tagger
3 - Use error-threshold 5
4
5
6 ########## Tag n-gram check ##########
7
8 Analyze tag n-grams in sentence "These (DD2) also (RR) find (VV0) favor (NN1) with (IW)

girls (NN2) , (YC) whose (DDQG) believe (VV0) that (CST) Joan (NP1) died (VVD) from (
II) a (AT1) heart (NN1) attack (NN1) . (SENT)"

9 1 unknown 3-consecutive-tags combination(s) found:
10 whose believe that
11
12 Overall error counter for tag n-gram check is 6, this is higher than threshold 5.
13
14
15 ########## Token n-gram check ##########
16
17 Analyze token n-grams in sentence "These also find favor with girls , whose believe that

Joan died from a heart attack ."
18 1 unknown 2-gram(s) (not found in the database):
19 whose believe
20
21 Overall error counter for token n-gram check is 10, this is higher than threshold 5.

Listing 6.6: Example grammar checking output

6.7. Database

We use a MySQL ĬMSĭ database to store all statistical data and other data that are proĥ
duced during program execution and needs to be stored. In this section we explain how we
have implemented the communication with the database and present our database model.
Furthermore, we reveal how we got our statistical data and which problems we had to conĥ
sider.

The input parameter --dbname DBNAME switches to the database with name DBNAME
instead of the default database lis_grammar_checker.

80

6.7. Database

6.7.1. Database Structure/Model

The database model which is used in our approach is described in 5.6. To ensure language
independence, we separate all data for each language. We realize this through an excluĥ
sive set of database tables for every used language. This means that all tables from Figure
5.11 are available for every language. Therefore, every table is marked with the language
code as prex to its original table name. That means for example the table 2_GRAMS is
named EN_2_GRAMS for the English token bigrams; for German this table will be named
DE_2_GRAMS.

6.7.2. Communication with the Database

Before using MySQL ĬMSĭ with D, the bindings for C must be installed. We use a source
le named mysql.d which contains the bindings1 for MySQL. This source le provides an
adapter from D to the C bindings of MySQL.

When compiling the program, everything needs to be linked with the libraries pthread,m and
mysqlclient so that the database can be used within the program. This requirement results in
the following command to compile LISGrammarChecker:
1 # gdc *.d -lpthread -lm -lmysqlclient

We have a module Īdata.mysqlī with the MySQL bindings. Module data.database is an
abstraction layer between the database itself and the rest of the D program, i.e. a comĥ
munication interface to the database. It includes functions to establish and close database
connections ĪestablishDatabaseConnection and closeDatabaseConnectionī, to request
data from database Īall functions with naming convention getEntryFromDBNAMEī, and to
write data into the database Īall addEntryToDBNAME functionsī.

The program does not work, if the used database and tables do not exist. The same applies
for username and password of the MySQL database. Our database functionality uses the
username lisgchecker and password lisgchecker. The user and the database can be created using
any MySQL client. The following SQL queries are needed to prepare MySQL for the use
with LISGrammarChecker:
1 CREATE USER lis_grammar_checker@localhost IDENTIFIED BY 'lis_grammar_checker';
2 CREATE DATABASE lis_grammar_checker;
3 GRANT ALL ON lis_grammar_checker.* TO lis_grammar_checker;

The rst SQL query adds the standard user. The second creates the standard database and
the last query is used to allow the user to access the database with all its tables. If everything
is done without errors, the database functionality should work without problems.

1The bindings we use are written by Manfred Hansen Īhttp://www.steinmole.de/dī.

81

6. Implementation

A database connection in LISGrammarChecker is initialized with the following function
calls Īexcerpt from function establishDatabaseConnectionī:
1 // Initialize MySQL
2 mysql = mysql_init(null);
3 ...
4 // Connect to MySQL database
5 // Parameters: handle , host, username , password , db name, port, unix socket , clientflag
6 mysql_real_connect(mysql, "localhost", "lis_grammar_checker", "sgchecker", dbname.ptr,

3310, null, 0);

Similar is the call in function closeDatabaseConnection to close the connection to the
database again:
1 // Close connection to database
2 mysql_close(mysql);

All queries to the database need to be null terminated. While D knows strings as char arrays,
it does not contain the null termination known from cstrings. Thus, all strings need to be
converted to Cĥlike strings using the D function toString or a null termination Ī\0ī must be
insert to the string. If this is not done, calls to the database are executed randomly or throw
undened errors.

We have implemented the input parameter --droptables. If it is specied, the function
dropTables is called which drops all database tables. This functionality is contrary to the
createTables function, where all tables that do not yet exist are created. Both functions
can be executed within the same program call, e.g. to setup a new statistical database.

Our approach produces a lot of database transactions. To improve the execution speed
when calling the database we have found a way to minimize database queries. Every time we
want to save a data set into the database we usually need to know beforehand if the current
data already exist or not. One example for that is the table of bigrams. We want all bigrams
occur only once in the database. Usually one has to make a query to search in the database
to see if the bigrams already exist. If it exists, the counter for it needs to be increased and
the entry must be updated. If it does not exist, the entry is added to the database.
1 char[] query = 'SELECT amount FROM 2_grams WHERE first_word=2 AND second_word=7;\0';
2 mysql_query(mysql, cast(char*)query);
3
4 char[] result = mysql_store_result(mysql);
5
6 if (char[] bigram_amount_char mysql_fetch_row(result) != null)
7 {
8 int bigram_amount = toInt(bigram_amount_char);
9 }

10 else
11 {
12 int bigram_amount = -1;
13 }
14
15 if (bigram_amount == -1)
16 {

82

6.7. Database

17 query = 'INSERT INTO 2_grams (first_word_id, second_word_id) VALUES ("2", "7");\0';
18 }
19 else
20 {
21 bigram_amount+=1;
22 query = 'INSERT INTO 2_grams (amount) VALUES ("' ~ bigram_amount ~ '");\0';
23 }

We have a quirk to facilitate these queries. We cut the whole process down to one query.
To do that, all database table entries need to have those elds dened as unique which are
inserted. In case of our example, the bigrams, both the rst word and the second word are
dened together as unique. If this is done, the query in Listing 6.7 can be used instead of
the Listing above.
1 char[] query = 'INSERT INTO 2_grams (first_word_id, second_word_id)';
2 query ~= 'VALUES ("2", "7") ON DUPLICATE KEY UPDATE amount=amount+1;\0';
3
4 mysql_query(mysql, cast(char*)query);

Listing 6.7: Complicate SQL syntax to save queries

The query is trying to insert the bigram to the database. If it cannot be written, the comĥ
mand after the ON DUPLICATE keyword is executed. Here the amount will be updated.

83

6. Implementation

84

Part III.

Evaluation

Test Cases 7
In this chapter, we test LISGrammarChecker in different ways. First, we establish test
criteria. We specify which statistical data we use for training and which input data we use for
grammar checking. We describe tools whichwe use for automatic training, grammar checks,
and evaluations. Then we show examples of how our program works with various kinds of
input texts. We test different languages to show the program’s language independence. The
examination of large corpora shows the capabilities of our approach in a real environment.
Finally, we measure the execution time of LISGrammarChecker.

7.1. Criteria for Testing

All tests are done on a standard computer with an Intel Core Duo processor at 2,0 GHz
and 2 GiB of memory. The program runs on a Linux operation system with Kernel 2.6.27.
As I/O scheduler we use the CFQ scheduler. The used database system is MySQL ĬMSĭ
in version 5.0.67. We use UTFĥ8 encoding ĬYer03ĭ for everything, e.g. the database or
the input data. All used dataħthe statistical data for training and the input data which is
checked for errorsħare stored in individual UTFĥ8ĥencoded text les.

87

7. Test Cases

7.1.1. Statistical Training Data

To test LISGrammarChecker, we rst need a lot of good quality statistical data for training
to built up a representative database. Therefore, we use large corpora. These corpora need
to be of good quality, i.e. grammatically correct, of good language style, and containing only
complete sentences. We use the following statistical corpus data to train LISGrammarĥ
Checker:

Wortschatz Universität Leipzig (English) Weuse this free corpus fromUniversität Leipzig
ĬQH06ĭ which contains 1 million randomly chosen English sentences. Its sources are
AP Īyears 1988 and 1989ī, Financial Times Īyears 1991 to 1994ī, OTS newsticker and
Wall Street Journal Īyears 1987 to 1992ī. This collectionwas build in 2006. The average
length of a sentence is 21.1915 words and thus the corpus consists of about 21.2 million
words.

Refined Wortschatz Universität Leipzig (English) We use a rened version of this corpus.
The main reason for the renement is the large amount of incorrect data. We handĥ
corrected the corpus by eliminating all double quotes and to a large extent the single
quotes. We deleted meaningless lines and replaced erroneous characters, e.g. erroĥ
neously used French accents by apostrophes. Furthermore, we replaced each period
at the line end by exclamation points Īthis avoids confusions with abbreviations at the
line endī. This rened corpus should improve the statistical database of LISGramĥ
marChecker. This Īnewī corpus contains 819,210 sentences instead of one million as
before.

Wortschatz Universität Leipzig (German) The German corpus from Universität Leipzig is
also free. It consists of 1 million sentences from many German newspapers. Among
these are TAZ,DieWelt, Die Zeit, Süddeutsche Zeitung, and Frankfurter Rundschau.
Furthermore, there are some sentences from online sources like Spiegel Online and
Netzzeitung. The corpus was also build in 2006. It contains about 15.7 million words
with an average length of 15.7217 words per sentence.

Self-made composition (English) This corpus consists of several sources like e.g. parts from
ANC, newspaper texts, and texts from a portal to learn English. We have handĥchosen
all sources, and handĥcorrected them to avoid incompatible characters during tokĥ
enization. We use an extraction from the American National Corpus ĬIS06ĭ. This
part of our selfĥmade composition corpus consists of about 80,000 words from letĥ
ters and technicals papers. The newspaper texts are composed from Bloomberg ĬBloĭ,
ABC news ĬABCĭ, New York Times ĬTheĭ, and VOA news ĬVOAĭ, altogether about
20,000 words. Texts from an online portal to learn English ĬPöhĭ contribute about
10,000 words. Thus, this corpus contains about 110,000 words overall.

88

7.1. Criteria for Testing

7.1.2. Input Data for Checking

To perform the proper grammar checking, we use several error corpora. These are all in the
following format:

• Every line starts with a letter, either A, B or C. Letter A marks intentionally wrong
sentences. Letter B marks the corrected version of the same sentence. In some cases
there exists also a variant C, which denotes a second correct alternative of the same
sentence.

• A period and a space follow to distinguish between the type marker and the sentence
itself.

• Finally the line contains the sentence itself.

In our test cases we use the following input data to check it for errors:

Self-made error corpus (English) We constructed this error corpus on our own. It includes
parts from the Wortschatz Universität Leipzig corpus ĬQH06ĭ. We have randomly
selected sentence parts from the corpus and formed new sentences out of them. Now
it consists of newly created English sentences. First the sentences are written in a
correct form. Later, we have inserted various types of grammatical errors. All gramĥ
matical errors from chapter 2.1.4 occur at least once in the corpus. Finally, this corpus
contains 264 sentencesħ131 intentionally wrong sentences and their correct versions
Īsee Listing E.3ī.

Self-made error corpus with simple sentences (English) We provide a small error corpus
with just simple sentences. These sentences are made up by ourselves on the basis of
the training corpus denoted as selfĥmade composition in the previous subsection. This
error corpus contains 100 sentences, both 50 correct and incorrect ones. It is shown
in Listing E.4 in the appendix.

Self-made error corpus (German) This corpus is similar to the selfĥmade error corpus for
English. It includes 260 sentences of German text which we made up from different
sentence parts out of the Universität Leipzig Wortschatz corpus for German. It inĥ
cludes 130 correct sentences and 130 incorrect ones. This error corpus can be found
in Listing E.5.

7.1.3. Auxiliary Tools

To test LISGrammarChecker, both preparatory and subsequent work are necessary. This
work ismultifaceted, e.g. train the database automatically, do grammar checking, or evaluate
test results. We use several selfĥwritten shell scripts to perform this work. Because of some

89

7. Test Cases

quirks in the used corpora, each needs a different shell script. This is important to ensure
that the format of the data is compatible with the one LISGrammarChecker expects as
input. Below we show how the different shell scripts work. If a shell script is executed
without parameters, it prints out a usage description and an example how to use it.

Train Wortschatz Universität Leipzig (English and German) The corpus from Universität
Leipzig is one of the most important ones. Every line contains exactly one sentence
and all lines are numbered. Because of some restrictions with the tokenizer Īsee secĥ
tion 6.2ī, it is not possible to give the corpus text le all at once to the tokenizer.
Instead, the corpus needs to be split into parts with a maximum of about 2,000 words
per part. The script for this task splits the corpus after each 100 lines and deletes the
numbering at the beginning of each sentence. This is done for the whole corpus. After
each 100 lines, this part is trained to LISGrammarChecker. We have implemented
one shell script which handles both English and German. This script takes six inputs:
a text le to train, a database name where the data should be written to, a tagging
method to use, the language Īen or deī, a le where the log should be written to, and
a number which species the rst line to be checked. The last argument enables it to
skip some sentences. This is useful to pause the training and continue later.

Check error corpora (English and German) Another shell script performs the checks of the
sentences from the error corpora. This script can handle every error corpus which is
in the specied format that each line starts with a letter A, B or C which classies a
sentence as correct or wrong, followed by a period, an empty space, and nally the
sentence itself. The following steps are done in the script to check an error corpus:

1. The rst character of each line is extracted by a regular expression to determine
if the sentence is correct Īcharacter B or Cī or incorrect Īcharacter Aī. This inforĥ
mation is also used to print out the type of the sentence.

2. The rst three characters of each lineħletter, period, and empty spaceħare skipĥ
ped using a regular expression.

3. The sentence itself is passed to LISGrammarChecker.

These steps are repeated until all sentences are processed. The results are written to
a log le. The arguments are the following: a text input le Īerror corpusī, a database
name, a tagger variant, and a log le.

Evaluate checking results This scripts uses a lot of regular expressions to parse the log le
from the previous script, which contains the results of the checking process.

The checking log le is passed to a concatenated bunch of text search and replace
operations. The nal result is comma separated data, written to a temporary le. Each
line contains the data of exactly one sentence. It contains the sentence number, the

90

7.1. Criteria for Testing

information if the sentence is correct or not ĪA, B or Cī, the amounts of not found
tag nĥgrams, hybrid nĥgrams and token nĥgrams. These amounts are extracted from
the comma separated values and are summed up for all sentences. In the meanwhile
we count the amount of sentences. When the processing has terminated, the average
amount of not found nĥgrams per sentence is calculated using the following formula:

∑
not found n-grams

= average amount of not found n-grams per sentence∑
sentences

First this is done for the tag nĥgrams and the hybrid nĥgrams, then it is also done for the
token nĥgrams. The mechanism is done individually for the correct and the incorrect
sentences.

Another pattern match counts all different amounts for the individual error types.
Here the amount of not found tag pentagrams, tag quadgram, etc. are shown. The
script sums up the amounts of all sentences, not separated by correct or incorrect
sentences.

Advanced evaluation of checking results This script is very similar to the previous one. It
does most tasks analogously but differs in the last step, the counting of all different
amounts for the individual error types. The previous script sums up the amounts of
all sentences regardless their type. This advanced script differentiates between corĥ
rect and incorrect sentences and thus sums up the error amounts separated for the
type of sentence. Both scripts are necessary because the extended script is very time
consuming.

Simplify the evaluation of checking results Some other scripts are used for minor tasks to
simplify the evaluation of LISGrammarChecker:

Get corresponding token n-gram for tag n-gram We have written several scripts to
retrieve example token nĥgrams from a corpus for a corresponding tag nĥgram.
That means that the script takes a tag nĥgram or hybrid nĥgram as input and reĥ
turns an appropriate token nĥgram for it.

Show unknown words Another script shows all tokens in the error corpus which are
not found in the trained statistical data.

Show false positives There is a script which shows all false positives, i.e. the correct
sentences which are denoted as wrong by LISGrammarChecker.

91

7. Test Cases

7.1.4. PoS Tagger and Tagsets

To run tests with LISGrammarChecker in English, we use either the Penn Treebank tagset
ĬMSM93ĭ or the Brown tagset ĬFK64ĭ. As tagger we choose TnT ĬBra00ĭ for all test cases
because of its speed and the highest accuracy of all available taggers Ī96.7İ for the Penn
Treebank tagset and 94.5İ for the Brown tagsetī.

To perform German tests, we use the StuttgartĥTübingen Tagset ĬSTST99ĭ. As tagger we
also use TnT with an accuracy rate of 96.7İ for the STTS.

7.2. Operate Test Cases

The databases are trained with all the above described statistical data Īsee subsection 7.1.1ī.
Now we use this data to perform grammar checking. We want to check the texts from
subsection 7.1.2. Therefore we dene several test cases. All test cases use TnT tagger for
tagging. We use error classes A to J to classify the corresponding test results. The error
classes are explained in the next chapter Īsee section 8.2ī. For most test cases we show
separate results for the hybrid nĥgram checks in addition to the tag and token nĥgram checks.
Here we only present the results; the evaluation and interpretation of the results are given
in section 8.3.

The values of the tables are determined by some of the scripts described above and by
hand.

7.2.1. Case 1: Self-made Error Corpus (English), Penn Treebank Tagset

In our rst test case we check our selfĥmade English error corpus. Therefore, we train the
database with the English version of Wortschatz Universität Leipzig. We do not use quadĥ
and pentagrams of tokens because we assume that the training speed is a lot faster leaving
them out.

All features of our program are tested individually. This means that the tag nĥgram check,
the hybrid nĥgram check and the token nĥgram check are treated separately. To get the
results, we look at every sentence by hand. Thereby we can see which problems arise in the
different parts of the grammar checker and we are able to determine error classes which are
described in section 8.2.

The following tables classify the occurring problems to the different error classes. The error
classes describe why the grammar checker does not work as expected. This means that

92

7.2. Operate Test Cases

the error classes are the different reasons why LISGrammarChecker erroneously classies a
correct sentence as incorrect or an incorrect sentence as correct.

In the rst column of each table the error classes are specied. The third column shows the
reasons why LISGrammarChecker classies an incorrect sentence erroneously as correct.
The erroneously marked errors in the correct sentences are shown in the last columnħthis
is also known as the false positive rate. The overall errors that can be classied to an error
classħboth not found errors in the incorrect sentences and the erroneously as error marked
correct sentencesħare summarized in the second column.

Table 7.1 shows all these results from the tag nĥgram check. The same for the hybrid nĥgram
check is shown in Table 7.2. The assignment of sentences to the error classes which occur
when using the nĥgrams of token are presented in Table 7.3.

Table 7.1.: Test case 1: Error classification of tag n-gram check result

Error class All sentences
Wrong Correct
sentences sentences

Too small tagset ĪAī 15.6İ Ī41ī 31.5İ Ī41ī 0İ
Too little statistical data ĪBī 4.9İ Ī13ī 2.3İ Ī3ī 7.5İ Ī10ī1

Erroneous statistical data ĪCī 1.9İ Ī5ī 3.8İ Ī5ī 0İ
Tagging error during training ĪDī 1.5İ Ī4ī 3.1İ Ī4ī 0İ
Tagging error during checking ĪEī 1.5İ Ī4ī 3.1İ Ī4ī 0İ
Multiple token sequences with
same tags ĪFī

16.4İ Ī43ī 33.0İ Ī43ī 0İ

Sphere of word too large ĪGī 4.2İ Ī11ī 8.5İ Ī11ī 0İ
Tokenization error ĪHī 4.6İ Ī12ī 5.4İ Ī7ī 3.8İ Ī5ī
Style or semantic error ĪIī 3.4İ Ī9ī 6.9İ Ī9ī 0İ
Correct 55.7İ Ī147ī 23.8İ Ī31ī 85.7İ Ī114ī

Table 7.2.: Test case 1: Error classification of hybrid n-gram check result

Error class All sentences
Wrong Correct
sentences sentences

Too little statistical data ĪBī 15.9İ Ī42ī 14.6İ Ī19ī 17.3İ Ī23ī

1103 sentences have unknown sentence tags

93

7. Test Cases

Table 7.2.: Test case 1: Error classification of hybrid n-gram check result (continued)

Error class All sentences
Wrong Correct
sentences sentences

Erroneous statistical data ĪCī 4.6İ Ī12ī 9.2İ Ī12ī 0İ
Tagging error during training ĪDī 0.8İ Ī2ī 1.5İ Ī2ī 0İ
Tagging error during checking ĪEī 0.8İ Ī2ī 1.5İ Ī2ī 0İ
Multiple token sequences with
same tags ĪFī

12.9İ Ī34ī 25.4İ Ī33ī 0.8İ Ī1ī

Sphere of word too large ĪGī 14.8İ Ī39ī 13.1İ Ī17ī 1.5İ Ī2ī
Tokenization error ĪHī 3.4İ Ī9ī 3.1İ Ī4ī 3.8İ Ī5ī
Style or semantic error ĪIī 1.1İ Ī3ī 2.3İ Ī3ī 0İ
Check not useful ĪJī 0.4İ Ī1ī 0.8İ Ī1ī 0İ
Correct 55.1İ Ī145ī 32.3İ Ī42ī 77.4İ Ī103ī

Table 7.3.: Test case 1: Error classification of token n-gram check result

Error class All sentences
Wrong Correct
sentences sentences

Too little statistical data ĪBī 58.9İ Ī155ī 59.2İ Ī77ī 58.6İ Ī78ī
Erroneous statistical data ĪCī 3İ Ī8ī 5.4İ Ī7ī 0.8İ Ī1ī
Multiple token sequences with
same tags ĪFī

0.4İ Ī1ī 0.8İ Ī1ī 0İ

Sphere of word too large ĪGī 8.3İ Ī22ī 15.4İ Ī20ī 1.5İ Ī2ī
Tokenization error ĪHī 3.4İ Ī9ī 3.1İ Ī4ī 3.8İ Ī5ī
Style or semantic error ĪIī 0.8İ Ī2ī 1.5İ Ī2ī 0İ
Correct 55.9İ Ī147ī 75.4İ Ī98ī 36.8İ Ī49ī

If we consider the 131 wrong sentences of the corpus, the following list shows which funcĥ
tionality detects how many errors:

• 28 sentences Ī21.4İī are not found at all.

94

7.2. Operate Test Cases

• 2 sentences Ī1.5İī are found by hybrid nĥgram check only.

• 48 sentences Ī36.6İī are found by token nĥgram check only.

• 3 sentences Ī2.3İī are found by tag nĥgram check only.

• 21 sentences Ī16.0İī are found by both, hybrid and token nĥgram check.

• 0 sentences Ī0İī are found by both, tag and hybrid nĥgram check.

• 11 sentences Ī8.4İī are found by both, tag and token nĥgram check.

• 18 sentences Ī13.7İī are found by all three checking methods.

We test the correction proposal for all incorrect sentences where the error is found because
it is only useful for these to propose a correction. This means that we look at the proposed
corrections of 98 sentences which are 75İ of the incorrect sentences. Table 7.4 shows the
results.

Table 7.4.: Test case 1: Correction proposal results
Behavior Rate

correct and expected proposal 10.2İ Ī10ī
correct but unexpected proposal 23.5İ Ī23ī
incorrect proposal 66.3İ Ī65ī

7.2.2. Case 2: Same as Case 1, Refined Statistical Data

In this test case, we do a similar testing as in the previous one. Again, we use the same
selfĥmade error corpus for checking, but we improve the training corpus. We use a rened
English version of Wortschatz Universität Leipzig. The changes in the new training corpus
are described in chapter 7.1.1. Furthermore, we activate quadĥ and pentagrams of tokens.
For later use we also include the quadĥ and pentagrams of hybrids. Therefore, we set up a
new database and train it with the rened statistical data including the quadĥ and pentagrams
of tokens and hybrids.

Table 7.5 shows the results from the nĥgram check of tags, Table 7.6 the hybrid nĥgram check
results, and nally Table 7.7 the results from the token nĥgram check.

95

7. Test Cases

Table 7.5.: Test case 2: Error classification of tag n-gram check result

Error class All sentences
Wrong Correct
sentences sentences

Too small tagset ĪAī 15.5İ Ī41ī 31.3İ Ī41ī 0İ
Too little statistical data ĪBī 7.6İ Ī20ī 4.6İ Ī6ī 10.5İ Ī14ī
Erroneous statistical data ĪCī 0.8İ Ī2ī 1.5İ Ī2ī 0İ
Tagging error during training ĪDī 0İ 0İ 0İ
Tagging error during checking ĪEī 1.5İ Ī4ī 3.1İ Ī4ī 0İ
Multiple token sequences with
same tags ĪFī

16.3İ Ī43ī 32.8İ Ī43ī 0İ

Sphere of word too large ĪGī 4.2İ Ī11ī 8.4İ Ī11ī 0İ
Tokenization error ĪHī 3.4İ Ī9ī 3.1İ Ī4ī 3.8İ Ī5ī
Style or semantic error ĪIī 3.4İ Ī9ī 6.9İ Ī9ī 0İ
Correct 57.2İ Ī151ī 28.2İ Ī37ī 85.7İ Ī114ī

Table 7.6.: Test case 2: Error classification of hybrid n-gram check result
Error All sentences Wrong sentences Correct sentences
class conventional upgraded conventional upgraded conventional upgraded

A 8.0İ Ī21ī 0.4İ Ī1ī 16.0İ Ī21ī 0.8İ Ī1ī 0İ 0İ
B 17.8İ Ī47ī 39.4İ Ī104ī 8.4İ Ī11ī 4.6İ Ī6ī 27.1İ Ī36ī 73.7İ Ī98ī
C 1.1İ Ī3ī 0İ 2.3İ Ī3ī 0İ 0İ 0İ
D 0İ 0İ 0İ 0İ 0İ 0İ
E 1.5İ Ī4ī 0.4İ Ī1ī 3.1İ Ī4ī 0.8İ Ī1ī 0İ 0İ
F 8.0İ Ī21ī 0.4İ Ī1ī 16.0İ Ī21ī 0.8İ Ī1ī 0İ 0İ
G 3.4İ Ī9ī 1.9İ Ī5ī 6.9İ Ī9ī 3.8İ Ī5ī 0İ 0İ
H 3.4İ Ī9ī 3.4İ Ī9ī 3.1İ Ī4ī 3.1İ Ī4ī 3.8İ Ī5ī 3.8İ Ī5ī
I 0.8İ Ī2ī 0.4İ Ī1ī 1.5İ Ī2ī 0.8İ Ī1ī 0İ 0İ
J 2.3İ Ī6ī 0İ 4.6İ Ī6ī 0İ 0İ 0İ

Correct 52.3İ Ī138ī 52.3İ Ī138ī 35.1İ Ī46ī 82.4İ Ī108ī 69.2İ Ī92ī 22.6İ Ī30ī

96

7.2. Operate Test Cases

Table 7.7.: Test case 2 & 3: Error classification of token n-gram check result
Error All sentences Wrong sentences Correct sentences
class bi- & quad- & bi- & quad- & bi- & quad- &

trigrams pentagrams trigrams pentagrams trigrams pentagrams

B 42.4İ Ī112ī 47.3İ Ī125ī 3.8İ Ī5ī 1.5İ Ī5ī 80.5İ Ī107ī 92.5İ Ī123ī
C 0.4İ Ī1ī 0.4İ Ī1ī 0.8İ Ī1ī 0.8İ Ī1ī 0İ 0İ
G 8.3İ Ī22ī 1.5İ Ī4ī 16.8İ Ī22ī 3.1İ Ī4ī 0İ 0İ
H 3.4İ Ī9ī 3.4İ Ī9ī 3.1İ Ī4ī 3.1İ Ī4ī 3.8İ Ī5ī 3.8İ Ī5ī
I 0.8İ Ī2ī 0.8İ Ī2ī 1.5İ Ī2ī 1.5İ Ī2ī 0İ 0İ

Correct 44.7İ Ī118ī 46.6İ Ī123ī 74.0İ Ī97ī 90.1İ Ī118ī 15.8İ Ī21ī 3.8İ Ī5ī

7.2.3. Case 3: Self-made Error Corpus (English), Brown Tagset

This test case uses the revised English training corpus from Wortschatz Universität Leipzig
and the TnT tagger, too, but this time with the Brown tagset instead of Penn Treebank.
Therefore, we set up a new database once again. Table 7.8 shows the tag nĥgram check
results, and Table 7.6 the corresponding token check results. The token nĥgram check is
the same as in test case 2, because the tokens of the training data and the error corpus are
the same in both test cases. This means that Table 7.7 shows the tag nĥgram check results.

Table 7.8.: Test case 3: Error classification of tag n-gram check result

Error class All sentences
Wrong Correct
sentences sentences

Too small tagset ĪAī 1.1İ Ī3ī 2.3İ3 0İ
Too little statistical data ĪBī 15.5İ Ī41ī 2.3İ 3 28.6İ Ī38ī
Erroneous statistical data ĪCī 1.5İ Ī4ī 1.5İ 2 1.5İ Ī2ī
Tagging error during training ĪDī 0.8İ Ī2ī 0.8İ 1 0.8İ Ī1ī
Tagging error during checking ĪEī 3.8İ Ī10ī 5.3İ 7 2.3İ Ī3ī
Multiple token sequences with
same tags ĪFī

7.6İ Ī20ī 15.3İ 20 0İ

Sphere of word too large ĪGī 1.9İ Ī5ī 3.8İ 5 0İ
Tokenization error ĪHī 3.8İ Ī10 3.8İ 5 3.8İ Ī5ī
Style or semantic error ĪIī 1.5İ Ī4ī 3.1İ 4 0İ
Correct 62.5İ Ī165ī 61.8İ 81 63.2İ Ī84ī

97

7. Test Cases

Table 7.9.: Test case 3: Error classification of hybrid n-gram check result
Error All sentences Wrong sentences Correct sentences
class conventional upgraded conventional upgraded conventional upgraded

A 0.8İ Ī2ī 0İ 1.5İ Ī2ī 0İ 0İ 0İ
B 23.1İ Ī61ī 37.5İ Ī99ī 6.1İ Ī8ī 1.5İ Ī2ī 39.8İ Ī53ī 72.9İ Ī97ī
C 0.8İ Ī2ī 0.8İ Ī2ī 1.5İ Ī2ī 0İ 0İ 1.5İ Ī2ī
D 0.4İ Ī1ī 0.8İ Ī2ī 0İ 0İ 0.8İ Ī1ī 1.5İ Ī2ī
E 0.4İ Ī1ī 1.9İ Ī5ī 0İ 2.3İ Ī3ī 0.8İ Ī1ī 1.5İ Ī2ī
F 4.5İ Ī12ī 1.1İ Ī3ī 9.2İ Ī12ī 1.5İ Ī2ī 0İ 0.8İ Ī1ī
G 8.7İ Ī23ī 1.5İ Ī4ī 17.6İ Ī23ī 3.1İ Ī4ī 0İ 0İ
H 3.8İ Ī10ī 3.4İ Ī9ī 3.8İ Ī5ī 3.1İ Ī4ī 3.8İ Ī5ī 3.8İ Ī5ī
I 1.1İ Ī3ī 1.1İ Ī3ī 2.3İ Ī3ī 2.3İ Ī3ī 0İ 0İ
J 4.9İ Ī13ī 0İ 9.9İ Ī13ī 0İ 0İ 0İ

Correct 51.1İ Ī135ī 51.9İ Ī137ī 48.1İ Ī63ī 86.3İ Ī113ī 54.1İ Ī72ī 18.0İ Ī24ī

7.2.4. Case 4: Self-made Error Corpus (German)

In test case 4, we train the database with the German version of Wortschatz Universität
Leipzig using the StuttgartĥTübingen tagset. We perform a check with our selfĥmade Gerĥ
man error corpus. Table 7.10 shows the results from the tag nĥgram check, Table 7.11 the
hybrid nĥgram check, and Table 7.12 the token nĥgram checks.

Table 7.10.: Test case 4: Error classification of tag n-gram check result

Error class All sentences
Wrong Correct
sentences sentences

Too small tagset ĪAī 21.9İ Ī57ī 43.8İ Ī57ī 0İ
Too little statistical data ĪBī 5.0İ Ī13ī 0İ 10.0İ Ī13ī
Erroneous statistical data ĪCī 1.9İ Ī5ī 3.8İ Ī5ī 0İ
Tagging error during training ĪDī 0İ 0İ 0İ
Tagging error during checking ĪEī 2.7İ Ī7ī 4.6İ Ī6ī 0.8İ Ī1ī
Multiple token sequences with
same tags ĪFī

9.2İ Ī24ī 18.5İ Ī24ī 0İ

98

7.2. Operate Test Cases

Table 7.10.: Test case 4: Error classification of tag n-gram check result (continued)

Error class All sentences
Wrong Correct
sentences sentences

Sphere of word too large ĪGī 0İ 0İ 0İ
Tokenization error ĪHī 0.8İ Ī2ī 0.8İ Ī1ī 0.8İ Ī1ī
Style or semantic error ĪIī 0.4İ Ī1ī 0.8İ Ī1ī 0İ
Correct 57.3İ Ī149ī 26.2İ Ī34ī 88.5İ Ī115ī

Table 7.11.: Test case 4: Error classification of hybrid n-gram check result
Error All sentences Wrong sentences Correct sentences
class conventional upgraded conventional upgraded conventional upgraded

A 15.8İ Ī41ī 3.8İ Ī10ī 31.5İ Ī41ī 7.7İ Ī10ī 0İ 0İ
B 6.2İ Ī16ī 20.0İ Ī52ī 3.1İ Ī52ī 2.3İ Ī3ī 9.2İ Ī12ī 37.7İ Ī49ī
C 2.3İ Ī6ī 2.3İ Ī6ī 3.1İ Ī6ī 3.1İ Ī4ī 1.5İ Ī2ī 1.5İ Ī5ī
D 0İ 0İ 0İ 0İ 0İ 0İ
E 1.5İ Ī4ī 0.8İ Ī2ī 2.3İ Ī2ī 0İ 0.8İ Ī1ī 1.5İ Ī2ī
F 4.2İ Ī11ī 1.9İ Ī5ī 8.5İ Ī11ī 3.8İ Ī5ī 0İ 0İ
G 5.8İ Ī15ī 0.8İ Ī2ī 11.5İ Ī15ī 1.5İ Ī2ī 0İ 0İ
H 0.8İ Ī2ī 0.8İ Ī2ī 0.8İ Ī1ī 0.8İ Ī1ī 0.8İ Ī1ī 0.8İ Ī1ī
I 0.4İ Ī1ī 0İ 0.8İ Ī1ī 0İ 0İ 0İ
J 2.3İ Ī6ī 0İ 4.6İ Ī6ī 0İ 0İ 0İ

Correct 60.0İ Ī156ī 68.8İ Ī179ī 32.3İ Ī42ī 79.2İ Ī103ī 87.7İ Īī114 58.5İ Ī76ī

Table 7.12.: Test case 4: Error classification of token n-gram check result
Error All sentences Wrong sentences Correct sentences
class bi- & quad- & bi- & quad- & bi- & quad- &

trigrams pentagrams trigrams pentagrams trigrams pentagrams

B 11.2İ Ī29ī 46.2İ Ī120ī 3.1İ Ī4ī 0İ 19.2İ Ī25ī 92.3İ Ī120ī
C 2.3İ Ī6ī 2.3İ Ī6ī 4.6İ Ī6ī 4.6İ Ī6ī 0İ 0İ
F 1.2İ Ī3ī 0.4İ Ī1ī 2.3İ Ī3ī 0.8İ Ī1ī 0İ 0İ

99

7. Test Cases

Table 7.12.: Test case 4: Error classification of token n-gram check result (continued)
Error All sentences Wrong sentences Correct sentences
class bi- & quad- & bi- & quad- & bi- & quad- &

trigrams pentagrams trigrams pentagrams trigrams pentagrams

G 9.6İ Ī25ī 1.2İ Ī3ī 19.2İ Ī25ī 2.3İ Ī3ī 0İ 0İ
H 0.8İ Ī2ī 0.8İ Ī2ī 0.8İ Ī1ī 0.8İ Ī1ī 0.8İ Ī1ī 0.8İ Ī1ī
I 0İ 0İ 0İ 0İ 0İ 0İ

Correct 74.2İ Ī193ī 48.5İ Ī126ī 68.5İ Ī89ī 90.0İ Ī117ī 80.0İ Ī104ī 6.9İ Ī9ī

7.2.5. Case 5: Several Errors in Sentence (English)

In this test case we check sentences which contain more than one error. Results show that
it works. We do not give percentage results in a table, because those would be the same as in
the previous test cases. LISGrammarChecker points all errors at once if they are recognized
by the same type of nĥgrams. If the errors are recognized by different nĥgram valencies, the
error which is caused by the smallest nĥgram is marked. If one error is corrected and the
sentence checked again, the next error is detected and presented to the user.

7.3. Operate Test Cases with Upgraded Program

In this section we perform test cases with an upgraded program. Therefore we use an
extended version of LISGrammarChecker. We have implemented more hybrid nĥgram
checks. The results of test cases 2, 3, and 4 already include these new hybrid nĥgram checks.
Furthermore we apply rules in addition to the statistical checks. The test results also lead
us to specify a new program logic where we combine several program components in a new
way. This means that the result of the tag nĥgram check triggers new hybrid nĥgram checks,
and these in turn trigger the rule component. All these extensions are described in more
detail in the next chapter, see section 8.4.

7.3.1. Case 6: Self-made Error Corpus (English), Brown Tagset

This test case is similar to test case 3. For a better comparison we use exactly the same
statistical training data, the same tagset, and the same error corpus for checking. The only

100

7.3. Operate Test Cases with Upgraded Program

difference is that we use the upgraded version of LISGrammarChecker. The results are
shown in Table 7.13.

Table 7.13.: Test case 6: Results from new program logic

Error class All sentences
Wrong Correct
sentences sentences

Too little statistical data ĪBī 22.0İ Ī56ī 14.3İ Ī18ī 29.7İ Ī38ī
Tagging error during checking ĪEī 2.8İ Ī7ī 2.4İ Ī3ī 3.1İ Ī4ī
Multiple token sequence with
same tags ĪFī

7.1İ Ī18ī 14.3İ Ī18ī 0İ

Sphere of word too large ĪGī 1.2İ Ī3ī 2.4İ Ī3ī 0İ
Style or semantic error ĪIī 1.6İ Ī4ī 3.2İ Ī4ī 0İ
Correct 67.7İ Ī172ī 69.8İ Ī88ī 65.6İ Ī84ī

7.3.2. Case 7: Self-made Error Corpus with Simple Sentences (English)

In this test case we train the database with the English version of Wortschatz Universität
Leipzig and our selfĥmade composition of texts from ANC, newspapers, and learning Enĥ
glish portal. We use the Brown tagset. We check the selfĥmade error corpus with simple
sentences. Table 7.14 shows the test results with the new program logic.

Table 7.14.: Test case 6: Results from new program logic

Error class All sentences
Wrong Correct
sentences sentences

Too less statistical data ĪBī 4.0İ Ī4ī 4.0İ Ī4ī 4.0İ Ī4ī
Tagger error ĪEī 3.0İ Ī3ī 4.0İ Ī4ī 2.0İ Ī2ī
Multiple tokens with same tag seĥ
quence ĪFī

14.0İ Ī14ī 20.0İ Ī10ī 8.0İ Ī8ī

Correct 77.0İ Ī77ī 68.0İ Ī68ī 86.0İ Ī86ī

We test the correction proposal in 33 of the incorrect sentences Ī68İī where the errors are
detected. Table 7.15 shows the results.

101

7. Test Cases

Table 7.15.: Test case 6: Correction proposal results
Behaviour Rate

Correct and expected proposal 3.0İ Ī1ī
Correct but unexpected proposal 24.0İ Ī8ī
Incorrect proposal 73.0İ Ī24ī

7.4. Program Execution Speed

Wemeasure the program execution speed. We rst take a look at the speed during training.
Afterwards we measure the duration in checking mode. All measures are done using only
TnT.

7.4.1. Training Mode

The execution time in training mode is represented in a graph which represents the duraĥ
tion of one training block Ī100 sentencesī over the training time and the amount of blocks
already stored in the database. The training is done using TnT only. The violet line in
Figure 7.1 shows the time to train a block of 100 sentences over the total time while trainĥ
ing the Wortschatz Universität Leipzig corpus in English using the Penn Treebank tagset.
The graph shows only the half of the training. The overall training time for the corpus is
about 17 days. Leaving out the quadĥ and pentagrams of token, the overall training time is
about 10 days. The blue line shows the results for the training of the English corpus from
Wortschatz Universität Leipzig, but this time the Brown tagset is used. The training time
using the Brown tagset is about 25 days.

The training speed of the German corpus from Wortschatz Universität Leipzig using the
STTS is comparable to the English corpus using the Penn Treebank tagset. If more taggers
are used for combined tagging, then every block needs about 25 seconds of extra time to
execute all taggers and to combine their results.

7.4.2. Checking Mode

Here we measure the time of how long it takes to check a single sentence. This is done
for 100 sentences with an average sentence length of about 15 words using the Wortschatz
Universität Leipzig corpus in English with the Penn Treebank tagset and the Brown tagset.

102

7.4. Program Execution Speed

Figure 7.1.: Training time of Wortschatz Universität Leipzig

The same Īwith also 100 sentencesī is done using theWortschatz Universität Leipzig corpus
in German using the STTS. All tests are done using a single taggerħTnT.

Table 7.16.: Grammar checking times
Tagset 1 sentence

Penn Treebank 120 ms
Brown 128 ms
StuttgartĥTübingen 121 ms

103

7. Test Cases

104

Evaluation 8
In this chapter we evaluate our language independent statistical grammar checking approach.
First we review if the requirements for our program are fullled. Then we give a detailed
explanation about the test results from previous chapter. We show the issues that occurred
during the implementation of LISGrammarChecker and in the test cases.

8.1. Program Evaluation

Here, we review our requirements from the analysis section with regard to their fulllment.
Table 8.1 overviews our developed requirements with their consequences and evaluates if
each requirement is fullled 3 or not 7. Symbol m marks entries, where we cannot absoĥ
lutely say that it is fullled, but we can also not say that it is not fullled. These entries are
ambivalent and we explain them in more detail.

105

8. Evaluation

Table 8.1.: Fulfillment of established requirements
Requirements Consequences Fulfilled

Language independence
Process statistical data separately for every
language

3

Save huge data permanently Īdatabase systemī 3

Gain data and save it perĥ
manently

Separate training mode to save data 3

Grammar checking withĥ
out saving wrong input

Separate grammar checking mode 3

Correct statistical data Gain correct text from reliable sources 7

Program execution speed Fast program components Īprogramming lanĥ
guageī

3

Short data access time Īfast data storageī m

Accurate reliable data Much statistical data m

Use Internet nĥgrams Possibility for Internet queries 3

Tagged input text with
high accuracy

Integrated tagger 3

Combined tagger 3

User need to interact with
the system

Appropriate user interface to give input and
preferences

3

Show results Ītraining sucĥ
cessful or errors foundī

Output result to the user 3

Save data in training mode
for later grammar checking

Algorithm to extract information from input 3

Perform grammar checking
in grammar checking mode

Algorithm to perform grammar checking 3

Few false positives Use thresholds for error calculation 3

Propose a correction Gain proposals from the most likely alternaĥ
tives out of the statistical data

3

8.1.1. Correct Statistical Data

LISGrammarChecker works only as precisely as the statistical data in the database. In order
to allow an accurate grammar check we need good quality data for training. That means that

106

8.1. Program Evaluation

the texts should be grammatically correct and of good language style. Thus, it is not possible
to use every available corpus resource.

We developed the requirement for LISGrammarChecker to use only correct statistical data
to build up the database. We intended to fulll this requirement by looking for adequate
corpora. We needed a lot of time to get appropriate texts for training. Many corpora are
not freely available due to copyright issues.

The following reasons show that we need to mark the requirement as not fullled. All
sources that are a possibility, i.e. are large enough and freely available, and thus could be
used to build the database claimed that their corpora are checked for mistakes. Therefore
we assumed that they are correct. But all corpora we use contain severe mistakes. The corĥ
pus fromWortschatz Universität Leipzig for example contains headlines of newspapers and
lines which represent stock data like “DAX 4,302 +5.2% up BWM 50,02 +3.2% up”. These text
lines are counterproductive for our approach because our program works just with full and
intact sentences. Another problem in these corpora constitute typographic mistakes. The
misuse of French accent characters as quotation marks or apostrophes cause problems, e.g.
clitics cannot be split, tagging errors occur, and tokens do not match.

8.1.2. Large Amount of Statistical Data

The requirement of accurate and reliable data means that we need to train enough statistical
data to get accurate grammar checking results. This requirement is not fully fullled. It was
possible to train a huge amount of data. The handling using the database system works very
well and the query time in checking mode is still low even if there are the data of 1 million
processed sentences stored. The tests show that 1 million sentences are still not enough to
get overwhelming results and there is a need for more training data.

The training of more data is possible but it will be very time consuming on a standard comĥ
puter. During the training of onemillion sentencesmore than 4 billion database transactions
are done. The needed time for each database transaction gets longer if there are more data
in the database table. Therefore, the requirement could not be fullled better because of
the lack of time to train.

8.1.3. Program Execution Speed

Another requirement which is not thoroughly fullled is the program execution speed. The
time measurements in the last chapter Īsection 7.4ī show that it can take up to 20 days to
train a corpus of about 20 million words.

107

8. Evaluation

The measures are done using only TnT. If the combination of taggers would be used, the
time would be 10 times higher because Stanford Tagger and the combination needs some
time. Using the combination of the grammar checker in checking mode does not fulll the
requirement of fast program execution.

Thus it is possible to check sentences in a time which is short enough to support the check
in realtime. This fullls our requirement. The training of the corpora takes a long time, i.e.
the demanded execution time is not reached in training mode.

8.1.4. Language Independence

In general, LISGrammarChecker is language independent because the algorithm works for
all tokens regardless of the language or alphabet used. Furthermore, the statistical input
texts can be given into the grammar checker in every language. But even if this is working,
some processing steps are more or less language dependent.

The most problems are caused by the tokenization step. The determination of the token
and the sentence boundaries is language dependent. Furthermore, not all languages use the
same punctuation. The used tokenization script is specialized to European languages.

Another not fully language independent part is the taggers. TnT, Treetagger and Stanford
Tagger are basically language independent. Nevertheless they need to be trained for every
language before they can be used for the specic language. It could be also a possibility to
add another tagger for the wanted language. But if the use of a tagger is not possible at
all, the approach can be used just with the token nĥgrams functionality including the results
from an Internet search machine. Thus, only the tokenization problems need to be solved
in order to use a new language with this approach.

8.1.5. Internet Functionality

The requirement to use Internet nĥgrams is fullled. We have realized the possibility for Inĥ
ternet queries which works precisely as it should. But under some circumstances it does not
work as expected. This could be the case if this functionality sends too many requests to a
search engine. This means for example that too many Google requests could result in a temĥ
porary ban to do more requests. Google can be asked if they allow the use of their API for
this purpose to solve this issue. We counteract this problem by saving already sent requests
to our database so that a request does not need to be sent twice. This storage functionality
solves also the issue that Internet requests are slower than local database queries.

Internet nĥgrams can differ in various aspects such as quality, amount or reliability. Themain
reason are different sources and different users. For example Google is used by everyone and

108

8.1. Program Evaluation

thus everyone’s writings are basis for search results. Google Scholar in contrast is used by a
smaller group of people. The sources are e.g. research paper which are more wellĥfounded.
This means that the results from Google Scholar might be more correct, but there will be
fewer results. Quantity and accuracy are important for reliable data. Without further tests
it is thus not denable with reasonable certainty which search engine gives statistically more
reliable results.

8.1.6. Encoding

A disadvantage of LISGrammarChecker is the lack of special encoding functionalities. In
general the program is compatible with all available encodings on a certain system but at
the moment there is no possibility implemented which distinguishes between different enĥ
codings. This means that the rst input text to train the grammar checker species the
encoding. If the grammar checker is trained with another text in a different encoding, there
could be a mismatch which leads to an incorrect tagging and therefore causes problems with
the accuracy of the grammar checking. This is an issue even if English text is used. This
is mainly due to to use of typographic quotation marks. A solution for this problem is the
reĥencoding of the texts with Unicode ĪUTFĥ8ī.

8.1.7. Tokenization

With the used tokenization script there exist some issues as follows:

Lack of Memory The script reads the whole le at once and thus needs a lot of memory. If
large texts are passed to it, it is quit by the operating system due to lack of memory.
The script needs to be rewritten to cache parts of the data on disk.

Detection of Sentence Boundaries The detection of sentence boundaries is still not perfect.
Cardinal numbers at the end of a sentence are often interpreted as ordinal numbers
and therefore the end of the sentence is not detected. In our case the training corpus
contained one sentence per line. Substituting the period with an exclamation mark
improved the detection of the boundaries greatly.

Quotation Quotation is not always separated and treated as an individual token. If a single
quotation mark is situated on the left side of a token, it is not separated.

Different tokenizers in the taggers In our implementation Stanford Tagger uses a different
tokenization method which is provided with the tagger. This causes some problems
with the combination of all taggers. The combination is only successful if the whole
input corpus is tokenized the same way so that all tokens match.

109

8. Evaluation

Multiwords Multiwords are never treated as one token.

8.2. Error Classes

We specify several error classes to classify the errors that occur in the test cases. They
describe the reasons why LISGrammarChecker does not give the best result in a specic
case. Not all error classes make sense for every nĥgram check, i.e. token, tag and hybrid
nĥgram check. We also try to give solutions how to avoid a specic error type.

Too small tagset (A) This error class means that the tagset does not represent all morphoĥ
logical features of the used language. The categories, i.e. the tags, that classify the
tokens are too inaccurate. This means that somemorphological features get lost when
a token is assigned to a certain category. This is usually an issue when checking the
agreement between two words. In the Penn Treebank tagset for example the distincĥ
tion between singular and plural is not possible in all word classes. One example for
that is the word class of determiners ĪDTī. The words these, this, the, and a are all tagged
with the tag DT. No syntactical features Īlike indenite or denite article or plural or
singularī are encoded in the tag. This means that although determiner and noun in the
trigram “these (DT) money (NN) problem (NN)” do not agree, it is not possible to detect
the error by just using the tags.

The easiest way to avoid such problems would be a tagset containing more tags and
which encodes more morphological features. In English, the Brown tagset could be
used. In German the Münsteraner tagset is large enough.

Too little statistical data (B) If an error occurs because of a too small corpus which is used
to train the grammar checker, i.e. does not contain all necessary data, we talk about
too little statistical data. Due to this lack of data, some nĥgrams cannot be found in
the database. Especially old and rare words lead to errors during the checking process
because of unknown words. For example, if the training corpus does not contain a
certain word, all nĥgrams that include this word are not found. Another issue is the
use of short forms for some words: ’ll for will or ’s for several words. When using
statistics, these are distinct tokens. Thus, if the word will is trained, its abbreviation
is still not found while checking and therefore considered as wrong.

These problemsħunknown word and short formsħcan be solved through training
a correct sentence which includes the missing token. Many errors of this type only
occur because of the source of the statistical data. The corpora we use are mostly
from newspapers. It is thus quite usual that sentences from other elds are not found
properly.

110

8.2. Error Classes

Erroneous statistical data (C) In this error class we collect the errors which are caused by
incorrect statistical data. If the training data contain one mistake, 41 wrong nĥgrams
are written to the database. Some nĥgrams which are compared against the database
could be matched with the erroneous nĥgrams and thus are categorized as correct. For
example if the sentence “He is is a boy.” is part of the training corpus, LISGrammarĥ
Checker accepts the bigram “is is” as well as the tag bigram “VBZ VBZ” which leads
certainly to wrong assumptions.

One solution is to correct the corpora by hand. As an alternative, it seems to be quite
impossible to solve this problem by using statistics, because e.g. the bigram “is is” is
found more than 15 times in the corpus Wortschatz Universität Leipzig. Compared
to some rare constructions this can be denoted as often.

Tagging error during training (D) This error class describes cases, where the tagger assigns
a wrong tag to a certain word during training. This can happen for various tokens
which are ambiguous in their partĥofĥspeech. An example is the word show which can
be a noun NN or a verb VB. If the wrong tagging occurs in the training phase, there are
a couple of wrong nĥgrams of tags written to the database.

Tagging errors could beminimized by using a single tagger that yields a higher accuracy
or an appropriate tagger combination. While there is no tagger or tagger combination
which can achieve an accuracy of 100İ, this issue remains and is not completely avoidĥ
able.

Tagging error during checking (E) This error class is similar to the previous one. The main
difference is the part of the program where the error occurs. Here the wrong tagging
takes place in checking mode. The sentence which is going to be checked contains
one or more tokens which are labelled with the wrong tags. To solve this error type,
the same considerations as for error class D apply.

Multiple token sequences with same tags (F) In this class we classify all erroneously as corĥ
rect accepted nĥgrams which are caused by sequences of tags which are valid but the
corresponding token sequence is not valid. The example sentence “He has been qualified
to president of the country.” is not correct and is tagged with the following tags in the
Penn Treebank tagset: “PRP VBZ VBN VBN TO NN IN DT NN .”. The correct sentence
“He has been put to death by a cowboy.” is tagged with exactly the same tag sequence but
this sentence is correct. Thus the error is not detected. This error class is very simiĥ
lar to error class Aħtoo small tagset. Strictly speaking, A is a subset of F. The main
difference is that A occurs because of too less morphological features in the tagset and
thus can be solved by a larger tagset.

Due to the variety of combinations in natural languages, error F can only beminimized
but not completely solved.

111

8. Evaluation

Sphere of word too large (G) This error says that the inuence of a word is larger than the
nĥgram which is used to check. For example subject and verb in sentence “Jim and the
young cute girl plays a game.” do not agree. If we check a pentagram as the largest nĥgram
we cannot nd the agreement between the subject and the verb. The rst pentagram
which covers the verb is “the young cute girl plays” and this pentagram is correct.

To solve this type of error larger nĥgram windows could be used.

Tokenization error (H) A tokenization error occurs e.g. if the sentence boundaries are not
found. If the end of the sentence is not found, the program runs accidently into the
next sentence. Furthermore, if it is the last sentence to check and the end is not found,
the sentence is not checked at all.

A better tokenization method can minimize the amount of tokenization errors. But
like the tagging problem, there exists no tokenizer which is capable to ensure a tokĥ
enization with 100İ accuracy in English or German.

Style or semantic error (I) This error class is similar to class F. Instead of a wrong grammar,
the semantic of the sentence is not correct, like in the following example: “Green ideas
sleep furiously.”. These types of semantical errors cannot be detected by nĥgrams of
tags. Nevertheless, LISGrammarChecker detects some semantic errors during token
nĥgram check, even if their detection is not our main goal.

Check not useful (J) A not useful check occurs only for hybrid nĥgram checks. If there is
already an nĥgram of tags which is not found in the database, there is no chance to
nd the corresponding hybrid nĥgram. If a tag nĥgram is not found, the hybrid nĥgram
check is skipped.

We use these error classes to interpret and evaluate the test case results in the next section.

8.3. Evaluation of Test Cases 1-5

Our test case results are multifaceted. In this section we interpret all results from section
7.2. Therefore we show the general working of LISGrammarChecker. We interpret the
rst three test cases which are real world examples for English. They differ in the training
corpora and the tagset. To interpret the results when LISGrammarChecker does not give
the correct grammar checking result, we make use of the error classes from the previous
section. Some of these classes do not make sense in every check. Furthermore we present
the results of a check in German Ītest case 4ī. We show how LISGrammarChecker handles
more than one error in a sentence in test case 5. Finally our results lead to an upgrade of
LISGrammarChecker, where we add rules and more hybrid nĥgrams.

112

8.3. Evaluation of Test Cases 1-5

Two example sentences We start with two example sentences of test case 1ħa correct and
an incorrect one. Listing 8.1 presents an excerpt of the output of LISGrammarChecker
when the incorrect sentence “These also find favor with girls, whose believe that Joan died
from a heart attack.” is checked. The grammar checker does not nd the tag bigram
“WP$ VBP” and thus the corresponding phrase is pointed out as an error.
1 Analyze tag n-grams in sentence "These (DT) also (RB) find (VB) favor (JJ) with (IN)

girls (NNS) , (,) whose (WP$) believe (VBP) that (IN) Joan (NNP) died (VBD) from
(IN) a (DT) heart (NN) attack (NN) . (SENT)":

2
3 1 unknown 2-consecutive-tags combination(s) found:
4 whose believe
5
6 Overall error counter for tag n-gram check is 12.

Listing 8.1: Check incorrect sentences

In Listing 8.2 we show an excerpt of the output of a correct sentence check for the
sentence “These also find favor with girls, who believe that Joan died from a heart attack.”.
All nĥgrams are found in the database and thus no error is pointed out. These two
examples show that the approach itself works.
1 Analyze tag n-grams in sentence "These (DT) also (RB) find (VB) favor (JJ) with (IN)

girls (NNS) , (,) who (WP) believe (VBP) that (IN) Joan (NNP) died (VBD) from (
IN) a (DT) heart (NN) attack (NN) . (SENT)":

2
3 Overall error counter for tag n-gram check is 0.

Listing 8.2: Check correct sentences

Overall error threshold The overall errors of both sentences show optimal values. The inĥ
correct sentence has a high value, the correct one a low. The overall error depends on
the individual nĥgram error weights. In our tests we tried to nd optimal individual
weights and an optimal overall threshold. To perform these tests we used the evaluaĥ
tion script described in section 7.1.3. We gured out that the threshold in its current
implementation is not always meaningful even if the individual weights are carefully
selected. The reason for not being meaningful is the lack of adaptation to e.g. the
sentence length or multiple errors in a sentence. For example if a sentence has sevĥ
eral incorrect token pentagrams at different positions, this is not necessarily an error
which should be marked because these errors could be caused by too little statistical
data. Thus we want the token pentagram error weight low. But as several errors are
only detected by incorrect token pentagrams, the solution to set the token pentagram
error weight low does not solve the problem. We have a problem to nd individual
error weights that t all error types. Even adapting the error weight to the sentence
length, e.g. with a local error threshold, the results are not sufficient enough. Thus
we do not regard the error thresholds in our test cases but regard all individual nĥgram
errors instead.

113

8. Evaluation

n-gram checks (test case 1) In our rst test case we do not include the token quadĥ and
pentagrams because we thought that these need too long for training but are not effecĥ
tive enough for that effort. We take a look at the general effectiveness of each nĥgram
check. The test results reveal that the tag nĥgram check Īhere we use the Penn Treeĥ
bank tagsetī detects only about a fourth of the errors. The hybrid nĥgrams are only
little better with correctly detected errors about a third of the time. The best detecĥ
tion rate with about 75İ is the token nĥgram check Īhere we use only triĥ and bigramsī.
This rate is not bad, but we need to take a look at the side effect, i.e. the correct senĥ
tences which are erroneously declared as incorrectħthe false positives. In more than
80İ of the correct sentences is at least one incorrect token nĥgram. The hybrid nĥ
gram check classies only around 25İ as incorrect. The best result is achieved by the
tag nĥgram check where only few false positives occur.

Primary errors We learn that most errors are caused by too little statistical data. This probĥ
lem exists for the tag nĥgram check but it is even more severe for the token nĥgram
check. The reason for this is that there are not as many possibilities for tag sequences,
e.g. the Penn Treebank tagset has 48 tags which can be used to build sequences but
there are many more possibilities when using tokens. This means that the tag nĥgram
method can be trained with less data to cover all possibilities and thus the amount of
statistical training data is not such a severe problem as for the token nĥgram check.
There is only a problem when using the tags of a whole sentence. The sentences can
be built up in so many ways that the possible tag sequences are numerous. The test
results show that the sentence tag sequence of about 80İ of the correct sentences are
not found. We regard the sentence tags separately and do not include them in the tag
nĥgram check result.

Two other issues appear for the tag and hybrid nĥgram check: too small tagset and
multiple token sequences with same tags. These problems cause many incorrect senĥ
tences to not be considered as incorrect. Using the PennTreebank tagset this happens
often because a lot of morphological features are not encoded in the tags of the tagset.
For example the correct sentence “Those are worse.” is tagged with the tag sequence
“DT VBP JJR”. The same tag sequence is used for the sentence “The are worse.” which
is incorrect. If the rst correct sentence is trained, the second and incorrect one is
classied as correct during checking. The error of a multiple token sequence with
the same tags is very similar to a too small tagset error. The unique feature of a too
small tagset is that the tagset does not represent all morphological features of the used
language.

We see that the amount of detected errors which are caused due to a problem with
the sphere of a word is fewer if we use tag pentagrams. At the beginning the cost and
effort to use larger token nĥgrams seemed to be too high compared to the amount
of the sphere of word errors. But we learn that a test with quadĥ and pentagrams of

114

8.3. Evaluation of Test Cases 1-5

tokens would be interesting. Thus we specify a second test case where we take a look
at the token quadĥ and pentagrams Īsee belowī.

Secondary errors The denotion secondary does notmean that these errors are not important.
We want to express that these errors are less relevant for our conclusion as they are
not primarily caused by our approach but by external sources. For example, erroneous
statistical data are annoying, but our approach depends on huge statistical data and
thus this tradeĥoff needs to be accepted until a better training corpus is available. This
is similar regarding tokenization errors. We try to avoid this type of error in the next
test case through rening the training data, but as this is manual work, it is very timeĥ
consuming and thus only possible up to a certain extent. A last error type of this family
are tagging errors caused by the taggers. These can be lowered by combined tagging,
but a tagging accuracy of 100İ is not possible. Unfortunately, we need to accept these
secondary errors.

Correction proposal The current implementation of the correction proposal supports the
search of an alternative by a wildcard in the middle of the not found nĥgram. This does
not support a meaningful correction proposal for errors where an additional word is
inserted Īlike “He is is very young.”ī or a word is skipped Īe.g. “She to go.”ī. Due to
this restriction nearly 50İ of the wrong sentences could never get a useful correction
proposal. About 15İ of the remaining incorrect sentences get a correct proposal in the
rst test case. About one third get a proposal which is at least grammatically correct
and ts. For the remaining errors an alternative is proposed which is not useful at all.
Thus the idea to propose corrections works only roughly and needs to be rened.

Refined training data (test case 2) For test case 2 we trained the database with rened staĥ
tistical training data to avoid problems like erroneous statistical data and tagging errors
during training. It is not possible to avoid the last issue completely because the tagĥ
ger has only an accuracy rate of about 96.7İ and therefore causes errors even if the
training data would be 100İ correct. The results show that the rened statistical data
lower the amount of erroneous statistical data and wrong tagged text.

The token quadĥ and pentagrams detect more errors but at the same time there are
more false positives. Table 7.7 shows that the token nĥgram check is not sufficient with
the current statistical training data. To lower the errors of too few statistical data, we
need much more training data Īe.g. the Google nĥgrams ĬBF06ĭī.

The renement of data does not change many of the results for the tag nĥgram check.
Therefore, the Penn Treebank tagset remains insufficient and the errors of a too small
tagset remain. Thus we use the same statistical training corpus but use a larger tagsetħ
the Brown tagsetħin the next test case.

115

8. Evaluation

Larger tagset (test case 3) To verify our hypothesis that a larger tagset gives better results,
we use the Brown tagset in test case 3. The tagset provides more tags which represents
more morphological features.

As we can see in table 7.8 the detection rate of the tag nĥgram check rises to about 60İ
with this larger tagset. Most errors of a too small tagset disappeared. The remaining
errors are e.g. due to the indenite determiner a and an where the Brown tagset does
not make a difference. With the larger tagset, the tagger has a lower accuracy rate and
thus, as we can see in the table, more tagging errors occur.

Unfortunately the false positive rate increases. The tag nĥgrams containing the senĥ
tence start and end marker are the main reason for that. Furthermore the problem
of too few statistical training data causes false positives. A training corpus containing
all grammatical structures could lower the false positive rate signicantly. The tags
of a large tagset represent more morphological features which leads to more accurate
tag sequences and more possible tag sequences. This is an advantageħmore errors
are detectedħand a disadvantageħmore data are needed to cover all possibilitiesħat
once.

The hybrid nĥgram check shows the same. The detection of mistakes is better but the
false positives rise.

Adverb-verb-agreement The adverbĥverbĥagreement uses the tag which marks an adverb
to determine temporal adverbs. The problem is that this specication is not suffiĥ
cientħmore than the temporal adverbs are determined. This problem exists in the
Penn Treebank tagset because there all adverbs are classied with the same tag. In
the Brown tagset there is an individual tag for temporal adverbs but this does not inĥ
clude all key words that trigger specic verb forms. This functionality could be rened
by using key words instead of the temporal adverb tags to determine the appropriate
temporal adverbs that trigger specic verb forms.

German test (test case 4) TheGerman test shows that our approach can be usedwith differĥ
ent languages. It works similar to the English one and the results are comparable.

Like the Penn Treebank tagset, the STTS does not contain enough tags to represent
all morphological features. In German this is even worse than in English because the
German language is morphologically more complex and thus there can be more misĥ
takes due to disagreements. Table 7.10 veries this. About 60İ are incorrect because
of a too small tagset or a token sequence which has the same tags.

Adjective-noun-agreement The adjectiveĥnounĥagreement does not make sense for English
because this language does not distinguish adjectives with respect to number, gender,
or case. But this functionality can be used in German where enough morphological

116

8.4. Program Extensions

features are available. Test sentences show that the idea works. If we test more senĥ
tences the problem in most cases is too few statistical data. Thus it would be better
if the tags are used instead of the tokens. Therefore the tagset need to support these
featuresħSTTS does not. The Münsteraner tagset would solve this problem because
it provides the necessary features. Unfortunately, we cannot perform tests with this
tagset because we have no data available to train a tagger with it.

More errors in a sentence (test case 5) We take a look at the capability of LISGrammarĥ
Checker to handle more than one error in a sentence. While using LISGrammarĥ
Checker we have already seen more than one indicated erroneous phrase. Now we
analyze this functionality in detail. Results show that it worksħall errors in a senĥ
tence are detected. But the accuracy depends on the same issues as if there is only
one error in a sentence. LISGrammarChecker indicates all errors at once if they are
recognized by the same type of nĥgrams. If the errors are recognized by nĥgrams with
different valencies, only the error which is caused by the smallest nĥgram is indicated.
If this error is corrected and the sentence checked again, the remaining errors are still
detected and the next error is displayed to the user.

First results lead to a program upgrade We have shown that the grammar checker works
for different languages. At this point we know that the error threshold in its current
implementation is not meaningful. The training data which is available for us does not
allow the use of a token nĥgram check with the required accuracy. Furthermore, the
use of a tagset which contains tags for all available morphological features of the used
language is recommended.

All those results until now lead us to extend LISGrammarChecker in several ways.
On the one hand we propose to add more hybrid nĥgrams to the statistical approach.
On the other hand the combination of our approach with rules would be interesting.
Finally we propose to combine several program components in a new way, i.e. the
results of the tag nĥgram check trigger the check of hybrid nĥgrams and those inuence
the application of rules. In our opinion these upgrades could give a larger revenue.
Below, we test these ideas.

8.4. Program Extensions

Our evaluation results lead us to implement further functionality to LISGrammarChecker.
We have upgraded LISGrammarChecker with additional hybrid nĥgram checks. Now we
regard the hybrid pentagram with a token in the middle and the two tags of the two left
neighbored tokens and the two tokens of the two right neighbored tokens. The second
additional hybrid nĥgram is a quadgrammade of the sequence of a tag as rst, then two tokens

117

8. Evaluation

and a tag again. Furthermore we have included two types of rulesħrules to verify errors and
rules to verify the correctness of a sentence. Finally we have combined all functionalities to
a new program logic. In subsection 8.4.4 we describe how we combine the tag and hybrid
nĥgram check with both types of rules.

We havemanymore ideas of what could be added to our program. Wehave extended the hyĥ
brid nĥgram check and added rules, and now LISGrammarChecker can be used with more
than one database. We think that these extensions give the highest revenue, i.e. the imĥ
provement of our program is noticeable. Further extension ideas that we do not implement
are described in the subsequent chapter about future work.

8.4.1. Possibility to Use More Databases at Once

Because of our results of the execution speed, we see that training needs long time, we have
used more computers to train the statistical database. These databases are very large and a
merge would cause a time delay. Thus we considered the possibility to use LISGrammarĥ
Checker with more than one database.

We implemented this by extending the module data.database. The extended function es-
tablishDatabaseConnection now establishes not only one database connection, but more. We
realized this by a second handle, as the listing shows.
1 // Initialize MySQL
2 mysql = mysql_init(null);
3 mysql2 = mysql_init(null);
4 ...
5 // Connect to MySQL database
6 // Parameters: handle , host, username , password , db name, port, unix socket , clientflag
7 mysql_real_connect(mysql, "localhost", "lis_grammar_checker", "sgchecker", dbname.ptr,

3310, null, 0)
8 mysql_real_connect(mysql2, "localhost", "lis_grammar_checker", "sgchecker", dbname2.ptr,

3310, null, 0)

Furthermore we have extended all functions that read data Īall getEntryFromDBNAME funcĥ
tionsī insofar that these read from both databases and combine the results.

8.4.2. More Hybrid n-grams

LISGrammarChecker uses three hybrid nĥgrams: A trigram which consists of a token with
its left and right neighbors tags Ītagĥtokenĥtagī, a bigram of a token with its left neighbors
tag Ītagĥtokenī, and a bigram of a token with its right neighbors tag Ītokenĥtagī. Our idea
is an extension of the hybrid nĥgram check. We introduce two more hybrid nĥgrams: A

118

8.4. Program Extensions

pentagram which consists of a token with its two left and two right neighbors tags Ītagĥtagĥ
tokenĥtagĥtagī and a quadgram which consists of two neighbored tokens with a tag on each
side Ītagĥtokenĥtokenĥtagī.

To use these two additional hybrid nĥgrams, both the training and checking mode of LISĥ
GrammarChecker needs to be extended. In training mode these two new nĥgrams are exĥ
tracted and stored to the database. In checking mode this stored information is used to
make further checks similar to the existing ones. The databases need to be retrained in
order to make use of the new hybrid nĥgrams.

8.4.3. Integration of Rules

We integrated a set of rules into LISGrammarChecker. These are of two typesħsome rules
verify the correctness of a sentence and some verify that there is an error in a sentence.
All rules are applied after the statistical approach has done its task. The phrases which are
declared as erroneous by the statistical part serve as input to this rule component. They
include both tokens and tags, separated by a pound sign #. The format is shown in the
following example:
1 Peter#NNP#has#VB#a#DET#ball#NN#.#SENT

Listing 8.3: Input to the rules component

The rule component consists mainly of the two functions verifyErrorWithRules and ve-
rifyCorrectnessWithRules.

In verifyErrorWithRules we use regular expressions to verify the detected errors which
serve as input. The regular expressions that represent the rules are stored in a simple text
le rules_to_verify_errors.text. The regular expressions can access both the tokens and the tags
and use them to apply rules. We provide several rules. Listing 8.4 shows three example rules
to check if the word after the determiners a and an starts with a vowel and if there is amissing
verb after the word that.
1 ^(([^#]+#[A-Z$0-9]+#)*)an#[A-Z$0-9]*#[^aeiou][^#]+#[A-Z$0-9]+ // Rule 1
2 indefinite article "an" needs a vowel at the beginning of the following word (use article "

a" instead). // Notice 1
3 ^(([^#]+#[A-Z$0-9]+#)*)a#[A-Z$0-9]*#[aeiou][^#]*#[A-Z$0-9]+ // Rule 1
4 indefinite article "a" cannot be followed by a word which starts with a vowel (use article

"an" instead). // Notice 2
5 ^(([^#]+#[A-Z$0-9]+#)*)that#CST#(([^#]+#(N[A-Z$0-9]*|CC))*)#[^#]+#[^V] // Rule 3
6 a verb after "that" is missing // Notice 3

Listing 8.4: File rules_to_verify_errors.text with regular expressions

The second type of rules that we have implemented, veries the correctness of a sentence
phrase. Function verifyCorrectnessWithRules gets the as erroneous marked phrases as

119

8. Evaluation

input which consists of the tokens and the corresponding tags. Rules that we have already
implemented check e.g. if a proper noun and a verb agree, or if the verb is in third perĥ
son singular after a singular noun. The regular expressions are also stored in a text le, in
rules_to_verify_correctness.text. Example rules to verify the correctness of a sentence are as
follows:
1 ^([^#]*##[A-Z$0-9]*##)*[^#]*##NNP##[^#]*##VB(P|Z)?(##[^#]*##[A-Z$0-9]*)* // Rule 1
2 Agreement between proper noun and verb // Notice 1
3 ^([^#]*##[^(CC)]##)*[^#]*##NNP##[^#]*##VBZ(##[^#]*##[A-Z$0-9]*)* // Rule 2
4 3rd person singular after singular noun // Notice 2

Listing 8.5: File rules_to_verify_correctness.text with regular expressions

The two les contain the rules as well as descriptions. The odd lines contain the rules and
the even lines the corresponding descriptions. If a rule is applied, the description is printed
as a notice to the user. This approach is easy extensible by inserting new rules with correĥ
sponding notices into the text les.

8.4.4. New Program Logic: Combination of Statistics with Rules

At the beginningwe thought that all three nĥgram checks would reveal overlapping errors but
also distinct ones and thus we regard all those checks separately. We have learned from our
tests that a combination of the individual nĥgram checks could give more accurate results.
As we do not have enough statistical training data that the token nĥgram check suffices we
focus on the tag and hybrid nĥgrams. The main problem if the token nĥgram check has too
little statistical data is the false positives rate. Thus our new program logic combines the
tag nĥgram check with the new hybrid nĥgram check in a new way. Furthermore additional
rules are integrated into the new workow. The new program workow is shown in Figure
8.1.

In this combination the tag nĥgram checkworks as before. If the nĥgram of tag check detects
a sentence as wrong, the erroneous part of the sentence is printed out. But if it classies the
sentence as correct it is passed to the newly introduced hybrid nĥgram check using a token
with two tags on each side or to the second new hybrid nĥgram check. Depending on the
results, the sentence is marked as correct or it is passed to the rules check. In this last step
rules are applied. Depending on the type of rule, the sentence is treated as correct or wrong.
If no rule is applied the sentence is handled as correct.

8.5. Evaluation of Upgraded Program

In this section we interpret the test case results of our upgraded program. We analyze the
new hybrid nĥgram check as well as the rules. A comparison between the previous version

120

8.5. Evaluation of Upgraded Program

Figure 8.1.: New program logic

of LISGrammarChecker and the new logic implementation shows the improvements.

New hybrid n-grams (test cases 2 and 3) The result tables of test cases 2 and 3 already inĥ
clude the new hybrid nĥgram check results. These show that the new hybrid nĥgrams
nd more errors. Using the Penn Treebank tagset, more than twice the errors are
detected compared to the old hybrid nĥgram check using just biĥ and trigrams. This
means that more than 80İ of the errors are found. Using the Brown tagset, the deĥ
tected errors are also far above 80İ. Unfortunately the false positive rate raised to
about 80İ which was about 30İ ĪPenn Treebankī and 45İ ĪBrown tagsetī when usĥ
ing biĥ and trigrams. This is caused by the lack of statistical data. As the new hybrid
nĥgram check is not constructed to be used separately, we do not overstate these reĥ
sults.

Rules (test case 6) Rules are always language dependent and if the rules are used with tags,
they even depend on a specic tagset. This is a restriction for LISGrammarChecker
on the one hand, but on the other hand the rules make an impact and improve the
results. The results show that the amount of sentences correctly classied as wrong is
higher. Thatmeans that the effectivity of the program is higher because of the program
extensions. The already included rules to verify if a sentence is wrong are capable of

121

8. Evaluation

detecting 8 sentences which are usually not detected by the statistical approach itself.
Therefore, the rate of the detected sentences increases by about 10 percentage points.

New program logic The new program logic, i.e. the combination of the methods works
properly and the results from test case 6 show an improvement. We assume from the
previous results that it is possible to reach an even higher detection rate if more rules
are added to the rules component. One unresolved issue, even in this implementation,
is that there is no improvement concerning the false positive rate. To avoid such
errors one needs to consider implementing a postprocessing rule functionality for the
sentences which are declared as wrong by the tag nĥgram check unless no larger training
database is used.

Simple sentences (test case 7) The check of the simple sentences error corpus shows very
positive results. Table 7.14 reveals that manyħalmost 70İħof the erroneous sentenĥ
ces are detected correctly. The false positives are still not completely gone, but the
rate shrank to less than 15İ. Reasons for the false positives are mainly due to mulĥ
tiple tokens with the same tag sequence, but also due to tagging errors and too little
statistical data.

If we regard the errors in detail, we see that there are two main problems. The rst
concerns the tagger. Newspaper texts were used to train the tagger. If we are using
simple sentences which are completely different to newspaper text, the tagger is less
accurate and thus causes tagger errors and increases the multiple tokens with same tag
sequence errors. The second problem concerns the tagset. The tagset does not comĥ
pletely conform to our requirements. There are e.g. many different classications for
nouns. The Brown tagset supports the distinction of normal, locative, proper, temĥ
poral, and some additional types of nouns. For our approach this is not needed and is
even counterproductive. The possible tag sequence combinations are too many to be
covered with the available statistical data. This means that the sentences “The company
is small.” and “The house is small.” are tagged differently. Not all of these nouns are necĥ
essary to suffice the nĥgram checks and the need to train the same sentence structure
with every type of noun leads to false positives. For us this means that we need to
think about a tagset that conforms completely to our requirements, i.e. supports all
needed features for the checking but not more.

Correction proposal The correction proposal results from section 8.3 are conrmed. There
are problems with too few statistical data and the approach is not always useful. In
the next chapter we will discuss some new ideas how this feature can be rened in a
way to give better results.

Concluding results demand a combination of statistics with rules Every nĥgram check has
advantages and disadvantages. The high false positive rates of the hybrid and token nĥ
gram checks make it necessary to nd a method to distinguish between real mistakes

122

8.5. Evaluation of Upgraded Program

and false positives. We have found a solution in using rules. The idea to trust the
tag nĥgram check with only few false positives and the use of the hybrid nĥgrams in
an approved way works very well. It is clear that more training data and more rules
improve the overall performance. The more statistical data are available, the less rules
are needed. But even if there are an unlimited amount of trained data available, the
use of rules is still necessary in order to detect all errors. Another important step is the
usage of an appropriate tagset. This tagset should be customized to the actual usage
to avoid unnecessary false positives.

123

8. Evaluation

124

Part IV.

Concluding Remarks

Conclusion 9
Weknow that grammar checking is important in various aspects. Common grammar checkĥ
ers are ruleĥbased. We consider the new eld of statistical grammar checking. Therefore
we hypothesize that it would be possible to check grammar up to a certain extent by only
using statistical data, and this independent from a natural language. This hypothesis has
been proved in large part.

We have shown that LISGrammarCheckerħour Language Independent Statistical Gramĥ
mar Checkerħworks for different languages and is capable to handle even multiple errors
of several types in one sentence. English and German are checked as proof of concept, but
other languages can be used similarly. It is very important to train enough and accurate staĥ
tistical data. But it is difficult to gain enough freely available data which are in sufficient high
quality. The possibility to use Internet nĥgrams is limited because many queries to a search
engine are slow and can lead to a ban for that search engine. Erroneous training data lead
to incorrect nĥgrams in the database and these impair the grammar checking results. The
problem that the sphere of a word is larger than the pentagram window can cover is only a
minor issue in English. But in German the use of embedded sentences is common and thus
there are quite often words whose sphere is larger than the pentagram window covers. This
issue therefore depends on the used language.

127

9. Conclusion

The use of a tagset which contains tags for all necessary morphological features of the used
language is recommended. The tagset needs to be chosen carefully. In general, a large tagset
is better than a small one. However, a customized tagset for the actual usage helps to avoid
unnecessary false positives. Furthermore, tagging accuracy is important to keep the false
positives low. As the tagging accuracy cannot reach 100İ, this issue needs to be accepted.
The same applies for the usage of the tokenizer. The tokenizer is usually language depenĥ
dent. We saw that at least the tokenizers for German and English are currently not capable
of performing their task with 100İ accuracy.

Some functionalities of LISGrammarChecker like the error threshold system, the correction
proposal mechanism, and the agreement checks show in the real world test cases that they
are not ready for usage yet in their current implementation. They need to be rened.

The statistical approach works in general, but some issues remain. Tests reveal that some
issues can hardly be solved only with statistical data. This statistical approach depends very
much on the statistical data itself. The individual nĥgram checks have different advantages
and disadvantages. A good error detection rate usually comes together with a high false
positive rate. For example the token nĥgram check detects most of the errors, but in return
it causes many false positives if there are too few statistical data.

As we do not have enough statistical training data to ensure the proper working of the token
nĥgram check, we put our focus on the tag and hybrid nĥgram checks. A combination of
these two nĥgram checks improves the results because the advantages of both checks are
combined. To counteract the problemof false positives of the hybrid nĥgrams, we combine it
with rules. Through the integration of rules, LISGrammarChecker indeed loses its language
independence. But simultaneously it improves in tackling specic grammar problems. Thus
the new program logic of LISGrammarChecker which combines the tag and hybrid nĥgram
checks with rules increases the accuracy of the overall results.

Concluding we can say that the statistical approach works, but depends on the quality and
amount of the statistical data. Furthermore some aws remain because of some external
tools like the tagger and tokenizer which prevent unveiling the full power of the statistical
approach. The best solution is thus a combination of rules within the statistical approach
which improves the results.

128

Future work 10
This work can be extended in many ways. We propose improvements to the statistical
approach itself so that the grammar checking is upgraded. There could also be other methĥ
ods which improve the use of LISGrammarChecker and the user interaction. Other future
work proposals extend LISGrammarChecker with more rules or combine it with existing
programs.

10.1. More Statistical Data

LISGrammarChecker can be improved with better and more statistical data. The following
could be done in order to improve the reliability of the statistical data and thus the checkĥ
ing.

Online database An online database is data storage which is available over the Internet.
Every user can train and use it. Thus more statistical data is available for everyone.
Wrong entries from one user can be eliminated by another. Thus, LISGrammarĥ
Checker can simply be used without timeĥconsuming training in advance.

129

10. Future work

Google n-grams Googlemade available all its nĥgrams in 2006 ĬBF06ĭ. This corpus does not
consist of normal text but instead directly of about 1,1 billion pentagrams of tokens.
To eliminate useless pentagrams, Google uses just sequences which occur more than
40 times. If this corpus is included in LISGrammarChecker, the statistical data would
be much greater and thus grammar checking would be improved.

Hand corrected corpus Another improvement of the statistical data could be a hand corĥ
rection of the Wortschatz Universität Leipzig corpora. The sentences itself and also
the tokenization as well as the tags should be corrected and then trained to LISGramĥ
marChecker.

10.2. Encoding

In general LISGrammarChecker can handle all available encodings on a certain system. At
the moment the rst input text to train the grammar checker species the encoding. A
problem occurs if the grammar checker is then used with another text in a different encoding
because at the moment there is no possibility implemented which distinguishes between
different encodings. A solution for this problem is the reĥencoding of the texts withUnicode
ĪUTFĥ8ī. D offers possibilities to handle encodings, e.g. to verify the encoding or convert
encodings Īmodules std.utf and std.encodingī.

10.3. Split Long Sentences

One inconvenient issue of LISGrammarChecker and its main checking method is the hanĥ
dling of long sentences. Even grammar checkers based on rules have severe problems with
long sentences because of their parsers which are faced with obstacles while building up the
parse tree. Something near it applies for our approach. The sphere of a word is often larger
than then biggest nĥgram window Īin our case a pentagramī. Therefore it is not possible to
check some grammatical structures for correctness. While the check for all tags of a senĥ
tence works well for short sentences, it is quite often wrongħand thus uselessħfor long
sentences. The training corpus needs to be unlimited size to cover all possibilities of senĥ
tence structures. This goal is impossible to reach becauseħin many languagesħsentences
can have arbitrary length.

To solve this problem we think about an algorithm which splits long sentences into shorter
sentence phrases. Because of language dependent punctuation, this algorithm is not lanĥ
guage independent. It is based on rules how a sentence can be split. In general the rules are
applied before any statistical approach is started.

130

10.3. Split Long Sentences

The goal is to build up a tree where all leaves are separate complete sequences of text which
can be checked by the nĥgram logic. The following steps show in order what needs to be
done.

1. The whole sentence is read.

2. The tokenization of the sentence is done. In addition of the tokenization into words,
a special treatment for the captoids, factoids andmulti word expressions is done. They
are marked as one single token.

3. The tagger tags all tokens from the previous step. All punctuation gets a different and
distinguishable tag.

4. A split on all semicolons is done. All resulting phrases are stored for further processing.
The tree of the sentence is extended to track the structure of the sentence.

5. All generated parts from the last step are used and the direct speech is extracted.
Therefore, the token sequence : ” is used as marker for the start and ” is used as
the end marker of the direct speech. The tree of the sentence is updated.

6. The parts of the last step are regarded for indirect speech. Here the token ” or the
token sequence , ” are used for the start marker. The end is marked by either ” or ”
,. To be indirect speech, one of the markers must contain a comma. The tree of the
sentence is updated once again.

7. All parts which are generated until now are split on all commas and the sentence tree
gets new entries.

After these steps we have a tree of the sentence which shows the structure. Depending of
the currentmode, in which the grammar checker is executed, i.e. training or checkingmode,
the next steps differ. In training mode, the following steps are done:

1. All words of the sentence are stored in the database.

2. The sentence tree is stored in a distinct database table.

3. The tag sequences of the parts are stored in the database.

4. An nĥgram analysis is done for all parts of the sentence. All features known from the
grammar checker are used: token nĥgrams, tag nĥgrams and hybrid nĥgrams, all biĥ up
to pentagrams. The nĥgrams are put into the database.

In checking mode the available sentence parts need to be checked for their existence in the
database. Furthermore, some rules can be applied. The following could be done:

1. All parts are checked using the nĥgram check. Error points are set depending on the
type of nĥgram.

131

10. Future work

2. The tree is compared to the database. If it exists, it is considered as correct. If the
structure is not found in the database, some rules can be used to verify the correctness
of that structure.

3. Error proposals for a rearrangement of the parts Īother tree structureī or for the indiĥ
vidual parts can be derived from the stored entries in the database.

10.4. Statistical Information About Words and Sentences

The functionality of LISGrammarChecker could be extended with statistical information
about words and sentences. For example the amounts of words in a sentence or the position
of a word in a sentence can be used to perform further grammatical feature checks. One can
think about words that have always a certain position relative to another in a sentence. An
error could be assumed if that position differs from the expected one. Another error could
be proposed, if the sentence length is much too long. For example if there are more than
40 words in a sentence, there could be a warning.

We already pinpoint unknown words in a sentence. At the moment these always result in
an error. There could be a special treatment insofar that these errors are less weighted or
further rules are applied.

10.5. Use n-gram Amounts

All amounts of nĥgrams are stored but we use them only for the correction proposal. Nevĥ
ertheless, these amounts could help also to dene the probability of each nĥgrams. Thus, if
the probability of an nĥgram is low because it is only rare this could be an indication that this
nĥgram is wrong or the word order is incorrect. This means instead that nĥgrams amounts
that are below a threshold are treated as not found.

10.6. Include more Rules

In general, there are three possibilities to combine our statistical approach with rules.

1. Rules could be applied in advance of the statistical part. We have already given a
proposal for this, i.e. the algorithm to split long sentences Īsection 10.3ī. Sentences
are reduced to shorter phrases with the help of rules, then the statistical approach is
performed.

132

10.7. Tagset that Conforms Requirements

2. Rules could be performed in parallel with the statistical methods. An example thereĥ
fore is the ruleĥbased combination of the different nĥgram checks that we proposed
above. Here, rules are applied to determine the weights of the different checking
methods. Furthermore our approaches with the adverbĥverbĥ and adjectiveĥnounĥ
agreements can considered as a combination in parallel of rules with statistics.

3. The statistical methods are applied rst, and then rules are applied for further veriĥ
cation of the errors and improvements of the results. We have already implemented
this procedure in LISGrammarChecker and we have seen that these rules help to solve
issues with statistical grammar checking. The overall results have improved. Thus we
propose to include more rules.

Extension of current rules The already existing rules could be extended. Our prework
makes this possible by simply inserting additional rules to the text le that conĥ
tains the rulesħas described in section 8.4.3.

Range extension Currently we apply rules only to the nĥgrams which are pointed out
as incorrect by LISGrammarChecker. This range could be extended to whole
sentences. This means that rules which are used to verify the errors from the
statistical approach could be applied to a whole sentence.

Apply a parser The use of a parser could help to apply more complex rules. Let us
consider the two phrases “...likes fish and Peter goes...” and “he and Peter go to...”.
Without the parsers knowledge about the sentence tree we cannot decide if there
is a verb phrase ĪVPī or a noun phrase ĪNPī on the left side of the conjunction
and. Although we have a pentagram in both example phrases, it is not possible to
determine if the verb must be goes Ī3rd person singularī or go Īpluralī without a
parser.

Check correct sentences with rules At the moment we apply rules to the sentence
phrases which are marked as potentially wrong by a statistical method. It could
also be useful to apply rules to sentences where no errors are detected by the
nĥgram checks. This could help to detect errors which are not possible to nd
using just pentagrams.

10.7. Tagset that Conforms Requirements

A too small tagset causes many errors. This is the case for Penn Treebank tagset. A larger
tagset, e.g. the Brown tagset, minimizes the amount of errors that are caused by the tagset.
But the Brown tagset is still not perfect for our demands. There are e.g. many different
classications for nouns. The Brown tagset supports the distinction of normal, locative,

133

10. Future work

proper, temporal, and some more types of nouns. This sophisticated distinction is unnecesĥ
sary to permit the nĥgram checks and is even counterproductive. The possible tag sequence
combinations are too many to be covered with the available statistical data and thus lead to
false positives. The best solution would be a tagset that that conforms completely to our
requirements, i.e. supports all needed features for the nĥgram approach but not more.

10.8. Graphical User Interface

The communication between the user and LISGrammarChecker could be extended with
a graphical user interface. This could increase the usability for several purposes and ease
the use of our grammar checker. There are several possibilities how this could be realized.
One way would be to write a frontend that uses a graphical interface, e.g. GTK. Another
approach could be webĥbased. Furthermore, LISGrammarChecker could be combined with
an existing text processing program, e.g. OpenOffice. For all approaches, the output of
LISGrammarChecker would need to be converted to satisfy the interface to the frontend.

10.9. Intelligent Correction Proposal

In some cases it might not be sufficient to use only the pentagram with the middle word
as wildcard for a correction proposal. This can happen if the error is at the beginning or
at the end of a sentence and the error occurred at the rst or last word of the sentence.
Furthermore, it could be possible that not the word which is marked as wrong itself is wrong
but also another adjacent word. For these cases the correction proposal should be extended.
We propose the following possibilities:

Different positions of the wildcard Instead of setting the wildcard only in the center poĥ
sition, all tokens of the pentagram could be set as wildcard one after one. In the
example “houses are usually vary secure” that means the rst wildcard would replace the
word houses, after that it would replace are and so on. The alternative which gives the
highest amount in the database wins.

Swapping of two words Here the words are swapped with their right neighbor. Like in the
previous step, there is only one swap at a time. All alternatives are compared to the
database.

Insertion of a token A wildcard is set between two tokens. Then there are ve tokens and
one wildcard. To apply a pentagram search, one of the tokens on the left or right edge
of the pentagram need to be skipped. This should be the one which is further away

134

10.9. Intelligent Correction Proposal

from the wildcard. In the example “houses usually very secure .” it could be as follows:
“houses * usually very secure” or “usually very * secure .”.

Deletion of a word This works vice versa to to the insertion approach. Here, we think
about six tokens in a row, where one word is skipped. The resulting pentagram is
compared to the database.

Help of tag n-grams Instead of representing every token as awildcard to search the database,
the tag nĥgram could be used. This could substitute the error token by the most
probable token of a certain word class. In the above example augmented with tags
“houses(NNS) are(VBP) usually(RB) vary(VBP) secure(JJ)”. With a wildcard search of the
most probable tag sequence we would nd “(NNS) (VBP) (RB) (RB) (JJ)”. That means
we need to nd an alternative for the word vary. It should be a word with the tag RB.
A further search in the token nĥgrams shows that very has the tag RB and ts best.

Similarity search Instead of looking up the nĥgram with the most occurrences, we propose
to use the nĥgram which is the most similar to the one searched.

135

10. Future work

136

Part V.

Appendix

Acronyms & Abbreviations A
ANC American National Corpus

APSG Augmented Phrase Structure Grammar

BASH Bourne Again Shell

BNC British National Corpus

CFQ Completely Fair Queuing

GCC GNU Compiler Collection

GDC GNU D Compiler

HTML Hypertext Markup Language

LISGrammarChecker Language Independent Statistical Grammar Checker

NEGRA Nebenläuge Grammatische Verarbeitung

NLP Natural Language Processing

PHP PHP: Hypertext Preprocessor

PoS PartĥofĥSpeech

POSIX Portable Operating System Interface

SQL Structured Query Language

stdin Standard Input

stdout Standard Output

STTS StuttgartĥTübingen Tagset

TnT Trigrams’n’Tags

UTF-8 8ĥbit Unicode Transformation Format

XML Extensible Markup Language

139

A. Acronyms & Abbreviations

140

Glossary B
American National Corpus This corpus aims to be a representation of American English

and is currently build up.ĬIS06ĭ

Anaphora A referential pattern

Brown Corpus consists of approximately 1 million words of running text of edited English
prose printed in the United States during the calendar year 1961. It is also denoted as
the Standard Corpus of PresentĥDay American English. ĬFK64ĭ

Captoid A multiword expression with all words capitalized, e.g. a title as “Language Indepen-
dent Statistical Grammar Checker”.

Combination algorithm A combination algorithm denes in which way different tag proĥ
posals from different taggers are combined so that there is exactly one Īcombinedī tag
for each word as result.

Combined tagging Combined tagging is a technology to improve the accuracy rate of a tagĥ
ger. The system uses therefore two or more taggers with different technologies. All
taggers make different mistakes and a combination is thus more precise than one of
those taggers alone.

Corpus A corpus is a collection of written or spoken phrases that correspond to a specic
natural language. The data of the corpus is typically digital, i.e. it is saved on comĥ
puters and machineĥreadable. The corpus consists of the following components: The
text data itself, possibly meta data which describes these text data, and linguistic anĥ
notations related to the text data.

Factoid Factoids are multiwords, for example dates or places.

Grammar A grammar of a natural language is a set of combinations Īsyntaxī and modicaĥ
tions Īmorphologyī of components and words of the language to form sentences.

Lexeme A synonym for token.

141

B. Glossary

n-gram There are two types of nĥgramsħnĥgram of tokens and nĥgram of tags. An nĥgram
of tokens is a subsequence of neighbored tokens in a sentence. An nĥgram of tags is a
sequence of tags that describes such a subsequence of neighbored tokens in a sentence.
In both cases, n denes the number of tokens.

NEGRA Corpus Corpus of Nebenläuge Grammatische Verarbeitungħan annotated corĥ
pus for the German language.

Part-of-speech denotes the linguistic category of a word.

Penn Treebank tagset One of the most important tagsets for the English language is built
by the Penn Treebank Project ĬMSM93ĭ. The tagset contains 36 partĥofĥspeech tags
and 12 tags for punctuation and currency symbols.

POSIX is the collective name of a family of related standards specied by the IEEE to dene
the application programming interface, alongwith shell and utilities interfaces for softĥ
ware compatible with variants of theUnix operating system, although the standard can
apply to any operating system.

Standard input/output This denotes the standard streams for input and output in POSIX
compatible operating system

Stuttgart-Tübingen Tagset A tagset for the German language which consists of 54 tags.
ĬSTST99ĭ

Tag The morphosyntactic features that are assigned to tokens during tagging are repreĥ
sented as strings. These strings are denoted as tags.

Tagger Performs the task of tagging.

Tagging The process of assigning the word class and morphosyntactic features to tokens is
called tagging.

Tagging accuracy The tagging accuracy is measured as the number of correctly tagged toĥ
kens divided by the total number of tokens in a text.

Tagset The set of all tags constitutes a tagset.

Token Every item in a text is a token, e.g. words, numbers, punctuations, or abbreviations.

Tokenization is the breaking down of text to meaningful parts like words and punctuation,
i.e. the segmentation of text into tokens.

142

Eidesstattliche Erklärung C
Wir versichern hiermit, daß wir die vorliegende Arbeit selbständig verfaßt und keine anĥ
deren als die im Literaturverzeichnis angegebenen Quellen benutzt haben.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröffentlichĥ
ten Quellen entnommen sind, sind als solche kenntlich gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von uns selbst erstellt worden oder
mit einem entsprechenden Quellennachweis versehen.

Die Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen Prüfungsbehörde
eingereicht worden.

Darmstadt, den 20. Februar 2009

Verena Henrich Timo Reuter

143

C. Eidesstattliche Erklärung

144

Bibliography D
ĬABCĭ ABCNews Internet Ventures : abc NEWS. ħ http://abcnews.go.com/ Accessed

15ĥ12ĥ2008

ĬAUK06ĭ Alam, Md. J. ; UzZaman, Naushad ; Khan, Mumit: Nĥgram based Statistiĥ
cal Grammar Checker for Bangla and English. In: Proceedings of ninth Interna-
tional Conference on Computer and Information Technology (ICCIT 2006). Dhaka,
Bangladesh, 2006. ħ http://www.panl10n.net/english/finalsh/BAN21.pdf

ĬBat94ĭ Batstone, Rob: Grammar: A Scheme for Teacher Education. OxfordUniversity Press,
1994.ħ ISBN0194371328.ħ http://books.google.de/books?id=oTWje50dS1EC

ĬBF06ĭ Brants, Thorsten ; Franz, Alex: Web 1T 5-gram Version 1. Philadelĥ
phia, USA : Linguistic Data Consortium, 2006. ħ Catalog
No. LDC2006T13, ISBN 1ĥ58563ĥ397ĥ6, Release Date 19ĥ09ĥ2006.
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13

ĬBHK+97ĭ Brants, Thorsten ; Hendriks, Roland ; Kramp, Sabine ; Krenn, Brigitte ; Preis,
Cordula ; Skut, Wojciech ; Uszkoreit, Hans: Das NEGRAĥAnnotationsschema
/ Universität des Saarlandes. Saarbrücken, Germany, 1997. ħ Negra Project
Report. ħ http://www.coli.uniĥsb.de/sfb378/negraĥcorpus/negraĥcorpus.html

ĬBis05ĭ Bishop, Todd: A Word to the unwise — program’s grammar check
isn’t so smart. 2005. ħ Online article in Seattle PostĥIntelligencer.
http://seattlepi.nwsource.com/business/217802_grammar28.asp Last modified
28ĥ03ĥ2005. Accessed 11ĥ01ĥ2009

ĬBloĭ Bloomberg L.P.: Bloomberg.com. ħ http://www.bloomberg.com/ Accessed 15ĥ
12ĥ2008

ĬBra00ĭ Brants, Thorsten: TnT ħ A Statistical PartĥofĥSpeech Tagger. In: Proceedings
of the Sixth Applied Natural Language Processing (ANLP-2000). Seattle, WA, 2000,
pp. 224ħ231. ħ http://www.coli.uniĥsaarland.de/~thorsten/publications/Brantsĥ
ANLP00.pdf

145

http://abcnews.go.com/
http://www.panl10n.net/english/final%20reports/pdf%20files/Bangladesh/BAN21.pdf
http://books.google.de/books?id=oTWje50dS1EC
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13
http://www.coli.uni-sb.de/sfb378/negra-corpus/negra-corpus.html
http://seattlepi.nwsource.com/business/217802_grammar28.asp
http://www.bloomberg.com/
http://www.coli.uni-saarland.de/~thorsten/publications/Brants-ANLP00.pdf
http://www.coli.uni-saarland.de/~thorsten/publications/Brants-ANLP00.pdf

D. Bibliography

ĬBri94ĭ Brill, Eric: Some Advances in TransformationĥBased Part of Speech
Tagging. In: Proceedings of AAAI, Vol. 1, 1994, pp. 722ħ727. ħ
http://www.aaai.org/Papers/AAAI/1994/AAAI94ĥ110.pdf

ĬBur07ĭ Burnard, Lou: Reference Guide for the British National Corpus ĪXMLEditionī
/ Published for the British National Corpus Consortium by the Research Techĥ
nologies Service at Oxford University Computing Services. 2007. ħ Technical
Report. ħ http://www.natcorp.ox.ac.uk/XMLedition/URG/

ĬCorĭ Corel Corporation: WordPerfect Office. ħ
http://www.corel.com/servlet/Satellite/us/en/Product/1207676528492#tabview=tab0
Accessed 15ĥ01ĥ2009

ĬDigĭ Digital Mars: D Programming Language. ħ http://www.digitalmars.com/d/ Acĥ
cessed 15ĥ01ĥ2009

ĬDMS00ĭ George E. Heidorn: Intelligence Writing Assistance. In:Dale, R. ; Moisl, H. ;
Somers, H.: A Handbook of Natural Language Processing: Techniques and Applications
for the Processing of Language as Text. New York, USA : Marcel Dekker, 2000. ħ
ISBN 3823362100, pp. 181ħ207

ĬFK64ĭ Francis, W. N. ; Kucera, H. ; Department of Linguistics, Brown Uniĥ
versity Īeds.ī: BROWN CORPUS MANUAL — MANUAL OF INFORMA-
TION to accompany a Standard Corpus of Present-Day Edited American English,
for use with Digital Computers. Providence, Rhode Island: Department
of Linguistics, Brown University, 1964. ħ Revised and Amplified 1979.
http://khnt.hit.uib.no/icame/manuals/brown/INDEX.HTM

ĬFos04ĭ Foster, Jennifer: Good Reasons for Noting Bad Grammar: Empirical Investigations
into the Parsing of Ungrammatical Written English. Dublin, Ireland, Department
of Computer Science, Trinity College, University of Dublin, Diss., 2004. ħ
http://www.cs.tcd.ie/research_groups/clg/Theses/jfoster.ps

ĬFriĭ Friedmann, David: GDC — D Programming Language for GCC. ħ
http://dgcc.sourceforge.net/ Accessed 15ĥ01ĥ2009

ĬGooaĭ Google Inc.: Google™. ħ http://www.google.com/ Accessed 15ĥ01ĥ2009

ĬGoobĭ Google Inc.: Google™Scholar BETA. ħ http://scholar.google.com/ Accessed 15ĥ
01ĥ2009

ĬHilĭ Hillyer, Mike: An Introduction to Database Normalization. ħ
http://dev.mysql.com/techĥresources/articles/introĥtoĥnormalization.html

146

http://www.aaai.org/Papers/AAAI/1994/AAAI94-110.pdf
http://www.natcorp.ox.ac.uk/XMLedition/URG/
http://www.corel.com/servlet/Satellite/us/en/Product/1207676528492#tabview=tab0
http://www.digitalmars.com/d/
http://khnt.hit.uib.no/icame/manuals/brown/INDEX.HTM
http://www.cs.tcd.ie/research_groups/clg/Theses/jfoster.ps
http://dgcc.sourceforge.net/
http://www.google.com/
http://scholar.google.com/
http://dev.mysql.com/tech-resources/articles/intro-to-normalization.html

D. Bibliography

ĬHol04ĭ Sigrún Helgadóttir: Testing DataĥDriven Learning Algorithms for PoS Tagĥ
ging of Icelandic. In:Holmboe, H.: Nordisk Sprogteknologi 2004 — Nordic
Language Technology — Årbog for Nordisk Sprogteknologisk Forskningsprogram 2000-
2004. Kopenhagen, Denmark : Museum Tusculanum Press, 2004. ħ ISBN
9788763502481

ĬHZD01ĭ Halteren, Hans van ; Zavrel, Jakub ; Daelemans, Walter: Improving Acĥ
curacy in Wordclass Tagging through Combination of Machine Learning
Systems. In: Computational Linguistics 27 Ī2001ī, No. 2, pp. 99ħ230. ħ
http://www.cnts.ua.ac.be/Publications/2001/HZD01/20010718.7496.hzd01.pdf

ĬIEE04ĭ IEEE: IEEE Std 1003.1, 2004 Edition, Single UNIX Specification Version 3. 2004.
ħ Institute of Electrical and Electronics Engineers, Inc. and Open Group.
http://www.unix.org/version3/ieee_std.html

ĬIS06ĭ Ide, Nancy ; Suderman, Keith: Integrating Linguistic Resources: The
American National Corpus Model. In: Proceedings of the Fifth Lan-
guage Resources and Evaluation Conference (LREC). Genoa, Italy, 2006. ħ
http://www.cs.vassar.edu/~ide/papers/ANCĥLREC06.pdf

ĬKie08ĭ Kies, Daniel: Evaluating Grammar Checkers: A Comparative Ten-Year
Study. 2008. ħ In: The HyperTextBooks ħ Modern English Gramĥ
mar ħ English 2126. Department of English, College of DuPage. Website
http://papyr.com/hypertextbooks/grammar/gramchek.htm Last modified 27ĥ12ĥ
2008. Accessed 11ĥ01ĥ2009

ĬKP96ĭ Kernick, Philip S. ; Powers, David M.: A Statistical Grammar Checker.
Adelaide, South Australia, Aug 1996. ħ Department of Computer
Science, Flinders University of South Australia, Honours Thesis.
http://david.wardpowers.info/Research/AI/papers/199608ĥsubĥSGC.pdf

ĬKY94ĭ Kantz, Margaret ; Yates, Robert: Whose Judgments? A Survey of Faculty
Responses to Common and Highly Irritating Writing Errors. Warrensburg, MO,
USA, Aug 1994. ħ A paper presented at the Fifth Annual Conference of the
NCTE Assembly for the Teaching of English Grammar, Illinois State Univerĥ
sity. http://www.ateg.org/conferences/c5/kantz.htm

ĬLanaĭ LanguageTool: LanguageTool — Development. ħ
http://www.languagetool.org/development/#process Last modified 11ĥ10ĥ2008.
Accessed 11ĥ01ĥ2009

ĬLanbĭ LanguageTool: LanguageTool — Open Source language checker. ħ
http://www.languagetool.org/ Last modified 11ĥ10ĥ2008. Accessed 11ĥ01ĥ2009

147

http://www.cnts.ua.ac.be/Publications/2001/HZD01/20010718.7496.hzd01.pdf
http://www.unix.org/version3/ieee_std.html
http://www.cs.vassar.edu/~ide/papers/ANC-LREC06.pdf
http://papyr.com/hypertextbooks/grammar/gramchek.htm
http://david.wardpowers.info/Research/AI/papers/199608-sub-SGC.pdf
http://www.ateg.org/conferences/c5/kantz.htm
http://www.languagetool.org/development/#process
http://www.languagetool.org/

D. Bibliography

ĬLinaĭ Linguisoft Inc.: Grammarian Pro X. ħ http://linguisoft.com/gramprox.html Acĥ
cessed 11ĥ01ĥ2009

ĬLinbĭ Linguistic Data Consortium: Linguistic Data Consortium. ħ University of Pennĥ
sylvania. http://www.ldc.upenn.edu/ Last modified 08ĥ01ĥ2009. Accessed 13ĥ01ĥ
2009

ĬLof07ĭ Loftsson, Hrafn: The Icelandic tagset. Department of Computer Science, Reykĥ
javik University, Reykjavik, Iceland, Jan 2007. ħ http://nlp.ru.is/pdf/Tagset.pdf

ĬLof08ĭ Loftsson, Hrafn: Tagging Icelandic text: A linguistic ruleĥbased approach. In:
Nordic Journal of Linguistics, Cambridge University Press, 2008, pp. 47ħ72. ħ
http://www.ru.is/faculty/hrafn/Papers/IceTagger_final.pdf

ĬLZ06ĭ Lemnitzer, Lothar ; Zinsmeister, Heike: Korpuslinguistik: Eine Ein-
führung. Gunter Narr Verlag, 2006. ħ ISBN 3823362100. ħ
http://books.google.com/books?id=Lxe2aO9dwoAC&hl=de

ĬMicaĭ Microsoft: Microsoft(R). ħ http://www.microsoft.com/ Accessed 11ĥ01ĥ2009

ĬMicbĭ Microsoft Corporation: Microsoft(R) Office Online — Microsoft Office Word. ħ
http://www.microsoft.com/office/word Accessed 11ĥ01ĥ2009

ĬMSĭ MySQL AB ; Sun Microsystems, Inc.: MySQL. ħ http://www.mysql.com/ Acĥ
cessed 02ĥ01ĥ2009

ĬMSM93ĭ Marcus, Mitchell P. ; Santorini, Beatrice ; Marcinkiewicz, Mary A.:
Building a Large Annotated Corpus of English: The Penn Treeĥ
bank / Department of Computer and Information Science, Univerĥ
sity of Pennsylvania. 1993 ĪMSĥCISĥ93ĥ87ī. ħ Technical Report. ħ
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1246&context=cis_reports

ĬOpeĭ OpenOffice.org: OpenOffice.org — The free and open productivity suite. ħ
http://www.openoffice.org/ Accessed 11ĥ01ĥ2009

ĬPenĭ Penn Treebank Project: Treebank tokenization. ħ Computer
and Information Science Department, University of Pennsylvania.
http://www.cis.upenn.edu/~treebank/tokenization.html

ĬPMB91ĭ Pind, Jörgen ; Magnússon, Friðrik ; Briem, Stefán: Íslensk Orðtíðnibók (Frequency
Dictionary of Icelandic). Reykjavik, Iceland : The Institute of Lexicography, Uniĥ
versity of Iceland, 1991

ĬPöhĭ Pöhland, Jörg: englisch-hilfen.de — Learning English Online. ħ http://www.englischĥ
hilfen.de/en/

148

http://linguisoft.com/gramprox.html
http://www.ldc.upenn.edu/
http://nlp.ru.is/pdf/Tagset.pdf
http://www.ru.is/faculty/hrafn/Papers/IceTagger_final.pdf
http://books.google.com/books?id=Lxe2aO9dwoAC&hl=de
http://www.microsoft.com/
http://www.microsoft.com/office/word/
http://www.mysql.com/
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1246&context=cis_reports
http://www.openoffice.org/
http://www.cis.upenn.edu/~treebank/tokenization.html
http://www.englisch-hilfen.de/en/
http://www.englisch-hilfen.de/en/

D. Bibliography

ĬQH06ĭ Quasthoff, Uwe ; Heyer, Gerhard ; Natural Language Processing Departĥ
ment, University of Leipzig Īeds.ī: Leipzig Corpora Collection User Manual
— Version 1.0. Stuttgart, Germany: Natural Language Processing Departĥ
ment, University of Leipzig, May 2006. ħ http://corpora.informatik.uniĥ
leipzig.de/download/LCCDoc.pdf

ĬSch94ĭ Schmid, Helmut: Probabilistic PartĥofĥSpeech Tagging Using Decision
Trees. In: Proceedings of the International Conference on New Methods in
Language Processing. Stuttgart, Germany, 1994. ħ http://www.ims.uniĥ
stuttgart.de/ftp/pub/corpora/treeĥtagger1.pdf

ĬSch00ĭ Schmid, Helmut: Unsupervised Learning of Period Disambiguation
for Tokenisation / Institute for Natural Language Processing, University
of Stuttgart. 2000. ħ Internal Report. ħ http://www.ims.uniĥ
stuttgart.de/~schmid/tokeniser.pdf

ĬSjö03ĭ Sjöbergh, Jonas: Combining POSĥtaggers for improved accuracy on
Swedish text. In: Proceedings of the 14th Nordic Conference of Computa-
tional Linguistics (NoDaLiDa 2003). Reykjavik, Iceland, 2003. ħ http://drĥ
hato.se/research/combining03.pdf

ĬSte03ĭ Steiner, Petra: Das revidierte Münsteraner Tagset/Deutsch ĪMT/Dī
ħ Beschreibung, Anwendung, Beispiele und Problemfälle / Arbeitsbereĥ
ich Linguistik, University of Münster. 2003. ħ Technical Report. ħ
http://santana.uniĥmuenster.de/Publications/tagbeschr_final.ps

ĬSTST99ĭ Schiller, Anne ; Teufel, Simone ; Stückert, Christine ; Thielen,
Christine: Guidelines für das Tagging deutscher Textcorpora mit
STTS ĪKleines und großes Tagsetī / Institute for Natural Lanĥ
guage Processing, University of Stuttgart and Department of Linĥ
guistics, University of Tübingen. 1999. ħ Technical Report. ħ
http://www.ifi.uzh.ch/~siclemat/man/SchillerTeufel99STTS.pdf

ĬTheĭ The New York Times Company: The New York Times. ħ
http://www.nytimes.com/ Accessed 15ĥ12ĥ2008

ĬTM00ĭ Toutanova, Kristina ; Manning, Christopher D.: Enriching the Knowledge
Sources Used in a Maximum Entropy PartĥofĥSpeech Tagger. In: Proceedings
of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing
and Very Large Corpora (EMNLP/VLC-2000). Hong Kong, China, 2000, pp. 63ħ70.
ħ http://nlp.stanford.edu/~manning/papers/emnlp2000.pdf

ĬVOAĭ VOANews.com: VOANews.com — Voice of America. ħ http://www.voanews.com/
Accessed 15ĥ12ĥ2008

149

http://corpora.informatik.uni-leipzig.de/download/LCCDoc.pdf
http://corpora.informatik.uni-leipzig.de/download/LCCDoc.pdf
http://www.ims.uni-stuttgart.de/ftp/pub/corpora/tree-tagger1.pdf
http://www.ims.uni-stuttgart.de/ftp/pub/corpora/tree-tagger1.pdf
http://www.ims.uni-stuttgart.de/~schmid/tokeniser.pdf
http://www.ims.uni-stuttgart.de/~schmid/tokeniser.pdf
http://dr-hato.se/research/combining03.pdf
http://dr-hato.se/research/combining03.pdf
http://santana.uni-muenster.de/Publications/tagbeschr_final.ps
http://www.ifi.uzh.ch/~siclemat/man/SchillerTeufel99STTS.pdf
http://www.nytimes.com/
http://nlp.stanford.edu/~manning/papers/emnlp2000.pdf
http://www.voanews.com/

D. Bibliography

ĬYahĭ Yahoo! Inc.: Yahoo!®. ħ http://www.yahoo.com/ Accessed 15ĥ01ĥ2009

ĬYer03ĭ Yergeau, F.: UTF-8, a transformation format of ISO 10646. Nov 2003. ħ Request
for Comments 3629. http://tools.ietf.org/rfc/rfc3629.txt

150

http://www.yahoo.com/
http://tools.ietf.org/rfc/rfc3629.txt

Resources E
In this part of the appendix, we list resources that we implemented relating to the develĥ
opment of LISGrammarChecker. We provide several listings that show implementation
details from our grammar checker. Finally, our selfĥmade error corpora are shown. The
main reason for this chapter is to provide our resources to others. While we worked on this
thesis, we often found other documentations where we could not get the resources anymore.
To avoid this with our resources, we include them in our documentation.

E.1. Listings

We provide the implementation of our simple voting combination algorithm and our possiĥ
bility to call extern programs in D.

E.1.1. Simple Voting Algorithm

This listing shows the implementation of our simple voting algorithm. It consists of function
simpleVoting which is found in module taggers.tagger.
1 /**
2 * Do simple voting on the evaluated array using all taggers input. Result is written
3 * back to the appropriate fields in the evaluated array.
4 * Params:
5 * (inout) evaluated_lexemes_lemmas_tags = Evaluated array.
6 */
7 void simpleVoting(inout char[][][] evaluated_lexemes_lemmas_tags)
8 {
9 char[][] current_tag;

10 int[] current_tag_count;
11 int k, temp_highest_value;
12 bool tag_not_found;
13
14 // Go through all lexemes and tags
15 for (int i = 0; i < evaluated_lexemes_lemmas_tags.length; i++)
16 {
17 current_tag.length = 1;
18 current_tag_count.length = 1;

151

E. Resources

19 int k = -1;
20 bool tag_not_found = true;
21
22 // Go through all tags from the different taggers
23 for (int j = 3; j < evaluated_lexemes_lemmas_tags[0].length; j++)
24 {
25 for (int l = 0; l <= k; l++)
26 {
27 if (cmp(evaluated_lexemes_lemmas_tags[i][j], current_tag[l]) == 0)
28 {
29 current_tag_count[l]++;
30 tag_not_found = false;
31 }
32 else
33 {
34 tag_not_found = true;
35 }
36 }
37 if (tag_not_found)
38 {
39 current_tag.length = current_tag.length + 1;
40 current_tag_count.length = current_tag_count.length + 1;
41 k++;
42 current_tag[k] = evaluated_lexemes_lemmas_tags[i][j];
43 current_tag_count[k] = 1;
44 }
45 }
46
47 temp_highest_value = 0;
48
49 // Go through all tags for one lexeme
50 for (int l = 0; l < current_tag.length; l++)
51 {
52 if (temp_highest_value < current_tag_count[l])
53 {
54 temp_highest_value = current_tag_count[l];
55 evaluated_lexemes_lemmas_tags[i][2] = current_tag[l];
56 }
57 }
58 }
59 }

Listing E.1: Simple voting algorithm

E.1.2. Shell Function to Call Extern Programs

This listing is the implementation of our shell function in module standard.shell. It can
be used to call extern programs from aDprogram. See section 6.4 for further explanations.
1 char[] shell(char[] cmd)
2 {
3 FILE* f = popen(toStringz(cmd), toStringz("r"));
4 char[] line;
5 char[] result;
6 while (readln(f, line))
7 {
8 result ~= line;

152

E.2. Error Corpora

9 }
10 fclose(f);
11 return result;
12 }
13
14 extern(C) FILE* popen(char* name, char* mode);

Listing E.2: Shell function

E.2. Error Corpora

Here we provide our selfĥmade error corpora. They are all in the following format:

• Every line starts with a letter, either A, B or C. Letter A marks intentionally wrong
sentences. Letter B marks the corrected version of the same sentence. In some cases
there exists also a variant C, which denotes a second correct alternative of the same
sentence.

• A period and a space follow to distinguish between the type marker and the sentence
itself.

• Finally the line contains the sentence itself.

E.2.1. Self-made Error Corpus (English)

This error corpus is made up on our own. Therefore we have randomly selected sentence
parts from theWortschatz Universität Leipzig corpus ĬQH06ĭ to form new sentences. Now
it consists of newly created English sentences. The wrong sentences contain grammatical
errors from chapter 2.1.4.

1 A. A statement for a said the rebel forces in Manhattan manage a 46 second showing.
2 B. A statement for a club said the rebel forces in Manhattan manage a 46 second showing.
3 A. The president remarked that that he likes the wonderful job.
4 B. The president remarked that he likes the wonderful job.
5 A. The official did not knowing why the decision was made.
6 B. The official did not know why the decision was made.
7 A. Towards the end both sides said the study assumes that the are most active.
8 B. Towards the end both sides said the study assumes that the Japanese are most active.
9 A. The combination of the idea has been uses over the holiday weekend.

10 B. The combination of the idea has been used over the holiday weekend.
11 A. He has done great job in the private sector.
12 B. He has done a great job in the private sector.
13 A. The sixth-largest banking group in the United States must resolve these money problem before

the general elections next year.
14 B. The sixth-largest banking group in the United States must resolve this money problem before

the general elections next year.
15 A. After move to South Korea, which is not part of it, we became farmers.
16 B. After moving to South Korea, which is not part of it, we became farmers.

153

E. Resources

17 A. This is the first time moved to a house outside Washington.
18 B. This is the first time he moved to a house outside Washington.
19 A. The will try to play at the top of the hills.
20 B. They will try to play at the top of the hills.
21 A. Ironically, many stores make spot checks of professional actors, and the main reason for

that is that the stock close at $4,700 a share.
22 B. Ironically, many stores make spot checks of professional actors, and the main reason for

that is that the stock closed at $4,700 a share.
23 A. The rates were the high since Sept. 5.
24 B. The rates were the highest since Sept. 5.
25 A. The earlier negotiations have to go on a waiting list or your certainly aren't going to set

the tone for next week.
26 B. The earlier negotiations have to go on a waiting list or you certainly aren't going to set

the tone for next week.
27 A. I imagine he said the agreement what reached by a representative of the Prime Minister.
28 B. I imagine he said the agreement was reached by a representative of the Prime Minister.
29 A. Within minutes, she promised they the crowd that no new major economic initiatives are

likely.
30 B. Within minutes, she promised the crowd that no new major economic initiatives are likely.
31 A. Midsize firms assume that individuals seek to maximize satisfaction while businessmen

maximizes profits.
32 B. Midsize firms assume that individuals seek to maximize satisfaction while businessmen

maximize profits.
33 A. I can tell you when they cite the studies that have been done they don't include his very

often.
34 B. I can tell you when they cite the studies that have been done, they don't include his very

often.
35 A. Of that group, only people who have quite a lot of our quasi-capital are up or election this

year.
36 B. Of that group, only people who have quite a lot of our quasi-capital are up for election

this year.
37 A. After the operation, he to confirm that immunity had been granted to NASA officials.
38 B. After the operation, he refused to confirm that immunity had been granted to NASA officials.
39 A. I'm am not paying the neccesary attention to them.
40 B. I'm not paying the neccesary attention to them.
41 A. The water pipes where broken and the party died Saturday at age 55.
42 B. The water pipes were broken and the party died Saturday at age 55.
43 A. Mathematic made little difference.
44 B. Mathematics made little difference.
45 A. These also find favor with girls whose believe that Joan died from a heart attack.
46 B. These also find favor with girls who believe that Joan died from a heart attack.
47 A. Another 20 homes are entitled too a receipt for the money.
48 B. Another 20 homes are entitled to a receipt for the money.
49 A. It could of run out of minivans because the two plants that build the models will be closed

for four weeks.
50 B. It could run out of minivans because the two plants that build the models will be closed for

four weeks
51 A. Before that, there competitors had been fighting since 1981.
52 B. Before that, their competitors had been fighting since 1981.
53 A. In the past week, he say he agreed because they see themselves as Bosnian.
54 B. In the past week, he said he agreed because they see themselves as Bosnian.
55 A. But he says the situation there has not changed for a decade much.
56 B. But he says the situation there has not changed much for a decade.
57 A. He was unavailable with in his private law office Thursday morning.
58 B. He was unavailable in his private law office Thursday morning.
59 A. Mostly, takeover speculation has nothing to do to the company.
60 B. Mostly, takeover speculation has nothing to do with the company.
61 A. The act of a military provocation like this is planned is planned.
62 B. The act of a military provocation like this is planned.
63 A. The exchanges in Washington already deciding that it wasn't a good place to invest.
64 B. The exchanges in Washington were already deciding that it wasn't a good place to invest.

154

E.2. Error Corpora

65 A. According to one conference organizer, is is both an agreement and it's been thoroughly
thought through.

66 B. According to one conference organizer, it is both an agreement and it's been thoroughly
thought through.

67 A. NBC's loss is partly due to fact that the baseball playoffs did not go for a sixth or
seventh game.

68 B. NBC's loss is partly due to the fact that the baseball playoffs did not go for a sixth or
seventh game.

69 A. Many people were absent, finishing touches no its minimum wage bill.
70 B. Many people were absent, finishing touches on its minimum wage bill.
71 A. Since then, Jim in been giving officials free trips to the southern border.
72 B. Since then, Jim has been giving officials free trips to the southern border.
73 A. Analysts said Australia has awarded too licenses within the last three years.
74 B. Analysts said Australia has awarded two licenses within the last three years.
75 A. Him is giving up the Daily Star.
76 B. He is giving up the Daily Star.
77 A. Fewer than one-fourth from those asked will come out of the investment banking business.
78 B. Fewer than one-fourth of those asked will come out of the investment banking business.
79 A. The plans was to differ on just about every issue.
80 B. The plan was to differ on just about every issue.
81 A. You enter the little auberge and its that complicated and that simple.
82 B. You enter the little auberge and it's that complicated and that simple.
83 A. Moreover he says officials want to transfer small objects or packages for currency in a

furtive fashion.
84 B. Moreover, he says officials want to transfer small objects or packages for currency in a

furtive fashion.
85 A. The long term goal must be to demand change or it amounts to national disease.
86 B. The long term goal must be to demand change or it amounts to a national disease.
87 A. He tells of the son of city Water Bureau official.
88 B. He tells of the son of a city Water Bureau official.
89 A. And in Washington, it became a tide sweeping form east to west after a joint global sourcing

plan collapsed a year ago.
90 B. And in Washington, it became a tide sweeping from east to west after a joint global sourcing

plan collapsed a year ago.
91 A. Police said shares of Southern Glass will be available to foreigner's by the and of the year

.
92 B. Police said shares of Southern Glass will be available to foreigners by the and of the year.
93 A. When he finally reaches his coronation, plenty of risk there is in the car business.
94 B. When he finally reaches his coronation, there is plenty of risk in the car business.
95 A. The jury trial concludes that virtual all asthma attacks are triggered by the upper house.
96 B. The jury trial concludes that virtually all asthma attacks are triggered by the upper house.
97 A. After seven years later, above the steady gurgle of the river, a splash is preceded.
98 B. Seven years later, above the steady gurgle of the river, a splash is preceded.
99 A. The company said at least one speaker was taken away of the students.

100 B. The company said at least one speaker was taken away by the students.
101 C. The company said at least one speaker of the students was taken away.
102 A. Anchorman Tom Brokaw has found guilty of using drugs.
103 B. Anchorman Tom Brokaw has been found guilty of using drugs.
104 A. The pilot reported the engine failure and an veteran was sent to meet the plane.
105 B. The pilot reported the engine failure and a veteran was sent to meet the plane.
106 A. Biotechnology already makes it feasible home tests for a wide range of diseases.
107 B. Biotechnology already makes feasible home tests for a wide range of diseases.
108 A. They show also stars Mr. Flake.
109 B. The show also stars Mr. Flake.
110 A. They have have told the Poles that its offices have been visited by police looking for

information.
111 B. They have told the Poles that its offices have been visited by police looking for

information.
112 A. He may have been qualified to president of the country.
113 B. He may have been qualified to be president of the country.
114 A. I was thinking to more about operating cash flow.
115 B. I was thinking more about operating cash flow.

155

E. Resources

116 A. It is important but to complex too explain.
117 B. It is important but too complex to explain.
118 A. The rumors hung in Iraq.
119 B. The rumors hung over Iraq.
120 A. The other driver puts the spotlight on sizeable community in the Miami area.
121 B. The other driver puts the spotlight on the sizeable community in the Miami area.
122 A. They are very religious and the influence is society is high.
123 B. They are very religious and the influence in society is high.
124 A. He also worked at airport.
125 B. He also worked at the airport.
126 A. We have going to have to deal with the problems of segregated schools.
127 B. We are going to have to deal with the problems of segregated schools.
128 A. A Danish statement said they continue as treasurer a member of the operating committee for

this travel company.
129 B. A Danish statement said they continue as treasurer and a member of the operating committee

for this travel company.
130 A. He was also own for holding more than 11% of the home market.
131 B. He was also known for holding more than 11% of the home market.
132 A. Later, she recommends a salary audit later every three years.
133 B. Later, she recommends a salary audit every three years.
134 A. Anyone over the age of 18 can wins the game.
135 B. Anyone over the age of 18 can win the game.
136 A. Each years the costs for roads can barely raise the $52 million.
137 B. Each year the costs for roads can barely raise the $52 million.
138 A. A Colombian coffee official apparent realized he would not be released.
139 B. A Colombian coffee official apparently realized he would not be released.
140 A. There is a obligation to negotiate.
141 B. There is an obligation to negotiate.
142 A. Yesterday, it has gone very well.
143 B. Yesterday, it went very well.
144 A. The one who signed price stability contract with the government, agreed his job was on the

line.
145 B. The one who signed a price stability contract with the government, agreed his job was on the

line.
146 A. These groups want Jim allow a multiparty system.
147 B. These groups want Jim to allow a multiparty system.
148 A. I have no idea to what they're talking about.
149 B. I have no idea what they're talking about.
150 A. Readers interested in general references grammars of English should waste no time.
151 B. Readers interested in general reference grammars of English should waste no time.
152 A. The user will interact will Jim's new computer.
153 B. The user will interact with Jim's new computer.
154 A. They work on those who voted against the leaders wishes.
155 B. They work on those who voted against the leaders' wishes.
156 A. The decision came of a meeting Tuesday between the president and his advisors.
157 B. The decision came out of a meeting Tuesday between the president and his advisors.
158 A. He describes himself as a journalist with on a mission.
159 B. He describes himself as a journalist with a mission.
160 C. He describes himself as a journalist on a mission.
161 A. Since then, they have lay untouched.
162 B. Since then, they have lain untouched.
163 A. I have no objection to a bank applying any interest rate at all as as long as they state it

in a way that allows you to compare accounts.
164 B. I have no objection to a bank applying any interest rate at all as long as they state it in

a way that allows you to compare accounts.
165 A. Scientists reported that their solar collector is capable to concentrate sunlight.
166 B. Scientists reported that their solar collector is capable of concentrating sunlight.
167 A. But most families that turn the public sector find ways to be happy.
168 B. But most families that turn to the public sector find ways to be happy.
169 A. All workers at his ministry will be subjected to the tithing policy as July 1.
170 B. All workers at his ministry will be subjected to the tithing policy as of July 1.
171 A. But one of the good thing about it is that it isn't very good.

156

E.2. Error Corpora

172 B. But one of the good things about it is that it isn't very good.
173 A. He was conscious but he unable to speak during Wednesday's arraignment.
174 B. He was conscious but unable to speak during Wednesday's arraignment.
175 A. There are already signs that the recently raise 41% rate will be a problem.
176 B. There are already signs that the recently raised 41% rate will be a problem.
177 A. His portfolio comprises of more than 3,000 episodes of movies.
178 B. His portfolio comprises more than 3,000 episodes of movies.
179 C. His portfolio consists of more than 3,000 episodes of movies.
180 A. He had to refuse the invitations because of only a few are allowed to travel.
181 B. He had to refuse the invitations because only a few are allowed to travel.
182 A. She may have missed a trick by not putting this programmes first.
183 B. She may have missed a trick by not putting this programme first.
184 A. It will prompt to the surgeon for advice.
185 B. It will prompt the surgeon for advice.
186 A. Some firms declined to help underwriting the offering.
187 B. Some firms declined to help underwrite the offering.
188 A. White House will find out that this policy will lead them nowhere.
189 B. The White House will find out that this policy will lead them nowhere.
190 A. In both cases, part of the reason of the legislation was to allay the public's fear.
191 B. In both cases, part of the reason for the legislation was to allay the public's fear.
192 A. We don't want to stop been a developer, but we will be more careful.
193 B. We don't want to stop being a developer, but we will be more careful.
194 A. Higher earnings are expected over next two years for the company.
195 B. Higher earnings are expected over the next two years for the company.
196 A. The whole thing makes no sentence to me.
197 B. The whole thing makes no sense to me.
198 A. His 14-year-old daughter was going the trip.
199 B. His 14-year-old daughter was going on the trip.
200 A. She asks departments whether they think the policy is giving them benefits and don't even

have a fully working telephone.
201 B. She asks departments whether they think the policy is giving them benefits and doesn't even

have a fully working telephone.
202 A. A computer hacker, who send messages to the narrowly defined audiences, cannot be prosecuted

.
203 B. A computer hacker, who sent messages to the narrowly defined audiences, cannot be prosecuted

.
204 A. It could set a positive tone if they are favorable but touch off a dollar crisis it they

aren't.
205 B. It could set a positive tone if they are favorable but touch off a dollar crisis if they

aren't.
206 A. Peter and Jim are looking for to make fast trading profits.
207 B. Peter and Jim are looking to make fast trading profits.
208 A. We give thanks to Got that this was invented.
209 B. We give thanks to God that this was invented.
210 A. At least two rider required hospitalization after falling from high windows.
211 B. At least two riders required hospitalization after falling from high windows.
212 A. It points to a links between the best-known observer groups and the leftist Party of

Democratic Revolution as evidence of possible bias.
213 B. It points to the links between the best-known observer groups and the leftist Party of

Democratic Revolution as evidence of possible bias.
214 A. But it appears to be on a steady downward trend, suggests that the drachma will be able to

join the wide band of the exchange rate mechanism.
215 B. But it appears to be on a steady downward trend, suggesting that the drachma will be able to

join the wide band of the exchange rate mechanism.
216 A. The ranking GOP member on the budget committee has selected.
217 B. The ranking GOP member on the budget committee has been selected.
218 A. The refugees rise fears of an uncontrollable flood from Southeast Asia.
219 B. The refugees raise fears of an uncontrollable flood from Southeast Asia.
220 A. Its an overall credit-rating decision.
221 B. It's an overall credit-rating decision.
222 A. Ryan was stinged by a bee as they ran through the cornfield from the plane.
223 B. Ryan was stung by a bee as they ran through the cornfield from the plane.

157

E. Resources

224 A. So your off on holiday this week and you haven't had a moment to think about the paperbacks.
225 B. So you're off on holiday this week and you haven't had a moment to think about the

paperbacks.
226 A. Two principal shareholders wanted to sell there combined 42% stake.
227 B. Two principal shareholders wanted to sell their combined 42% stake.
228 A. They want to know as to why they aren't sleeping, why they want to throw up when they eat.
229 B. They want to know why they aren't sleeping, why they want to throw up when they eat.
230 A. She and Lorin is more than willing to lend if they can find worthy borrowers.
231 B. She and Lorin are more than willing to lend if they can find worthy borrowers.
232 A. Then we could of celebrate the new year on an agreed first day of Spring.
233 B. Then we could celebrate the new year on an agreed first day of Spring.
234 A. The chancellor has been at the scene of to many accidents.
235 B. The chancellor has been at the scene of too many accidents.
236 A. One area were the Gulf states do seem united is in their changed relations with outside

states.
237 B. One area where the Gulf states do seem united is in their changed relations with outside

states.
238 A. Mr. Hodel also raised concerns that the U.S. might commit themselves to an ineffective

international treaty.
239 B. Mr. Hodel also raised concerns that the U.S. might commit itself to an ineffective

international treaty.
240 A. And she said Tuesday she was not sure how her would vote.
241 B. And she said Tuesday she was not sure how she would vote.
242 A. The shares have fallen this far they seldom come back.
243 B. The shares have fallen this far, they seldom come back.
244 A. I did not reject the powerful influences of Europe on America, but I ask that the

contributions of Africa, Asia and South America be granted the light of day in America's
classrooms.

245 B. I do not reject the powerful influences of Europe on America, but I ask that the
contributions of Africa, Asia and South America be granted the light of day in America's
classrooms.

246 A. She looked right at me and she smiles broadly.
247 B. She looked right at me and she smiled broadly.
248 A. The company said it's rate of sales growth for the quarter has slowed from the 33% pace

during the second quarter.
249 B. The company said its rate of sales growth for the quarter has slowed from the 33% pace

during the second quarter.
250 A. I promise if somebody starts playing fast and lose with the university, they'll have to

answer.
251 B. I promise if somebody starts playing fast and loose with the university, they'll have to

answer.
252 A. After reading the original study, the article remains unconvincing.
253 B. After reading the original study, I find the article unconvincing.
254 A. It is nearly half past five, we cannot reach town before dark.
255 B. It is nearly half past five and we cannot reach town before dark.
256 A. One not entirely accidental side affect of the current crackdown will be a dampening of the

merger and acquisition boom.
257 B. One not entirely accidental side effect of the current crackdown will be a dampening of the

merger and acquisition boom.
258 A. He and its wife, Theda, wanted to stay in Atlanta.
259 B. He and his wife, Theda, wanted to stay in Atlanta.
260 A. Yesterday, they create 33 new ones.
261 B. Yesterday, they created 33 new ones.
262 A. I never worked harder in my life then in the last couple of years.
263 B. I never worked harder in my life than in the last couple of years.
264 A. His defeated challenger must remain in Washington answering slander charges.
265 B. His defeated challenger must remain in Washington to answer slander charges.

Listing E.3: Self-made Error Corpus (English)

158

E.2. Error Corpora

E.2.2. Self-made Error Corpus with Simple Sentences (English)

We provide a small error corpus with just simple sentences. These sentences are made up
by our own.

1 A. Max driver the car carefully.
2 B. Max drives the car carefully.
3 A. Here's is Peter.
4 B. Here is Peter.
5 A. My grandmother was joke.
6 B. My grandmother was joking.
7 A. She is watches TV.
8 B. She watches TV.
9 A. The dog has gets angry.

10 B. The dog gets angry.
11 A. Does the cat play in garden?
12 B. Does the cat play in the garden?
13 A. Is she is visiting the Tower of London?
14 B. Is she visiting the Tower of London?
15 A. The childrens love tennis, but they do not like biscuits.
16 B. The children love tennis, but they do not like biscuits.
17 A. They rides their bikes to the town.
18 B. They ride their bikes to the town.
19 A. I speak Germany.
20 B. I speak German.
21 A. If Maria call her friend, she begins with the game.
22 B. If Maria calls her friend, she begins with the game.
23 A. Alex could understand the text if he at it again.
24 B. Alex could understand the text if he looked at it again.
25 A. Houses is usually not expensive.
26 B. Houses are usually not expensive.
27 A. The boy drives an blue car.
28 B. The boy drives a blue car.
29 A. Doris is jumping over wall.
30 B. Doris is jumping over the wall.
31 A. Three car need to be repaired after they have crashed at the wall.
32 B. Three cars need to be repaired after they have crashed into the wall.
33 A. The police had problems in is writing the report.
34 B. The police had problems in writing the report.
35 A. It is looking greatly!
36 B. It is looking great!
37 A. Nina gets by the car and drives to school.
38 B. Nina gets on the car and drives to school.
39 A. Karen and Dave will arrives tomorrow.
40 B. Karen and Dave will arrive tomorrow.
41 A. A lots of people are angry about the farmers.
42 B. A lot of people are angry about the farmers.
43 A. A computer can be controlled by clicking an mouse button.
44 B. A computer can be controlled by clicking a mouse button.
45 A. The President works at the white House.
46 B. The President works at the White House.
47 A. This problem definitely is happened.
48 B. This problem definitely happened.
49 A. Republicans have a differently approach.
50 B. Republicans have a different approach.
51 A. Democrats had previously expressed a fear that the price is high is.
52 B. Democrats had previously expressed a fear that the price is high.
53 A. The men was too tall.
54 B. The man was too tall.
55 A. The unemployments rate jumps.

159

E. Resources

56 B. The unemployment rate jumps.
57 A. They the will invest in large cattle ranches.
58 B. They will invest in large cattle ranches.
59 A. Our economy develop.
60 B. Our economy develops.
61 A. When Doris went two school, I told her that we played in the neighborhood.
62 B. When Doris went to school, I told her that we played in the neighborhood.
63 A. She have worried about the traffic jam.
64 B. She is worried about the traffic jam.
65 A. The hurricanes is huge.
66 B. The hurricane is huge.
67 A. His girlfriend likes town.
68 B. His girlfriend likes the town.
69 A. I has reported that they verify the country's nuclear programs.
70 B. He has reported that they verify the country's nuclear programs.
71 A. Girls and adults enjoy an clean and comfortable environment.
72 B. Girls and adults enjoy a clean and comfortable environment.
73 A. I keep in mind that you looks forward to that.
74 B. I keep in mind that you look forward to that.
75 A. They're support our economy since 1913!
76 B. They're supporting our economy since 1913!
77 A. You're gift to Ted is nice.
78 B. Your gift to Ted is nice.
79 A. The community is likes a helping hand.
80 B. The community is like a helping hand.
81 A. Sophronia are a four-year-old girl.
82 B. Sophronia is a four-year-old girl.
83 A. Help your neighbors too prevent violence!
84 B. Help your neighbors to prevent violence!
85 A. Her former husband keeps active by play bridge.
86 B. Her former husband keeps active by playing bridge.
87 A. Help can to benefit our community.
88 B. Help can benefit our community.
89 A. You cared enough about the lives of peoples.
90 B. You cared enough about the lives of people.
91 A. The most important investment can make a measurable difference every days!
92 B. The most important investment can make a measurable difference every day!
93 A. I sat into the rain and snow.
94 B. I sat in the rain and snow.
95 A. That money are the first gift from my mother.
96 B. That money is the first gift from my mother.
97 A. The money supports yours family.
98 B. The money supports your family.
99 A. Do you feel the positive results off their success?

100 B. Do you feel the positive results of their success?

Listing E.4: Self-made error corpus with short sentences (English)

E.2.3. Self-made Error Corpus (German)

This corpus is analog to the selfĥmade error corpus for English. It consists of German
sentences which we made up from different sentence parts out of the Universität Leipzig
Wortschatz corpus ĬQH06ĭ for German.

1 A. Das können der Wertpapieraufseher nicht ändern.
2 B. Das können die Wertpapieraufseher nicht ändern.
3 A. Es kam zum Streit, weil die Mieten höher seien als die Zinsen für geleiht Geld.

160

E.2. Error Corpora

4 B. Es kam zum Streit, weil die Mieten höher seien als die Zinsen für geliehenes Geld.
5 A. Ich hab das aber nur gemacht, weil die zweite Gruppe der Meinung war, daß Duo habe sich

vorgedrängelt.
6 B. Ich hab das aber nur gemacht, weil die zweite Gruppe der Meinung war, das Duo habe sich

vorgedrängelt.
7 A. Und es ist wichtig für Demokratie wie Fortschritt, doch oft ist das Zurücktreten entscheiden

.
8 B. Und es ist wichtig für Demokratie wie Fortschritt, doch oft ist das Zurücktreten

entscheidend.
9 A. Der Siegermodell soll wie in den Jahren 1994/95 um über 60 Prozent jäh abstürzen.

10 B. Das Siegermodell soll wie in den Jahren 1994/95 um über 60 Prozent jäh abstürzen.
11 A. Eines Tages in Mai '99 standen sich zwei Subclans gegenüber.
12 B. Eines Tages im Mai '99 standen sich zwei Subclans gegenüber.
13 A. Ich brauchst Lothar nicht dauernd zu sagen, daß es ohne Opfer nicht mehr geht.
14 B. Ich brauche Lothar nicht dauernd zu sagen, daß es ohne Opfer nicht mehr geht.
15 A. Eine breite Zustimmung gilt als eine der zuverlässigste Methoden zur Identifizierung von

Straftätern.
16 B. Eine breite Zustimmung gilt als eine der zuverlässigsten Methoden zur Identifizierung von

Straftätern.
17 A. Stanczyk nannte es beunruhigend, daß die Stimmung im ORB nicht die besten ist, um die

Leichen seiner Männer zu bergen.
18 B. Stanczyk nannte es beunruhigend, daß die Stimmung im ORB nicht die beste ist, um die Leichen

seiner Männer zu bergen.
19 A. Wobei zu bemerken wäre, das die anderen Euro-Länder ihre Leitzinsen zurücknehmen und sich

dem Wettbewerb stellen.
20 B. Wobei zu bemerken wäre, daß die anderen Euro-Länder ihre Leitzinsen zurücknehmen und sich

dem Wettbewerb stellen.
21 A. Ohne ihm ist auch der Zusammenbruch der Beziehungen mit Jordanien nur noch eine Frage von

Tagen.
22 B. Ohne ihn ist auch der Zusammenbruch der Beziehungen mit Jordanien nur noch eine Frage von

Tagen.
23 A. Und fast 90 Prozent der Anwender gaben an, im vergangenem Monat online gegangen zu sein.
24 B. Und fast 90 Prozent der Anwender gaben an, im vergangenen Monat online gegangen zu sein.
25 A. Zu Defa-Zeit waren es nur noch rund 1,3 Milliarden Euro.
26 B. Zu Defa-Zeiten waren es nur noch rund 1,3 Milliarden Euro.
27 A. In diesem Falle könnten es für die Reiseveranstalter zu Verlusten im siebenstelligen Bereich

kommen.
28 B. In diesem Falle könnte es für die Reiseveranstalter zu Verlusten im siebenstelligen Bereich

kommen.
29 A. Es kann nicht darum gehen, Kinder wieder zu Lesen zu bringen.
30 B. Es kann nicht darum gehen, Kinder wieder zum Lesen zu bringen.
31 A. Natürlich deutlich stärker wie die Beitragseinahmen werden nach den Angaben des Verbands die

Leistungen an die Versicherten zunehmen.
32 B. Natürlich deutlich stärker als die Beitragseinahmen werden nach den Angaben des Verbands die

Leistungen an die Versicherten zunehmen.
33 A. Doch dafür ist der Aufnahmetest um so selektiver.
34 B. Doch dafür ist der Aufnahmetest umso selektiver.
35 A. Ich bin stolz auf das was im Augenblick geschieht.
36 B. Ich bin stolz auf das, was im Augenblick geschieht.
37 A. Und ich bin dankbar, daß ich diese düstere Prophetie erst las, als mir dreißig Jahre älter

war.
38 B. Und ich bin dankbar, daß ich diese düstere Prophetie erst las, als ich dreißig Jahre älter

war.
39 A. Ein Vierzehnjähriger kann das besser, als viele Veröffentlichungen geglaubt machen wollen.
40 B. Ein Vierzehnjähriger kann das besser, als viele Veröffentlichungen glauben machen wollen.
41 A. Nun gelten der alte Gegensatz nicht mehr, heißt es im Bundestag.
42 B. Nun gelten die alten Gegensätze nicht mehr, heißt es im Bundestag.
43 A. Daher ist es für die Welt Wirtschaft von besonderer Bedeutung, findet Boehnke.
44 B. Daher ist es für die Weltwirtschaft von besonderer Bedeutung, findet Boehnke.
45 A. Dann aber kommt es zu manchen interkulturellen Aha-Erlebnis.
46 B. Dann aber kommt es zu manchem interkulturellen Aha-Erlebnis.
47 A. Zu dem gibt es eine direkte Verbindung.

161

E. Resources

48 B. Zudem gibt es eine direkte Verbindung.
49 A. Das ganze heiß inkrementelle Suche und bedeutet, daß der Anleger stets einen Preis in der

Mitte der Brief- und Geldspanne erhält.
50 B. Das ganze heißt inkrementelle Suche und bedeutet, daß der Anleger stets einen Preis in der

Mitte der Brief- und Geldspanne erhält.
51 A. Der höhere Rückgang bedeutet, daß der Veranstalter ein billig Anbieter ist.
52 B. Der höhere Rückgang bedeutet, daß der Veranstalter ein Billiganbieter ist.
53 A. Der Haftbefehl wurde außer Vollzug ersetzt, weil die Zustimmung der Wohnungsbaugesellschaft

fehlt.
54 B. Der Haftbefehl wurde außer Vollzug gesetzt, weil die Zustimmung der Wohnungsbaugesellschaft

fehlt.
55 A. Und der Kanzler selbst sprach von eines erfreulichen Ergebnises.
56 B. Und der Kanzler selbst sprach von einem erfreulichen Ergebnis.
57 A. Ein Antwort hätte deshalb längst gegeben sein müssen, weil die Mannschaft spielerisch mehr

als der Gegner zu bieten hatte und auch in sich gut harmonierte.
58 B. Eine Antwort hätte deshalb längst gegeben sein müssen, weil die Mannschaft spielerisch mehr

als der Gegner zu bieten hatte und auch in sich gut harmonierte.
59 A. Sie ist eine der wenigen, die wo sich bis heute stark sozial engagiert.
60 B. Sie ist eine der wenigen, die sich bis heute stark sozial engagiert.
61 A. Mir geht es nicht um das Bruchstück eines größeren, beim Aufprall zerschellten Exemplar.
62 B. Mir geht es nicht um das Bruchstück eines größeren, beim Aufprall zerschellten Exemplars.
63 A. Er ist ein Star, nicht weil er der einzigste Mond im Sonnensystem ist.
64 B. Er ist ein Star, nicht weil er der einzige Mond im Sonnensystem ist.
65 A. Sie mußten bislang wegen den hohen Marketingkosten profitabler arbeiten als etwa Buchläden

in der Stadt.
66 B. Sie mußten bislang wegen der hohen Marketingkosten profitabler arbeiten als etwa Buchläden

in der Stadt.
67 A. Erst kürzlich erhielt er auf diesem Weg direkt vor dem Fernseher Waren aus einem Bestand von

über 100 000 Artikeln von dem Versandhändler.
68 B. Erst kürzlich erhielt er auf diesem Weg direkt vor dem Fernseher Waren aus einem Bestand von

über 100 000 Artikeln des Versandhändlers.
69 A. Interessant ist auch, daß die Betriebe diese Tarifverträge erfüllten können.
70 B. Interessant ist auch, daß die Betriebe diese Tarifverträge erfüllen können.
71 A. Daß weiß keiner besser als die Sekretärin des inzwischen verstorbenen katholischen

Stadtdechanten, der zugleich Standortpfarrer war.
72 B. Das weiß keiner besser als die Sekretärin des inzwischen verstorbenen katholischen

Stadtdechanten, der zugleich Standortpfarrer war.
73 A. Er war ein Friseur, und muß sich damit nicht abfinden.
74 B. Er war ein Friseur und muß sich damit nicht abfinden.
75 A. Es sei allerdings nicht nötig, so etwas fordern.
76 B. Es sei allerdings nicht nötig, so etwas zu fordern.
77 A. Vielleicht hat er sich deshalb mit den falschen Dokumenten ein geschlichen, so die CDU-

Landtagsfraktion.
78 B. Vielleicht hat er sich deshalb mit den falschen Dokumenten eingeschlichen, so die CDU-

Landtagsfraktion.
79 A. Zirkus kann es auch dann geben, wann die Länderchefs am heutigen Donnerstag mal wieder über

Gebühren und Strukturen bei ARD und ZDF und über den Fall Sarkuhi reden.
80 B. Zirkus kann es auch dann geben, wenn die Länderchefs am heutigen Donnerstag mal wieder über

Gebühren und Strukturen bei ARD und ZDF und über den Fall Sarkuhi reden.
81 A. Doch in der Nacht vom 25. zum 26. April 1986 um 1 Uhr 23 Minuten und 40 Sekunden, ging ein

Stück der Welt verloren, als der Regen kam und mit ihm der Notstand.
82 B. Noch in der Nacht vom 25. zum 26. April 1986 um 1 Uhr 23 Minuten und 40 Sekunden, ging ein

Stück der Welt verloren, als der Regen kam und mit ihm der Notstand.
83 A. Viele Funktionen des Claustrums ist noch sehr weit von einer ausgeprägten kommerziellen

Orientierung entfernt.
84 B. Viele Funktionen des Claustrums sind noch sehr weit von einer ausgeprägten kommerziellen

Orientierung entfernt.
85 A. Nur plötzlich präsentieren sich die Führer der kleinen Parteien.
86 B. Nun plötzlich präsentieren sich die Führer der kleinen Parteien.
87 A. Trotz dem müssen sie nicht unbedingt in warme, südliche Länder fliegen.
88 B. Trotzdem müssen sie nicht unbedingt in warme, südliche Länder fliegen.
89 A. Leider Wissen die meisten gar nicht, was draußen auf der Straße wirklich abgeht.

162

E.2. Error Corpora

90 B. Leider wissen die meisten gar nicht, was draußen auf der Straße wirklich abgeht.
91 A. In Juli und August sollen dann auch die im dritten Bauabschnitt geplanten Gewerberäume

fertig sein, insgesamt will das Eigentümerkonsortium 300 Millionen Mark in das Viktoria
Quartier investieren.

92 B. Im Juli und August sollen dann auch die im dritten Bauabschnitt geplanten Gewerberäume
fertig sein, insgesamt will das Eigentümerkonsortium 300 Millionen Mark in das Viktoria
Quartier investieren.

93 A. Ich hoffe, daß noch nicht abgeschlossen werde.
94 B. Ich hoffe, daß noch nicht abgeschlossen wurde.
95 A. Das Bild ändern sich erst, wenn die Streu auf dem Waldboden verbrannt ist.
96 B. Das Bild ändert sich erst, wenn die Streu auf dem Waldboden verbrannt ist.
97 A. Der Radler wurde bei dem Zusammenprall mit dem Autos überrollt.
98 B. Der Radler wurde bei dem Zusammenprall mit dem Auto überrollt.
99 A. Bei einem Volksfest am vergangenen Wochenende in München war Anja Osthoff allerdings

beleidigend worden.
100 B. Bei einem Volksfest am vergangenen Wochenende in München war Anja Osthoff allerdings

beleidigt worden.
101 A. Aber auch die Öffentlichkeit sei nicht ausreichend über ihr Rechte informiert.
102 B. Aber auch die Öffentlichkeit sei nicht ausreichend über ihre Rechte informiert.
103 A. Gleichwohl gab es am vergangenen Wochenende wahre schlachten.
104 B. Gleichwohl gab es am vergangenen Wochenende wahre Schlachten.
105 A. Diese Forderung macht sich außerdem gut in dieser Zeiten, in den kommenden Tagen soll

demnach eine Entscheidung fallen.
106 B. Diese Forderung macht sich außerdem gut in diesen Zeiten, in den kommenden Tagen soll

demnach eine Entscheidung fallen.
107 A. Baxter, der die Einnahme von Metamphetaminen überführt worden war, sagte, die Entscheidung

sei im Unternehmen nicht bekannt.
108 B. Baxter, der der Einnahme von Metamphetaminen überführt worden war, sagte, die Entscheidung

sei im Unternehmen nicht bekannt.
109 A. Ich war geschockt frustriert zugleich, weil die klassische Sozialplanlösung nicht mehr

funktioniert.
110 B. Ich war geschockt und frustriert zugleich, weil die klassische Sozialplanlösung nicht mehr

funktioniert.
111 A. Die jetzt Situation schafft zusätzliches Druckpotential, weil die Sehne zuvor klinisch gut

aussah.
112 B. Die jetzige Situation schafft zusätzliches Druckpotential, weil die Sehne zuvor klinisch gut

aussah.
113 A. Diese hatte die Fascination im Jahr 2003 ins Leben gerufen, weil die Bestimmungen keine und

mittlere Unternehmungen vor den Auswirkungen eines solchen Preiskampfs schützen sollten.
114 B. Diese hatte die Fascination im Jahr 2003 ins Leben gerufen, weil die Bestimmungen kleine und

mittlere Unternehmungen vor den Auswirkungen eines solchen Preiskampfs schützen sollten.
115 A. Das Unternehmen sieht sich inzwischen auf dem deutschen Markt im Wettbewerb mit jedes

Direktanbieters.
116 B. Das Unternehmen sieht sich inzwischen auf dem deutschen Markt im Wettbewerb mit jedem

Direktanbieter.
117 A. Die Union plant im Fall eines Sieg bei der Bundestagswahl 2002 die notwendigen Konsequenzen

zu ziehen.
118 B. Die Union plant im Fall eines Sieges bei der Bundestagswahl 2002 die notwendigen

Konsequenzen zu ziehen.
119 A. Privatleute haben sein Häuser zur Verfügung gestellt, sich aber das Recht der Eigennutzung

von vier Wochen pro Jahr vorbehalten.
120 B. Privatleute haben ihre Häuser zur Verfügung gestellt, sich aber das Recht der Eigennutzung

von vier Wochen pro Jahr vorbehalten.
121 A. Außerdem sei ihnen das Original-Fotomaterial nicht zur Verfügung stellt geworden, teilte

Finanzsenator Elmar Pieroth (CDU) mit.
122 B. Außerdem sei ihnen das Original-Fotomaterial nicht zur Verfügung gestellt worden, teilte

Finanzsenator Elmar Pieroth (CDU) mit.
123 A. Der in Berlin lebende Mann hatte seine Wohnung langfristig an ein Hotelgesellschaft zur

Vermietung zur Verfügung gestellt, und über Progamme und Flyer wurde dieses schon
werbewirksam in Umlauf gebracht.

124 B. Der in Berlin lebende Mann hatte seine Wohnung langfristig an eine Hotelgesellschaft zur
Vermietung zur Verfügung gestellt, und über Progamme und Flyer wurde dieses schon

163

E. Resources

werbewirksam in Umlauf gebracht.
125 A. Fraktionen dürften die ihnen vom Staat zur Verfügungen gestellten Garantien in Höhe von 85

Prozent der Gesamtkosten beantragen.
126 B. Fraktionen dürften die ihnen vom Staat zur Verfügung gestellten Garantien in Höhe von 85

Prozent der Gesamtkosten beantragen.
127 A. Das CSU-Politiker verlangt weitere personelle Konsequenzen in den russischen Behörden.
128 B. Der CSU-Politiker verlangt weitere personelle Konsequenzen in den russischen Behörden.
129 A. Die Entscheidung des Deutschen Börse AG ist geplatzt.
130 B. Die Entscheidung der Deutschen Börse AG ist geplatzt.
131 A. So wäre es der vierte Chief Executive Officer von Coca-Cola Deutschland, den größtem

Mehrwegabfüller in der Bundesrepublik.
132 B. So wäre es der vierte Chief Executive Officer von Coca-Cola Deutschland, dem größten

Mehrwegabfüller in der Bundesrepublik.
133 A. Hochtief sah dich gezwungen, die Commerzbank einzuschalten, weil die Zinsen dann etwas höher

sind - schon sitzen sie in der Falle.
134 B. Hochtief sah sich gezwungen, die Commerzbank einzuschalten, weil die Zinsen dann etwas höher

sind - schon sitzen sie in der Falle.
135 A. Viel leicht verlieren Sie so oder so, weil die Hunde das Gewicht sonst nicht schaffen.
136 B. Vielleicht verlieren Sie so oder so, weil die Hunde das Gewicht sonst nicht schaffen.
137 A. Doch angenommen, sie verlängern ihr Festgeld jetzt über das Jahresende hinaus, weil die

klassischen Sozialplanlösung nicht mehr funktioniert.
138 B. Doch angenommen, sie verlängern ihr Festgeld jetzt über das Jahresende hinaus, weil die

klassische Sozialplanlösung nicht mehr funktioniert.
139 A. Im Januar 1998 schossen Polizisten die Schulen, weil die Mehrkosten gegenüber den gängigen

Risikomodellen 15 bis 20 Prozent betragen.
140 B. Im Januar 1998 schlossen Polizisten die Schulen, weil die Mehrkosten gegenüber den gängigen

Risikomodellen 15 bis 20 Prozent betragen.
141 A. Der Terrier fliegen durch die Luft und markiert einen Punkt.
142 B. Der Terrier fliegt durch die Luft und markiert einen Punkt.
143 A. Wir haben schon seit Jahren keinen guten Nachwuchsspielern mehr herausgebracht.
144 B. Wir haben schon seit Jahren keinen guten Nachwuchsspieler mehr herausgebracht.
145 A. Diese Quote liege auch deutlich höher als das Brutto Einkommen auf jedem dieser

Arbeitsplätze.
146 B. Diese Quote liege auch deutlich höher als das Bruttoeinkommen auf jedem dieser Arbeitsplätze

.
147 A. Geht es steil Berg auf, sollte er mitlaufen, weil die weißen Mauern sein Bild tragen.
148 B. Geht es steil bergauf, sollte er mitlaufen, weil die weißen Mauern sein Bild tragen.
149 A. Bloß gebaut wurde kein, weil die "Lokomotive" Bauwirtschaft weggefallen ist.
150 B. Bloß gebaut wurde keiner, weil die "Lokomotive" Bauwirtschaft weggefallen ist.
151 A. Trotzdem bleibt das englische Regierungssprache, weil die Bevölkerung vor ihm noch nie einen

Schwarzen gesehen hatte.
152 B. Trotzdem bleibt das Englische Regierungssprache, weil die Bevölkerung vor ihm noch nie einen

Schwarzen gesehen hatte.
153 A. Die Arbeitslosigkeit ist deswegen in dem letzten Monaten so in die Höhe geschnellt, weil die

Ausbilder ehrenamtlich arbeiten.
154 B. Die Arbeitslosigkeit ist deswegen in den letzten Monaten so in die Höhe geschnellt, weil die

Ausbilder ehrenamtlich arbeiten.
155 A. Die Praxisstunden ist bei den meisten Vereinen kostenlos, weil die Bauarbeiter ihren Job

verflixt ernst nehmen.
156 B. Die Praxisstunden sind bei den meisten Vereinen kostenlos, weil die Bauarbeiter ihren Job

verflixt ernst nehmen.
157 A. Dieser Betrag sei damit deutlich höher als in den neuen Bundesländern ins gesamt.
158 B. Dieser Betrag sei damit deutlich höher als in den neuen Bundesländern insgesamt.
159 A. Ich habe auf eine Wunder gehofft - obwohl es die Anklage durch Den Haag gibt.
160 B. Ich habe auf ein Wunder gehofft - obwohl es die Anklage durch Den Haag gibt.
161 A. Die 7:0-Gala gegen Lübeck ist noch gar nicht solange her, da haben wir unser Pulver total

verschossen.
162 B. Die 7:0-Gala gegen Lübeck ist noch gar nicht so lange her, da haben wir unser Pulver total

verschossen.
163 A. Es werden Verhandlungen mit Milosevic statt finden, obwohl es alle gleichermaßen angehen

müßte.

164

E.2. Error Corpora

164 B. Es werden Verhandlungen mit Milosevic stattfinden, obwohl es alle gleichermaßen angehen
müßte.

165 A. Am Ende war Sieg Ellerbeks verdient, weil die Wochendaten zu den US-Öl- und Benzinvorräten
besser ausfielen als erwartet.

166 B. Am Ende war der Sieg Ellerbeks verdient, weil die Wochendaten zu den US-Öl- und
Benzinvorräten besser ausfielen als erwartet.

167 A. Mittwochabend geriet er er besonders stark unter Druck, weil die Haut am Körper zu sehr
spannt.

168 B. Mittwochabend geriet er besonders stark unter Druck, weil die Haut am Körper zu sehr spannt.
169 A. Den noch könnte auch dies nach dem Gesetz gegen Wettbewerbsbeschränkungen verboten sein,

weil die Unternehmen hier Rückenwind aus der Weltwirtschaft spüren und der globale Handel
boomt.

170 B. Dennoch könnte auch dies nach dem Gesetz gegen Wettbewerbsbeschränkungen verboten sein, weil
die Unternehmen hier Rückenwind aus der Weltwirtschaft spüren und der globale Handel

boomt.
171 A. Die Behörde sind zumeist dankbar dafür, weil die Raketen als sehr zuverlässig gelten.
172 B. Die Behörden sind zumeist dankbar dafür, weil die Raketen als sehr zuverlässig gelten.
173 A. Vielleicht auch, weil zu die Kantine gleich macht.
174 B. Vielleicht auch, weil die Kantine gleich zumacht.
175 A. Hamburg schneidet vergleichsweise gut, weil die Essener der bedeutendste Abnehmer von

norwegischem Erdgas sind.
176 B. Hamburg schneidet vergleichsweise gut ab, weil die Essener der bedeutendste Abnehmer von

norwegischem Erdgas sind.
177 A. Das hatte die ETA in einem Schreiben an die die Zeitung Gara bestätigt, die darüber am

kommenden Dienstag beraten wird.
178 B. Das hatte die ETA in einem Schreiben an die Zeitung Gara bestätigt, die darüber am kommenden

Dienstag beraten wird.
179 A. Auswirkungen auf den Verfassungsprozeß innerhalb der Europäischen Union haben die Türkei

neue Hoffnungen auf einen EU-Beitritt gemacht.
180 B. Auswirkungen auf den Verfassungsprozeß innerhalb der Europäischen Union haben der Türkei

neue Hoffnungen auf einen EU-Beitritt gemacht.
181 A. Erste Entwürfe für das neue Angebot werden im Unternehmen seid einiger Zeit verfolgt.
182 B. Erste Entwürfe für das neue Angebot werden im Unternehmen seit einiger Zeit verfolgt.
183 A. Microsoft und die ebenfalls klagende US-Regierung hatte sich am Freitag jedoch so geirrt wie

selten.
184 B. Microsoft und die ebenfalls klagende US-Regierung hatten sich am Freitag jedoch so geirrt

wie selten.
185 A. Die meisten Meteorologen hatten sich am freitags auf einen Vergleich verständigt.
186 B. Die meisten Meteorologen hatten sich am Freitag auf einen Vergleich verständigt.
187 A. Die Tiere halten Sie auseinander, weil die Nachgeburt als hochinfektiös gilt.
188 B. Die Tiere halten sie auseinander, weil die Nachgeburt als hochinfektiös gilt.
189 A. Ich habe jedenfalls vor, noch in diesem Jahr, ein Zeichen zu setzen, daß die Bahn nichts nur

Hilfe fordert, sondern sich auch selber hilft.
190 B. Ich habe jedenfalls vor, noch in diesem Jahr, ein Zeichen zu setzen, daß die Bahn nicht nur

Hilfe fordert, sondern sich auch selber hilft.
191 A. Als ich abends nach Hause kam, hatte sie ein ganz seltsames gefühlt.
192 B. Als ich abends nach Hause kam, hatte sie ein ganz seltsames Gefühl.
193 A. Das komme das Land auf Dauer teuer stehen, weil die einfach sehr interessante Sachen zu

erzählen haben.
194 B. Das komme das Land auf Dauer teuer zu stehen, weil die einfach sehr interessante Sachen zu

erzählen haben.
195 A. Es ist noch gar richtig zu Ende, er macht nur eine Pause.
196 B. Es ist noch gar nicht richtig zu Ende, er macht nur eine Pause.
197 A. Rund 30 Künstlerinnen und Künstler sind in in der Ausstellung dokumentiert.
198 B. Rund 30 Künstlerinnen und Künstler sind in der Ausstellung dokumentiert.
199 A. Auch Großbritannien oder die Niederlande besitzt einen Vorrat von Impfstoff, in den USA

stieg das Volumen gar um 150 Prozent.
200 B. Auch Großbritannien oder die Niederlande besitzen einen Vorrat von Impfstoff, in den USA

stieg das Volumen gar um 150 Prozent.
201 A. Das Jahr 1994 stufte Kopper als das drittbeste im Geschichte der deutschen Psychiatrie dar.
202 B. Das Jahr 1994 stufte Kopper als das drittbeste in der Geschichte der deutschen Psychiatrie

dar.

165

E. Resources

203 A. Heute stehen "Katzen, Mäuse und Ratten - Tierchen in Erwachsenencomics" auf dem Programm,
sagte Schulz sein Manager Sauerland, der in Leipzig vorsichtig von "einer weitere
Vorwärtsentwicklung" sprach.

204 B. Heute stehen "Katzen, Mäuse und Ratten - Tierchen in Erwachsenencomics" auf dem Programm,
sagte Schulz' Manager Sauerland, der in Leipzig vorsichtig von "einer weitere
Vorwärtsentwicklung" sprach.

205 A. Luftangriffe und Landung von Fallschirmjägern in "feindlichem Gebiet" stehen auf Programm,
das man in der Präsidentenadministration heute noch nicht ändern wollte.

206 B. Luftangriffe und Landung von Fallschirmjägern in "feindlichem Gebiet" stehen auf dem
Programm, das man in der Präsidentenadministration heute noch nicht ändern wollte.

207 A. Die Polizei verhinderte das Anbringen der Tafel, weil die Stadt bereits in 1997 mit dem
radikalen Sparen begonnen hat.

208 B. Die Polizei verhinderte das Anbringen der Tafel, weil die Stadt bereits 1997 mit dem
radikalen Sparen begonnen hat.

209 A. Möglich wurde dies alles nur, weil die Spieler eleganter sind, mehr kombinieren und er viel
offensiver zugeht.

210 B. Möglich wurde dies alles nur, weil die Spieler eleganter sind, mehr kombinieren und es viel
offensiver zugeht.

211 A. Es macht mehr Spaß, weil die Kirche weit kleiner wie der Dom sei.
212 B. Es macht mehr Spaß, weil die Kirche weit kleiner als der Dom sei.
213 A. Der Krach droht Zeit weise sogar nachts, weil die Auswertung der Quellen noch nicht

abgeschlossen wurde.
214 B. Der Krach droht zeitweise sogar nachts, weil die Auswertung der Quellen noch nicht

abgeschlossen wurde.
215 A. Es ist wahr, daß wir wie Marionetten an ihren Fäden zu zappeln.
216 B. Es ist wahr, daß wir wie Marionetten an ihren Fäden zappeln.
217 A. Doch nun, weil die Eltern eine Unterforderung ihrer Kinder befürchten.
218 B. Doch nur, weil die Eltern eine Unterforderung ihrer Kinder befürchten.
219 A. Man haben nicht von vornherein dort gespielt, weil die Produkte teuer sind.
220 B. Man habe nicht von vornherein dort gespielt, weil die Produkte teuer sind.
221 A. Ein Kampf um die Macht, das mehr als einmal überrascht.
222 B. Ein Kampf um die Macht, der mehr als einmal überrascht.
223 A. Möglich war dies nur, weil die Baufirma insolvent ißt.
224 B. Möglich war dies nur, weil die Baufirma insolvent ist.
225 A. Aber auch lobt Renate und Andreas, weil die Bettenkapazität um 15,9 Prozent gestiegen ist.
226 B. Aber auch sie lobt Renate und Andreas, weil die Bettenkapazität um 15,9 Prozent gestiegen

ist.
227 A. Er spricht sogar von einem "Glücksfall", weil die Glashütte seine technischen Anlagen umbaut

.
228 B. Er spricht sogar von einem "Glücksfall", weil die Glashütte ihre technischen Anlagen umbaut.
229 A. Dieser sei vermeidbar gewesen weil die Bezirke solche Statistiken nicht führen.
230 B. Dieser sei vermeidbar gewesen, weil die Bezirke solche Statistiken nicht führen.
231 A. Das Angebot reicht vom Holzbalken und Ziegeln über Türen, Fenster, Parkett und Treppen bis

hin zu "Fetischismus und Moderne" bei den Kulturwissenschaftlern.
232 B. Das Angebot reicht von Holzbalken und Ziegeln über Türen, Fenster, Parkett und Treppen bis

hin zu "Fetischismus und Moderne" bei den Kulturwissenschaftlern.
233 A. Beide haben massive finanzielle Schwierigkeiten und beide wissen nicht, wie wie es in der

nächsten Saison aussieht, darüber will Manager Peter John Lee erst kommende Woche reden.
234 B. Beide haben massive finanzielle Schwierigkeiten und beide wissen nicht, wie es in der

nächsten Saison aussieht, darüber will Manager Peter John Lee erst kommende Woche reden.
235 A. Was nicht bedeutet, daß man keine "Suchen"-Button mehr anklicken muß.
236 B. Was nicht bedeutet, daß man keinen "Suchen"-Button mehr anklicken muß.
237 A. Kleinere Zwischenfall melden sie gar nicht erst, weil die Landesbank haftet.
238 B. Kleinere Zwischenfälle melden sie gar nicht erst, weil die Landesbank haftet.
239 A. Es geht uns auch Nahe, weil die Mieter damit einverstanden sein müssen.
240 B. Es geht uns auch nahe, weil die Mieter damit einverstanden sein müssen.
241 A. So müssen Muttertiere im Stall ablammen, weil die Übernahme nicht zu Stande gekommen ist.
242 B. So müssen Muttertiere im Stall ablammen, weil die Übernahme nicht zustande gekommen ist.
243 A. ITN stellte ihm aber in den Mittelpunkt seiner Klage, weil die Unsicherheiten verschwunden

seien.
244 B. ITN stellte ihn aber in den Mittelpunkt seiner Klage, weil die Unsicherheiten verschwunden

seien.

166

E.2. Error Corpora

245 A. Ruhrgas könnte da bei Priorität erhalten, weil die Grünen es geschluckt haben.
246 B. Ruhrgas könnte dabei Priorität erhalten, weil die Grünen es geschluckt haben.
247 A. Bis zu 26. Februar muß die Stadt ihre Stellungnahme abgeben, weil die Rinder doch

verschieden gezeichnet sind und einen unterschiedlichen Körperbau haben.
248 B. Bis zum 26. Februar muß die Stadt ihre Stellungnahme abgeben, weil die Rinder doch

verschieden gezeichnet sind und einen unterschiedlichen Körperbau haben.
249 A. Er kann nicht joggen, weil die Ball Sport Halle Frankfurt-Höchst am ursprünglichen Termin

11. Februar belegt ist.
250 B. Er kann nicht joggen, weil die Ballsporthalle Frankfurt-Höchst am ursprünglichen Termin 11.

Februar belegt ist.
251 A. Das warst vor elf Jahren, als sie sich zwar lachend verbat, nicht als Frau Merkel tituliert

zu werden, aber dann nicht auf dem Gast herumhackte.
252 B. Das war vor elf Jahren, als sie sich zwar lachend verbat, nicht als Frau Merkel tituliert zu

werden, aber dann nicht auf dem Gast herumhackte.
253 A. Das brachte zwar ein Versäumnisurteil, aber aber keine Anstellung.
254 B. Das brachte zwar ein Versäumnisurteil, aber keine Anstellung.
255 A. Bei der Suche nach eine Lehrstelle sollte man sich nicht trennen.
256 B. Bei der Suche nach einer Lehrstelle sollte man sich nicht trennen.
257 A. Dann dürfen man sich aber nicht auf Unternehmen beschränken, sondern muß sich immer auf den

Etatentwurf stützen, den Berthold Depper schon Ende September vorgelegt hatte.
258 B. Dann darf man sich aber nicht auf Unternehmen beschränken, sondern muß sich immer auf den

Etatentwurf stützen, den Berthold Depper schon Ende September vorgelegt hatte.
259 A. Weitere Gespräche über ein das Zusammengehen mit ThyssenKrupp will man, das ist die

schlechte Nachricht, beibehalten.
260 B. Weitere Gespräche über ein Zusammengehen mit ThyssenKrupp will man, das ist die schlechte

Nachricht, beibehalten.

Listing E.5: Self-made error corpus (German)

167

	Title
	Abstract
	Contents
	I Introduction
	1 Introduction
	1.1 Motivation
	1.2 Goal and Definition
	1.3 Structure of this Document

	2 Fundamentals
	2.1 Natural Languages and Grammar Checking
	2.1.1 Definition: The Grammar of a Natural Language
	2.1.2 Tokenization
	2.1.3 Grammar Checking
	2.1.4 Types of Grammatical Errors
	2.1.5 Definition: n-grams
	2.1.6 Multiword Expressions
	2.1.7 Sphere of Words
	2.1.8 Language Specialities

	2.2 Corpora—Collections of Text
	2.2.1 Definition: Corpus
	2.2.2 Sample Corpora

	2.3 Part-of-Speech Tagging
	2.3.1 Tagset
	2.3.2 Types of PoS Taggers
	2.3.3 Combined Tagging

	3 Related Work
	3.1 Rule-based Approaches
	3.1.1 Microsoft Word 97 Grammar Checker
	3.1.2 LanguageTool for Openffice

	3.2 Statistical Approaches
	3.2.1 Differential Grammar Checker
	3.2.2 n-gram based approach

	3.3 Our Approach: LISGrammarChecker

	II Statistical Grammar Checking
	4 Requirements Analysis
	4.1 Basic Concept and Idea
	4.1.1 n-gram Checking
	4.1.2 Word Class Agreements
	4.1.3 Language Independence

	4.2 Requirements for Grammar Checking with Statistics
	4.3 Programming Language
	4.4 Data Processing with POSIX-Shells
	4.5 Tokenization
	4.6 Part-of-Speech Tagging
	4.6.1 Combination of PoS Taggers
	4.6.2 Issues with PoS Tagging

	4.7 Statistical Data Sources
	4.8 Data Storage

	5 Design
	5.1 Interaction of the Components
	5.2 User Interface: Input and Output
	5.3 Training Mode
	5.3.1 Input in Training Mode
	5.3.2 Data Gathering

	5.4 Grammar Checking Mode
	5.4.1 Input in Checking Mode
	5.4.2 Grammar Checking Methods
	5.4.3 Error Counting
	5.4.4 Correction Proposal
	5.4.5 Grammar Checking Output

	5.5 Tagging
	5.6 Data

	6 Implementation
	6.1 User Interaction
	6.2 Tokenization
	6.3 Tagging
	6.4 External Program Calls
	6.5 Training Mode
	6.6 Checking Mode
	6.6.1 Checking Methods
	6.6.2 Internet Functionality
	6.6.3 Correction Proposal
	6.6.4 Grammar Checking Output

	6.7 Database
	6.7.1 Database Structure/Model
	6.7.2 Communication with the Database

	III Evaluation
	7 Test Cases
	7.1 Criteria for Testing
	7.1.1 Statistical Training Data
	7.1.2 Input Data for Checking
	7.1.3 Auxiliary Tools
	7.1.4 PoS Tagger and Tagsets

	7.2 Operate Test Cases
	7.2.1 Case 1: Self-made Error Corpus (English), Penn Treebank Tagset
	7.2.2 Case 2: Same as Case 1, Refined Statistical Data
	7.2.3 Case 3: Self-made Error Corpus (English), Brown Tagset
	7.2.4 Case 4: Self-made Error Corpus (German)
	7.2.5 Case 5: Several Errors in Sentence (English)

	7.3 Operate Test Cases with Upgraded Program
	7.3.1 Case 6: Self-made Error Corpus (English), Brown Tagset
	7.3.2 Case 7: Self-made Error Corpus with Simple Sentences (English)

	7.4 Program Execution Speed
	7.4.1 Training Mode
	7.4.2 Checking Mode

	8 Evaluation
	8.1 Program Evaluation
	8.1.1 Correct Statistical Data
	8.1.2 Large Amount of Statistical Data
	8.1.3 Program Execution Speed
	8.1.4 Language Independence
	8.1.5 Internet Functionality
	8.1.6 Encoding
	8.1.7 Tokenization

	8.2 Error Classes
	8.3 Evaluation of Test Cases 1-5
	8.4 Program Extensions
	8.4.1 Possibility to Use More Databases at Once
	8.4.2 More Hybrid n-grams
	8.4.3 Integration of Rules
	8.4.4 New Program Logic: Combination of Statistics with Rules

	8.5 Evaluation of Upgraded Program

	IV Concluding Remarks
	9 Conclusion
	10 Future work
	10.1 More Statistical Data
	10.2 Encoding
	10.3 Split Long Sentences
	10.4 Statistical Information About Words and Sentences
	10.5 Use n-gram Amounts
	10.6 Include more Rules
	10.7 Tagset that Conforms Requirements
	10.8 Graphical User Interface
	10.9 Intelligent Correction Proposal

	V Appendix
	A Acronyms & Abbreviations
	B Glossary
	C Eidesstattliche Erklärung
	D Bibliography
	E Resources
	E.1 Listings
	E.1.1 Simple Voting Algorithm
	E.1.2 Shell Function to Call Extern Programs

	E.2 Error Corpora
	E.2.1 Self-made Error Corpus (English)
	E.2.2 Self-made Error Corpus with Simple Sentences (English)
	E.2.3 Self-made Error Corpus (German)

